Frontiers of Matching Theory

Scott Duke Kominers

Department of Economics, Harvard University, and Harvard Business School

Colloquium Department of Mathematics, Vassar College October 12, 2010

1

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with

1 man and 0 women.

how can we arrange marriages so that there are no divorces?

m

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with

1 man and 1 woman.

how can we arrange marriages so that there are no divorces?

m w

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with

1 man and 1 woman.

how can we arrange marriages so that there are no divorces?

m _____ W

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with

1 man and 1 woman.

how can we arrange marriages so that there are no divorces?

m w

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with

3 men and 1 woman,

how can we arrange marriages so that there are no divorces?

 m_1 w

 m_2

 m_3

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with

M men and 1 woman,

how can we arrange marriages so that there are no divorces?

 m_1 W

 m_M

÷

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with

M men and W women.

how can we arrange marriages so that there are no divorces?

The Deferred Acceptance Algorithm

Step 1

- Each man "proposes" to his first-choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

The Deferred Acceptance Algorithm

Step 1

- Each man "proposes" to his first-choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

Step $t \ge 2$

- Each rejected man "proposes" to his next-highest choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

The Deferred Acceptance Algorithm

Step 1

- Each man "proposes" to his first-choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

Step $t \ge 2$

- Each rejected man "proposes" to his next-highest choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

At termination, no agent wants a divorce!

Definition

A marriage matching is **stable** if no agent wants a divorce.

Definition

A marriage matching μ is **stable** if no agent wants a divorce.

Definition

A marriage matching μ is **stable** if no agent wants a divorce

Definition

A marriage matching μ is **stable** if no agent wants a divorce:

• **Rational**: All agents *i* find their matches $\mu(i)$ acceptable.

Definition

A marriage matching μ is **stable** if no agent wants a divorce:

- **Rational**: All agents *i* find their matches $\mu(i)$ acceptable.
- Unblocked: There do not exist m, w such that both

$$m \succ_w \mu(w)$$
 and $w \succ_m \mu(m)$.

Definition

A marriage matching μ is **stable** if no agent wants a divorce:

- **Rational**: All agents *i* find their matches $\mu(i)$ acceptable.
- **Unblocked**: There do not exist *m*, *w* such that both

$$m \succ_w \mu(w)$$
 and $w \succ_m \mu(m)$.

Theorem (Gale–Shapley, 1962) A stable marriage matching exists.

Lattice Structure: Opposition of Interests

Theorem (Conway, 1976)

 Given two stable matchings μ, ν, there is a stable match μ ∨ ν (μ ∧ ν) which every man likes weakly more (less) than μ and ν.

Lattice Structure: Opposition of Interests

Theorem (Conway, 1976)

- Given two stable matchings μ, ν, there is a stable match μ ∨ ν (μ ∧ ν) which every man likes weakly more (less) than μ and ν.
- If all men (weakly) prefer stable match μ to stable match ν, then all women (weakly) prefer ν to μ.

Lattice Structure: Opposition of Interests

Theorem (Conway, 1976)

- Given two stable matchings μ, ν, there is a stable match μ ∨ ν (μ ∧ ν) which every man likes weakly more (less) than μ and ν.
- If all men (weakly) prefer stable match μ to stable match ν, then all women (weakly) prefer ν to μ.
- The man- and woman-proposing deferred acceptance algorithms respectively find the man- and woman-optimal stable matches.

Opposition of Interests: A Simple Example

$$\succ_{m_1} : w_1 \succ w_2 \succ \emptyset \qquad \qquad \succ_{w_1} : m_2 \succ m_1 \succ \emptyset \\ \succ_{m_2} : w_2 \succ w_1 \succ \emptyset \qquad \qquad \succ_{w_2} : m_1 \succ m_2 \succ \emptyset$$

