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Matching Theory Introduction

The Marriage Problem (Gale–Shapley, 1962)

Question
In a society with

1 man and 0 women,

how can we arrange marriages so that there are no divorces?

m1 w1
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Matching Theory Introduction

The Marriage Problem (Gale–Shapley, 1962)

Question
In a society with

3 men and 1 woman,

how can we arrange marriages so that there are no divorces?

m1 w1

m2

m3
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Matching Theory Introduction

The Marriage Problem (Gale–Shapley, 1962)

Question
In a society with

M men and 1 woman,

how can we arrange marriages so that there are no divorces?
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Matching Theory Introduction

The Deferred Acceptance Algorithm

Step 1
1 Each man “proposes” to his first-choice woman.

2 Each woman holds onto her most-preferred acceptable proposal
(if any) and rejects all others.

Step t ≥ 2
1 Each rejected man “proposes” to his next-highest choice woman.

2 Each woman holds onto her most-preferred acceptable proposal
(if any) and rejects all others.

At termination, no agent wants a divorce!
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Matching Theory Stable Marriage

Stability

Definition
A marriage matching is stable if no agent wants a divorce.

:

Rational: All agents i find their matches µ(i) acceptable.

Unblocked: There do not exist m,w such that both

m �w µ(w) and w �m µ(m).

Theorem (Gale–Shapley, 1962)

A stable marriage matching exists.
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Matching Theory Stable Marriage

Lattice Structure: Opposition of Interests

Theorem (Conway, 1976)

Given two stable matchings µ, ν, there is a stable match µ ∨ ν
(µ ∧ ν) which every man likes weakly more (less) than µ and ν.

If all men (weakly) prefer stable match µ to stable match ν,
then all women (weakly) prefer ν to µ.

The man- and woman-proposing deferred acceptance algorithms
respectively find the man- and woman-optimal stable matches.
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Matching Theory Stable Marriage

Opposition of Interests: A Simple Example

�m1 : w1 � w2 � ∅
�m2 : w2 � w1 � ∅

�w1 : m2 � m1 � ∅
�w2 : m1 � m2 � ∅

man-optimal stable match

woman-optimal stable match
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Matching Theory Stable Marriage

The “Lone Wolf” Theorem (Roth, 1984)

Theorem
The set of matched men (women) is invariant across stable matches.

Proof
µ̄ = man-optimal stable match; µ = any stable match

µ̄M

card
=

µ̄W

⊆ ⊇

µM

card
=

µW
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Matching Theory

Generalizations

1962: Many-to-one Matching (“College Admissions”)

Substitutable preferences sufficient for stability
“Rural Hospitals” Theorem

1985±ε: Many-to-many Matching (“Consultants and Firms”)

Multiple notions of stability

2005: Matching with Contracts (“Doctors and Hospitals”)

{Wage, schedule, . . .} negotiations embed into matching
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Generalized Matching Theory Matching with Contracts

Matching with Contracts (Hatfield–Milgrom, 2005)

X ⊆ D × H × T

x = (doctor, hospital, terms)
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Generalized Matching Theory Matching with Contracts

(Many-to-one) Matching with Contracts (Hatfield–Milgrom)

X ⊆ D × H × T

x = (doctor, hospital, terms)

Assumptions
Hospitals have strict preferences over sets of contracts.

Doctors have strict preferences and “unit demand.”
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Generalized Matching Theory Matching with Contracts

(Many-to-one) Matching with Contracts (Hatfield–Milgrom)

X ⊆ D × H × T

x = (doctor, hospital, terms)

Special Cases

Men–Women (X = M ×W × {1}; all have unit demand)

Colleges–Students (X = S × C × {1})
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Generalized Matching Theory Matching with Contracts

Substitutability

Definition
The preferences of an agent f ∈ D ∪ H are substitutable if there do
not exist x , z ∈ X and Y ⊆ X such that

z /∈ C f (Y ∪ {z}) but z ∈ C f (Y ∪ {x , z}) .

Intuition
Receiving new offers makes f (weakly) less interested in old offers.

Equivalent Definition

The rejection function R f (X ′) = X ′ − C f (X ′) is monotone.
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Generalized Matching Theory Matching with Contracts

Substitutability ⇒ Stability

Theorem
Suppose that all preferences are substitutable. Then, the set of stable
allocations is a nonempty lattice.

Proof by “Generalized Deferred Acceptance”

Φ(Y ) = X − RH(X − RD(Y ))

Correspondence between fixed points Y of Φ and stable
allocations A = C D(Y ).

If RH and RD are monotone, then Φ is monotone.

Tarski’s Fixed Point Theorem =⇒ a lattice of fixed points of Φ.
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Frontiers of Matching Theory

How deep is the rabbit hole?