Opposition of Interests: A Simple Example

$$\succ_{m_1} : w_1 \succ w_2 \succ \emptyset \qquad \qquad \succ_{w_1} : m_2 \succ m_1 \succ \emptyset \\ \succ_{m_2} : w_2 \succ w_1 \succ \emptyset \qquad \qquad \succ_{w_2} : m_1 \succ m_2 \succ \emptyset$$

man-optimal stable match

Opposition of Interests: A Simple Example

$$\succ_{m_1} : \mathbf{w}_1 \succ \mathbf{w}_2 \succ \emptyset \qquad \qquad \succ_{w_1} : \mathbf{m}_2 \succ \mathbf{m}_1 \succ \emptyset \\ \succ_{m_2} : \mathbf{w}_2 \succ \mathbf{w}_1 \succ \emptyset \qquad \qquad \succ_{w_2} : \mathbf{m}_1 \succ \mathbf{m}_2 \succ \emptyset$$

man-optimal stable match woman-optimal stable match

Theorem

The set of matched men (women) is invariant across stable matches.

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

$$\bar{\mu}_M \qquad \bar{\mu}_W$$
 $\mu_M \qquad \mu_W$

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

$\bar{\mu}_{M}$	$\bar{\mu}_W$
UI	
μ_{M}	μ_W

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

$\bar{\mu}_{M}$	$\bar{\mu}_W$
UI	$\cap I$
μ_{M}	μ_W

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

$$\begin{array}{ccc} \bar{\mu}_{M} & \stackrel{\mathsf{card}}{=} & \bar{\mu}_{W} \\ \cup & & & \cap \\ \mu_{M} & \stackrel{\mathsf{card}}{=} & \mu_{W} \end{array}$$

Generalizations

- 1962: Many-to-one Matching ("College Admissions")
 - Substitutable preferences sufficient for stability
 - "Rural Hospitals" Theorem

Generalizations

- 1962: Many-to-one Matching ("College Admissions")
 - Substitutable preferences sufficient for stability
 - "Rural Hospitals" Theorem
- 1985 $\pm \varepsilon$: Many-to-many Matching ("Consultants and Firms")
 - Multiple notions of stability

Generalizations

- 1962: Many-to-one Matching ("College Admissions")
 - Substitutable preferences sufficient for stability
 - "Rural Hospitals" Theorem
- 1985 $\pm \varepsilon$: Many-to-many Matching ("Consultants and Firms")
 - Multiple notions of stability
- 2005: Matching with Contracts ("Doctors and Hospitals")
 - {Wage, schedule, $\ldots \}$ negotiations embed into matching

Matching with Contracts (Hatfield-Milgrom, 2005)

x = (doctor, hospital, terms)

Matching with Contracts (Hatfield-Milgrom, 2005)

$X \subseteq D \times H \times T$ x = (doctor, hospital, terms)

(Many-to-one) Matching with Contracts (Hatfield-Milgrom)

$X \subseteq D \times H \times T$ x = (doctor, hospital, terms)

(Many-to-one) Matching with Contracts (Hatfield-Milgrom)

$$X \subseteq D \times H \times T$$
$$x = (doctor, hospital, terms)$$

Assumptions

- Hospitals have strict preferences over sets of contracts.
- Doctors have strict preferences and "unit demand."
(Many-to-one) Matching with Contracts (Hatfield-Milgrom)

$$X \subseteq D \times H \times T$$
$$x = (doctor, hospital, terms)$$

Special Cases

- Men–Women ($X = M \times W \times \{1\}$; all have unit demand)
- Colleges–Students ($X = S \times C \times \{1\}$)

Definition

The preferences of an agent $f \in D \cup H$ are **substitutable** if there do not exist $x, z \in X$ and $Y \subseteq X$ such that

$$z \notin C^{f}(Y \cup \{z\})$$
 but $z \in C^{f}(Y \cup \{x, z\})$.

Definition

The preferences of an agent $f \in D \cup H$ are **substitutable** if there do not exist $x, z \in X$ and $Y \subseteq X$ such that

$$z \notin C^{f}(Y \cup \{z\})$$
 but $z \in C^{f}(Y \cup \{x, z\})$.

Intuition

Receiving new offers makes f (weakly) less interested in old offers.

Definition

The preferences of an agent $f \in D \cup H$ are **substitutable** if there do not exist $x, z \in X$ and $Y \subseteq X$ such that

$$z \notin C^{f}(Y \cup \{z\})$$
 but $z \in C^{f}(Y \cup \{x, z\})$.

Intuition

Receiving new offers makes f (weakly) less interested in old offers.

Equivalent Definition

The **rejection function** $R^{f}(X') = X' - C^{f}(X')$ is monotone.

Theorem

Suppose that all preferences are substitutable. Then, the set of stable allocations is a nonempty lattice.

Theorem

Suppose that all preferences are substitutable. Then, the set of stable allocations is a nonempty lattice.

Proof by "Generalized Deferred Acceptance" $\Phi(Y) = X - R^{H}(X - R^{D}(Y))$

Theorem

Suppose that all preferences are substitutable. Then, the set of stable allocations is a nonempty lattice.

Proof by "Generalized Deferred Acceptance" $\Phi(Y) = X - R^{H}(X - R^{D}(Y))$

• Correspondence between fixed points Y of Φ and stable allocations $A = C^{D}(Y)$.

Theorem

Suppose that all preferences are substitutable. Then, the set of stable allocations is a nonempty lattice.

Proof by "Generalized Deferred Acceptance" $\Phi(Y) = X - R^{H}(X - R^{D}(Y))$

- Correspondence between fixed points Y of Φ and stable allocations $A = C^{D}(Y)$.
- If R^H and R^D are monotone, then Φ is monotone.

Theorem

Suppose that all preferences are substitutable. Then, the set of stable allocations is a nonempty lattice.

Proof by "Generalized Deferred Acceptance"

$$\Phi(Y) = X - R^{H}(X - R^{D}(Y))$$

- Correspondence between fixed points Y of Φ and stable allocations $A = C^{D}(Y)$.
- If R^H and R^D are monotone, then Φ is monotone.
- Tarski's Fixed Point Theorem \implies a lattice of fixed points of Φ .

Frontiers of Matching Theory

How deep is the rabbit hole?

Question

What is "needed" in order for matching theory to work?

Frontiers of Matching Theory Matching in Networks

Matching in Networks (Hatfield-K., 2010)

x = (buyer, seller, terms)

Scott Duke Kominers (Harvard)

October 12, 2010 13

Frontiers of Matching Theory Matching in Networks

Matching in Networks (Hatfield-K., 2010)

$X \subseteq F \times F \times T$ x = (buyer, seller, terms)

Scott Duke Kominers (Harvard)

October 12, 2010 13

 $P_{f_1} : \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$ $P_{f_2} : \{x^2, x^1\} \succ \varnothing$ $P_g : \{y\} \succ \varnothing$

Theorem

Acyclicity is necessary for stability!

Frontiers of Matching Theory Matching in Networks

Matching in Networks (Hatfield-K., 2010)

$X \subseteq F \times F \times T$ x = (buyer, seller, terms)

Scott Duke Kominers (Harvard)

October 12, 2010 15

Matching in Networks (Hatfield-K., 2010)

$$X \subseteq F \times F \times T$$
$$x = (buyer, seller, terms)$$

Assumptions

- Agents have strict preferences over sets of contracts.
- The contract graph is acyclic (\iff supply chain structure).

Matching in Networks (Hatfield-K., 2010)

$$X \subseteq F \times F \times T$$
$$x = (buyer, seller, terms)$$

Special Cases

- Doctors–Hospitals ($X \subseteq D \times H \times T$)
- Supply chain Matching

Stability

Definition

An allocation of contracts A is **stable** if no set of agents (strictly) prefers to match among themselves than to accept the terms of A.

That is, A is **stable** if it is

- Rational
- **2** Unblocked

Stability

Definition

An allocation of contracts A is **stable** if no set of agents (strictly) prefers to match among themselves than to accept the terms of A.

Formally: A is **stable** if it is

- **Q** Rational: For all $f \in F$, $C^{f}(A) = A|_{f}$.
- **2** Unblocked: There does not exist a nonempty blocking set $Z \subseteq X$ such that $Z \cap A = \emptyset$ and $Z|_f \subseteq C^f(A \cup Z)$ (for all f).