Question

What is “needed” in order for matching theory to work?
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Frontiers of Matching Theory Matching in Networks

Matching in Networks (Hatfield–K., 2010)

X ⊆ F × F × T

x = (buyer, seller, terms)
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Frontiers of Matching Theory Matching in Networks

Cyclic Contract Sets

g

f1

y

^^=======

x1
��

f2

x2

TT

Pf1 : {y , x2} � {x1, x2} � ∅

Pf2 : {x2, x1} � ∅

Pg : {y} � ∅

Theorem
Acyclicity is necessary for stability!
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Frontiers of Matching Theory Matching in Networks

Matching in Networks (Hatfield–K., 2010)

X ⊆ F × F × T

x = (buyer, seller, terms)

Assumptions
Agents have strict preferences over sets of contracts.

The contract graph is acyclic (⇐⇒ supply chain structure).
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Frontiers of Matching Theory Matching in Networks

Matching in Networks (Hatfield–K., 2010)

X ⊆ F × F × T

x = (buyer, seller, terms)

Special Cases

Doctors–Hospitals (X ⊆ D × H × T )

Supply chain Matching
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Frontiers of Matching Theory Matching in Networks

Stability

Definition
An allocation of contracts A is stable if no set of agents (strictly)
prefers to match among themselves than to accept the terms of A.

That is, A is stable if it is

1 Rational

2 Unblocked

Scott Duke Kominers (Harvard) October 12, 2010 16



Frontiers of Matching Theory Matching in Networks

Stability

Definition
An allocation of contracts A is stable if no set of agents (strictly)
prefers to match among themselves than to accept the terms of A.

Formally : A is stable if it is

1 Rational: For all f ∈ F , C f (A) = A|f .

2 Unblocked: There does not exist a nonempty blocking set
Z ⊆ X such that Z ∩ A = ∅ and Z |f ⊆ C f (A ∪ Z ) (for all f ).
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Frontiers of Matching Theory Matching in Networks

Substitutability

Definition
The preferences of an agent f are fully substitutable if receiving
more buyer (seller) contracts makes f

weakly less interested in his available buyer (seller) contracts and

weakly more interested in his available seller (buyer) contracts.

Intuition
same-side contracts are substitutes

cross-side contracts are complements
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Frontiers of Matching Theory Matching in Networks

Full Substitutability ⇐⇒ Guaranteed Stability

Theorem (Sufficiency)

If X is acyclic and all preferences are fully substitutable, then there
exists a lattice of stable allocations.

Theorem (Necessity)

Both conditions in the above theorem are necessary for the result.
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Frontiers of Matching Theory

Extensions

Surprising generalization of “Lone Wolf” Theorem

Agents’ excess stocks are invariant

Design of contract language

Available contract set affects outcomes

Completion of many-to-one preferences

New conditions sufficient for many-to-one stability

Matching with money

Pigouvian taxes restore stability for cyclic X
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Frontiers of Matching Theory

The Law of Aggregate Demand

Definition
Preferences of f satisfy the Law of Aggregate Demand (LoAD)
if, whenever f receives new offers as a buyer, he takes on at least as
many new buyer contracts he does seller contracts.

Intuition
When f buys a new good, he will sell at most one more good
than he was previously selling.

Law of Aggregate Supply (LoAS) is analogous.
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The (Generalized) “Lone Wolf” Theorem

Theorem (Roth, 1984)

The set of matched men (women) is invariant across stable matches.

Theorem (Hatfield–Milgrom, 2005)

In many-to-one matching with contracts: substitutability + LoAD
=⇒ the number of contracts signed by each agent is invariant across
stable allocations.

Theorem
Acyclicity + Full Substitutability + LoAD + LoAS =⇒ each agent
holds the same excess stock at every stable allocation.

“Matching in Networks with Bilateral Contracts” (Hatfield–K.)
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Bundling of Contract Terms

1 Work and wages contracted simultaneously:
Employee Preferences: {xw ,$} � ∅
Employer Preferences: {xw ,$} � ∅

2 Work and wages contracted separately:
Employee Preferences: {x$} � {xw , x$} � ∅
Employer Preferences: {xw} � {xw , x$} � ∅

“Contract Design and Stability in Matching Markets” (Hatfield–K.)
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Completion of Preferences

Consider the case of one hospital h with preferences

�h:
{

xα, zβ
}
�

{
xβ

}
� {xα} �

{
zβ

}
,

which are not substitutable.

This hospital h actually has preferences

�h:
{

xα, xβ
}
�

{
xα, zβ

}
�

{
xβ

}
� {xα} �

{
zβ

}
,

which ARE substitutable.
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Frontiers of Matching Theory

Cyclic Contract Sets

g

f1

y

^^=======

x1
��

f2

x2

TT

Pf1 : {y , x2} � {x1, x2} � ∅

Pf2 : {x2, x1} � ∅

Pg : {y} � ∅

Theorem
Acyclicity is necessary for stability!

“Stability and CE in Trading Networks” (Hatfield–K.–Nichifor–Ostrovsky–Westkamp)
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Frontiers of Matching Theory

Conclusion

Acyclicity and substitutability are necessary and sufficient
for (classical) matching theory...

...and at the outer frontiers, surprising structure arises.
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When are preferences substitutable?