Definition

The preferences of an agent f are **fully substitutable** if receiving more buyer (seller) contracts makes f

- weakly less interested in his available buyer (seller) contracts and
- weakly more interested in his available seller (buyer) contracts.

Intuition

- same-side contracts are substitutes
- cross-side contracts are complements

Full Substitutability \iff Guaranteed Stability

Theorem (Sufficiency)

If X is acyclic and all preferences are fully substitutable, then there exists a lattice of stable allocations.

Full Substitutability \iff Guaranteed Stability

Theorem (Sufficiency)

If X is acyclic and all preferences are fully substitutable, then there exists a lattice of stable allocations

Theorem (Necessity)

Both conditions in the above theorem are necessary for the result.

-∢ ≣ →

(日) (同) (三)

- Surprising generalization of "Lone Wolf" Theorem
 - Agents' excess stocks are invariant

- Surprising generalization of "Lone Wolf" Theorem
 - Agents' excess stocks are invariant
- Design of contract language
 - Available contract set affects outcomes

- Surprising generalization of "Lone Wolf" Theorem
 - Agents' excess stocks are invariant
- Design of contract language
 - Available contract set affects outcomes
- Completion of many-to-one preferences
 - New conditions sufficient for many-to-one stability

- Surprising generalization of "Lone Wolf" Theorem
 - Agents' excess stocks are invariant
- Design of contract language
 - Available contract set affects outcomes
- Completion of many-to-one preferences
 - New conditions sufficient for many-to-one stability
- Matching with money
 - Pigouvian taxes restore stability for cyclic X

The Law of Aggregate Demand

Definition

Preferences of f satisfy the **Law of Aggregate Demand (LoAD)** if, whenever f receives new offers as a buyer, he takes on at least as many new buyer contracts he does seller contracts.

Intuition

- When f buys a new good, he will sell at most one more good than he was previously selling.
- Law of Aggregate Supply (LoAS) is analogous.
The Law of Aggregate Demand

Definition

Preferences of f satisfy the Law of Aggregate Demand (LoAD) if, whenever f receives new offers as a buyer, he takes on at least as many new buyer contracts he does seller contracts.

Formally: for all $Y, Y', Z \subseteq X$ such that $Y' \subseteq Y$,

$$\left|C_{B}^{f}(Y|Z)\right|-\left|C_{B}^{f}(Y'|Z)\right|\geq\left|C_{S}^{f}(Z|Y)\right|-\left|C_{S}^{f}(Z|Y')\right|.$$

Intuition

- When f buys a new good, he will sell at most one more good than he was previously selling.
- Law of Aggregate Supply (LoAS) is analogous.

Frontiers of Matching Theory

The (Generalized) "Lone Wolf" Theorem

Scott Duke Kominers (Harvard)

■ → ■ → ■ → へ(October 12, 2010 21

< A

Theorem (Roth, 1984)

The set of matched men (women) is invariant across stable matches.

Theorem (Roth, 1984)

The set of matched men (women) is invariant across stable matches.

Theorem (Roth, 1984)

The set of matched men (women) is invariant across stable matches.

Theorem (Hatfield-Milgrom, 2005)

In many-to-one matching with contracts: substitutability + LoAD \implies the number of contracts signed by each agent is invariant across stable allocations.

Theorem (Roth, 1984)

The set of matched men (women) is invariant across stable matches.

Theorem (Hatfield–Milgrom, 2005)

In many-to-one matching with contracts: substitutability + LoAD \implies the number of contracts signed by each agent is invariant across stable allocations.

Theorem (Roth, 1984)

The set of matched men (women) is invariant across stable matches.

Theorem (Hatfield–Milgrom, 2005)

In many-to-one matching with contracts: substitutability + LoAD \implies the number of contracts signed by each agent is invariant across stable allocations.

Theorem

Acyclicity + Full Substitutability + $LoAD + LoAS \implies$ each agent holds the same excess stock at every stable allocation.

Theorem (Roth, 1984)

The set of matched men (women) is invariant across stable matches.

Theorem (Hatfield–Milgrom, 2005)

In many-to-one matching with contracts: substitutability + LoAD \implies the number of contracts signed by each agent is invariant across stable allocations.

Theorem

Acyclicity + Full Substitutability + $LoAD + LoAS \implies$ each agent holds the same excess stock at every stable allocation.

"Matching in Networks with Bilateral Contracts" (Hatfield-K.)

• Work and wages contracted simultaneously:

- Employee Preferences: $\{x^{w,\$}\} \succ \emptyset$
- Employer Preferences: $\{x^{w,\$}\} \succ \emptyset$

Work and wages contracted simultaneously:

- Employee Preferences: $\{x^{w,\$}\} \succ \emptyset$
- Employer Preferences: $\{x^{w,\$}\} \succ \emptyset$

Work and wages contracted separately:

- Employee Preferences: $\{x^{\$}\} \succ \{x^{w}, x^{\$}\} \succ \emptyset$
- Employer Preferences: $\{x^w\} \succ \{x^w, x^{\$}\} \succ \emptyset$

O Work and wages contracted simultaneously:

- Employee Preferences: $\{x^{w,\$}\} \succ \emptyset$
- Employer Preferences: $\{x^{w,\$}\} \succ \emptyset$

2 Work and wages contracted separately:

- Employee Preferences: $\{x^{\$}\} \succ \{x^{w}, x^{\$}\} \succ \emptyset$
- Employer Preferences: $\{x^w\} \succ \{x^w, x^{\$}\} \succ \emptyset$

O Work and wages contracted simultaneously:

- Employee Preferences: $\{x^{w,\$}\} \succ \emptyset$
- Employer Preferences: $\{x^{w,\$}\} \succ \emptyset$

2 Work and wages contracted separately:

- Employee Preferences: $\{x^{\$}\} \succ \{x^{w}, x^{\$}\} \succ \emptyset$
- Employer Preferences: $\{x^w\} \succ \{x^w, x^{\$}\} \succ \emptyset$

O Work and wages contracted simultaneously:

- Employee Preferences: $\{x^{w,\$}\} \succ \emptyset$
- Employer Preferences: $\{x^{w,\$}\} \succ \emptyset$

2 Work and wages contracted separately:

- Employee Preferences: $\{x^{\$}\} \succ \{x^{w}, x^{\$}\} \succ \emptyset$
- Employer Preferences: $\{x^w\} \succ \{x^w, x^{\$}\} \succ \emptyset$

"Contract Design and Stability in Matching Markets" (Hatfield-K.)

Completion of Preferences

• Consider the case of one hospital h with preferences

$$\succ_{h}: \left\{ x^{\alpha}, z^{\beta} \right\} \succ \left\{ x^{\beta} \right\} \succ \left\{ x^{\alpha} \right\} \succ \left\{ z^{\beta} \right\},$$

which are not substitutable.

Completion of Preferences

• Consider the case of one hospital h with preferences

$$\succ_{h}: \left\{x^{\alpha}, z^{\beta}\right\} \succ \left\{x^{\beta}\right\} \succ \left\{x^{\alpha}\right\} \succ \left\{z^{\beta}\right\},$$

which are not substitutable.

• This hospital h actually has preferences

$$\succ_{h}: \left\{ x^{\alpha}, x^{\beta} \right\} \succ \left\{ x^{\alpha}, z^{\beta} \right\} \succ \left\{ x^{\beta} \right\} \succ \left\{ x^{\alpha} \right\} \succ \left\{ z^{\beta} \right\},$$

which ARE substitutable.

Completion of Preferences

• Consider the case of one hospital h with preferences

$$\succ_{h}: \left\{x^{\alpha}, z^{\beta}\right\} \succ \left\{x^{\beta}\right\} \succ \left\{x^{\alpha}\right\} \succ \left\{z^{\beta}\right\},$$

which are not substitutable.