Subdividing reveals Substitutability

�h:
{

xα, zβ
}
�

{
xα,β

}
� {xα} �

{
zβ

}
�

{
xβ

}
�′

h:
{

xα, zβ
}
�

{
xα, xβ

}
� {xα} �

{
zβ

}
�

{
xβ

}

Subdividing thwarts Substitutability

�d : {x40} � ∅
�′

d : {x20, x20′} � ∅
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Substitutability ⇒ Stability

Proof by “Generalized Deferred Acceptance”

Φ(Y ) = X − RH(X − RD(Y ))

�h:
{

xα, zβ
}
�

{
xα, xβ

}
� {xα} �

{
zβ

}
�

{
xβ

}
�h′ : {x ′} � {z ′}

�xD
:
{

xβ, x ′} � {xα, x ′} �
{

xβ
}
� {x ′} � {xα} �zD

: {z ′} �
{

zβ
}

Y X − RD(Y ) RH(X − RD(Y ))

X
{

xβ, x ′, z ′} {z ′}{
xα, xβ, x ′, zβ

} {
x ′, xβ, zβ, z ′} {

xβ, z ′}{
xα, x ′, zβ

} {
xα, xβ, x ′, zβ, z ′} {xβ, z ′}{

xα, x ′, zβ
} {

xα, xβ, x ′, zβ, z ′} {xβ, z ′}
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Substitutability ⇒ Stability

Proof by “Generalized Deferred Acceptance”

Φ(Y ) = X − RH(X − RD(Y ))

�h:
{

xα, zβ
}
�

{
xα, xβ

}
� {xα} �

{
zβ

}
�

{
xβ

}
�h′ : {x ′} � {z ′}

�xD
:
{

xβ, x ′} � {xα, x ′} �
{

xβ
}
� {x ′} � {xα} �zD

: {z ′} �
{

zβ
}

Y X − RD(Y ) RH(X − RD(Y ))
X

{
xβ, x ′, z ′} {z ′}{

xα, xβ, x ′, zβ
} {

x ′, xβ, zβ, z ′} {
xβ, z ′}{

xα, x ′, zβ
} {

xα, xβ, x ′, zβ, z ′} {xβ, z ′}{
xα, x ′, zβ

} {
xα, xβ, x ′, zβ, z ′} {xβ, z ′}
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Full Substitutability ⇒ Guaranteed Stability

Proof by “Generalized Deferred Acceptance”

ΦS

(
X B ,X S

)
:= X − RB

(
X B |X S

)
ΦB

(
X B ,X S

)
:= X − RS

(
X S |X B

)
Φ

(
X B ,X S

)
=

(
ΦB

(
X B ,X S

)
,ΦS

(
X B ,X S

))
If X is acyclic, preferences are fully substitutable, and
Φ

(
X B ,X S

)
=

(
X B ,X S

)
, then X B ∩ X S stable.

If X is acyclic, preferences are fully substitutable, and A is
stable, then there exist X B ,X S ⊆ X
such that Φ

(
X B ,X S

)
=

(
X B ,X S

)
with X B ∩ X S = A.

If preferences are fully substitutable, then Φ is isotone.
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Chain Stability

Definition

A set of contracts
{

x1, . . . , xN
}

is a chain if

1 xn
B = xn+1

S for all n = 1, . . . ,N − 1.

2 xn
S = xm

S implies that n = m.

3 xN
B 6= x1

S .

Definition (Ostrovsky, 2008)

An allocation A is chain stable if it is individually rational and there
is no chain that is a blocking set.
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Chain Stability

Theorem
Suppose that the set of contracts X is acyclic and that preferences
are fully substitutable. Then an allocation is stable if and only if it is
chain stable.

Corollary
Suppose that the set of contracts X is acyclic and that preferences
are fully substitutable. Then, the set of chain stable allocations is a
nonempty lattice.
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Chain Stability

Corollary
Suppose that the set of contracts X is acyclic and that preferences
are fully substitutable. Then, the set of chain stable allocations is a
nonempty lattice.

But chain stability...

...is unappealing when X is cyclic.
F = {f , g}; xS = yB = f ; xB = yS = g ;

Pf : {x , y} � ∅, Pg : {x , y} � ∅.

...is strictly weaker than stability when preferences are not fully
substitutable.

...does not correspond to standard many-to-many stability.
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The Laws of Aggregate Demand and Supply

Definition
The preferences of f ∈ F satisfy the Law of Aggregate Demand
(LoAD) if for all Y ,Y ′,Z ⊆ X such that Y ′ ⊆ Y∣∣C f

B (Y |Z )
∣∣− ∣∣C f

B (Y ′|Z )
∣∣ ≥ ∣∣C f

S (Z |Y )
∣∣− ∣∣C f

S (Z |Y ′)
∣∣ .

Definition
The preferences of f ∈ F satisfy the Law of Aggregate Supply
(LoAS) if for all Y ,Z ,Z ′ ⊆ X such that Z ′ ⊆ Z∣∣C f

S (Z |Y )
∣∣− ∣∣C f

S (Z ′|Y )
∣∣ ≥ ∣∣C f

B (Y |Z )
∣∣− ∣∣C f

B (Y |Z ′)
∣∣ .
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