• This hospital h actually has preferences

$$\succ_{h}: \left\{ x^{\alpha}, x^{\beta} \right\} \succ \left\{ x^{\alpha}, z^{\beta} \right\} \succ \left\{ x^{\beta} \right\} \succ \left\{ x^{\alpha} \right\} \succ \left\{ z^{\beta} \right\},$$

which ARE substitutable.

"Contract Design and Stability in Matching Markets" (Hatfield-K.)

 $P_{f_1} : \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$ $P_{f_2} : \{x^2, x^1\} \succ \varnothing$ $P_g : \{y\} \succ \varnothing$

Theorem

Acyclicity is necessary for stability!

 $P_{f_1} : \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$ $P_{f_2} : \{x^2, x^1\} \succ \varnothing$ $P_g : \{y\} \succ \varnothing$

Theorem

Acyclicity or transferable utility is necessary for stability!

 $P_{f_1} : \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$ $P_{f_2} : \{x^2, x^1\} \succ \varnothing$ $P_g : \{y\} \succ \varnothing$

Theorem

Acyclicity or transferable utility is necessary for stability!

 $P_{f_1} : \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$ $P_{f_2} : \{x^2, x^1\} \succ \varnothing$ $P_g : \{y\} \succ \varnothing$

・ロン ・部と ・ほと ・ ほとう

Theorem

Acyclicity or transferable utility is necessary for stability!

"Stability and CE in Trading Networks" (Hatfield-K.-Nichifor-Ostrovsky-Westkamp)

Conclusion

Acyclicity and substitutability are necessary and sufficient for (classical) matching theory...

...and at the outer frontiers, surprising structure arises.

Conclusion

Acyclicity and substitutability are necessary and sufficient for (classical) matching theory...

...and at the outer frontiers, surprising structure arises.

Open Questions

- Optimal contract language?
- Necessary conditions for many-to-one stability?
- Matching with complementarities?

Conclusion

Acyclicity and substitutability are necessary and sufficient for (classical) matching theory...

...and at the outer frontiers, surprising structure arises.

Open Questions

- Optimal contract language?
- Necessary conditions for many-to-one stability?
- Matching with complementarities?

Extra Slides

Image: A matrix and a matrix

3

Scott Duke Kominers (Harvard)

≣ ▶ ◀ ॾ ▶ ॾ •ी ९ (October 12, 2010 27

< □ > < 同 > <

Gale-Shapley (1962)

Scott Duke Kominers (Harvard)

October 12, 2010 27

3

Hatfield-Milgrom (2005) Echenique-Oviedo (2006)

Hatfield–K. (2010a) Klaus–Walzl (2009)

Ostrovsky (2008)

Hatfield-Milgrom (2005) Echenique-Oviedo (2006)

Hatfield-K. (2010b)

Hatfield–K. (2010a) Klaus–Walzl (2009)

Ostrovsky (2008)

Hatfield-Milgrom (2005) Echenique-Oviedo (2006)

Hatfield-K. (2010b)

Hatfield–K. (2010a) Klaus–Walzl (2009)

Ostrovsky (2008)

Hatfield-Milgrom (2005) Echenique-Oviedo (2006)

Roth (1986) Gale–Shapley (1962)

э

Hatfield-K. (2010b)

Hatfield–K. (2010a) Klaus–Walzl (2009)

Ostrovsky (2008)

Hatfield-Milgrom (2005) Echenique-Oviedo (2006)

Roth (1986) Gale–Shapley (1962)

• Kara–Sönmez (1996, 1997), Gul–Stachetti (1999), Haake–Klaus (2008a,b), Hatfield–Kojima (2009), Jaume et al. (2009), ...

Extra Slides

When *are* preferences substitutable?

Subdividing reveals Substitutability

$$\succ_{h}: \{x^{\alpha}, z^{\beta}\} \succ \{x^{\alpha, \beta}\} \succ \{x^{\alpha}\} \succ \{z^{\beta}\} \succ \{x^{\beta}\}$$
$$\succ'_{h}: \{x^{\alpha}, z^{\beta}\} \succ \{x^{\alpha}, x^{\beta}\} \succ \{x^{\alpha}\} \succ \{z^{\beta}\} \succ \{x^{\beta}\}$$

• Subdividing thwarts Substitutability

$$\succ_d : \{x^{40}\} \succ \varnothing$$
$$\succ'_d : \{x^{20}, x^{20'}\} \succ \varnothing$$

Substitutability \Rightarrow Stability

Proof by "Generalized Deferred Acceptance"

$$\Phi(Y) = X - R^{H}(X - R^{D}(Y))$$

Substitutability \Rightarrow Stability

Proof by "Generalized Deferred Acceptance"

$$\Phi(Y) = X - R^H(X - R^D(Y))$$

$$\succ_{h}: \left\{ x^{\alpha}, z^{\beta} \right\} \succ \left\{ x^{\alpha}, x^{\beta} \right\} \succ \left\{ x^{\alpha} \right\} \succ \left\{ z^{\beta} \right\} \succ \left\{ x^{\beta} \right\} \qquad \succ_{h'}: \left\{ x' \right\} \succ \left\{ z' \right\} \\ \succ_{x_{D}}: \left\{ x^{\beta}, x' \right\} \succ \left\{ x^{\alpha}, x' \right\} \succ \left\{ x^{\beta} \right\} \succ \left\{ x' \right\} \succ \left\{ x^{\alpha} \right\} \qquad \succ_{z_{D}}: \left\{ z' \right\} \succ \left\{ z' \right\}$$

Substitutability \Rightarrow Stability

伺 と くき とくき とうき
Proof by "Generalized Deferred Acceptance" $\Phi(Y) = X - R^{H}(X - R^{D}(Y))$ $\succ_{h}: \left\{ x^{\alpha}, z^{\beta} \right\} \succ \left\{ x^{\alpha}, x^{\beta} \right\} \succ \left\{ x^{\alpha} \right\} \succ \left\{ z^{\beta} \right\} \succ \left\{ x^{\beta} \right\} \quad \succ_{h'}: \left\{ x' \right\} \succ \left\{ z' \right\}$ $\succ_{x_0} : \{x^{\beta}, x'\} \succ \{x^{\alpha}, x'\} \succ \{x^{\beta}\} \succ \{x'\} \succ \{x^{\alpha}\} \qquad \succ_{z_0} : \{z'\} \succ \{z^{\beta}\}$ $\begin{array}{c|c} Y & X - R^D(Y) & R^H(X - R^D(Y)) \\ \hline X & \left\{ x^\beta, x', z' \right\} & \left\{ z' \right\} \end{array}$

Proof by "Generalized Deferred Acceptance"

$$\Phi(Y) = X - R^{H}(X - R^{D}(Y))$$

$$\succ_{h}: \{x^{\alpha}, z^{\beta}\} \succ \{x^{\alpha}, x^{\beta}\} \succ \{x^{\alpha}\} \succ \{z^{\beta}\} \succ \{x^{\beta}\} \qquad \succ_{h'}: \{x'\} \succ \{z'\}$$
$$\succ_{x_{D}}: \{x^{\beta}, x'\} \succ \{x^{\alpha}, x'\} \succ \{x^{\beta}\} \succ \{x'\} \succ \{x^{\alpha}\} \qquad \succ_{z_{D}}: \{z'\} \succ \{z^{\beta}\}$$

$$\begin{array}{c|c|c|c|c|c|c|}\hline Y & X - R^D(Y) & R^H(X - R^D(Y)) \\\hline \hline X & \{x^{\beta}, x', z'\} & \{z'\} \\\hline \{x^{\alpha}, x^{\beta}, x', z^{\beta}\} & \{x', x^{\beta}, z^{\beta}, z'\} & \{x^{\beta}, z'\} \end{array}$$

Proof by "Generalized Deferred Acceptance"

$$\Phi(Y) = X - R^H(X - R^D(Y))$$

$$\succ_{h}: \{x^{\alpha}, z^{\beta}\} \succ \{x^{\alpha}, x^{\beta}\} \succ \{x^{\alpha}\} \succ \{z^{\beta}\} \succ \{x^{\beta}\} \qquad \succ_{h'}: \{x'\} \succ \{z'\}$$
$$\succ_{x_{D}}: \{x^{\beta}, x'\} \succ \{x^{\alpha}, x'\} \succ \{x^{\beta}\} \succ \{x'\} \succ \{x^{\alpha}\} \qquad \succ_{z_{D}}: \{z'\} \succ \{z^{\beta}\}$$

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline Y & X - R^D(Y) & R^H(X - R^D(Y)) \\\hline X & \left\{ x^{\beta}, x', z' \right\} & \left\{ z' \right\} \\\hline \left\{ x^{\alpha}, x^{\beta}, x', z^{\beta} \right\} & \left\{ x', x^{\beta}, z^{\beta}, z' \right\} & \left\{ x^{\beta}, z' \right\} \\\hline \left\{ x^{\alpha}, x', z^{\beta} \right\} & \left\{ x^{\alpha}, x^{\beta}, x', z^{\beta}, z' \right\} & \left\{ x^{\beta}, z' \right\} \end{array}$$

Proof by "Generalized Deferred Acceptance"

$$\Phi(Y) = X - R^H(X - R^D(Y))$$

$$\succ_{h}: \{x^{\alpha}, z^{\beta}\} \succ \{x^{\alpha}, x^{\beta}\} \succ \{x^{\alpha}\} \succ \{z^{\beta}\} \succ \{x^{\beta}\} \qquad \succ_{h'}: \{x'\} \succ \{z'\}$$
$$\succ_{x_{D}}: \{x^{\beta}, x'\} \succ \{x^{\alpha}, x'\} \succ \{x^{\beta}\} \succ \{x'\} \succ \{x^{\alpha}\} \qquad \succ_{z_{D}}: \{z'\} \succ \{z^{\beta}\}$$

< □ > < 同 > < 三 >

э

Proof by "Generalized Deferred Acceptance"

$$\Phi(Y) = X - R^H(X - R^D(Y))$$

$$\succ_{h}: \{x^{\alpha}, z^{\beta}\} \succ \{x^{\alpha}, x^{\beta}\} \succ \{x^{\alpha}\} \succ \{z^{\beta}\} \succ \{x^{\beta}\} \qquad \succ_{h'}: \{x'\} \succ \{z'\}$$
$$\succ_{x_{D}}: \{x^{\beta}, x'\} \succ \{x^{\alpha}, x'\} \succ \{x^{\beta}\} \succ \{x'\} \succ \{x^{\alpha}\} \qquad \succ_{z_{D}}: \{z'\} \succ \{z^{\beta}\}$$

< □ > < 同 > < 三 >

э

Full Substitutability \Rightarrow Guaranteed Stability

Proof by "Generalized Deferred Acceptance"

$$\begin{split} \Phi_{S}\left(X^{B}, X^{S}\right) &:= X - R_{B}\left(X^{B}|X^{S}\right) \\ \Phi_{B}\left(X^{B}, X^{S}\right) &:= X - R_{S}\left(X^{S}|X^{B}\right) \\ \Phi\left(X^{B}, X^{S}\right) &= \left(\Phi_{B}\left(X^{B}, X^{S}\right), \Phi_{S}\left(X^{B}, X^{S}\right)\right) \end{split}$$

- If X is acyclic, preferences are fully substitutable, and $\Phi(X^B, X^S) = (X^B, X^S)$, then $X^B \cap X^S$ stable.
- If X is acyclic, preferences are fully substitutable, and A is stable, then there exist X^B, X^S ⊆ X such that Φ (X^B, X^S) = (X^B, X^S) with X^B ∩ X^S = A.
- If preferences are fully substitutable, then Φ is isotone.

Definition

A set of contracts $\left\{x^1,\ldots,x^N
ight\}$ is a **chain** if

1
$$x_B^n = x_S^{n+1}$$
 for all $n = 1, ..., N - 1$.

2
$$x_{S}^{n} = x_{S}^{m}$$
 implies that $n = m$.

$$x_B^N \neq x_S^1$$

Definition (Ostrovsky, 2008)

An allocation A is **chain stable** if it is individually rational and there is no chain that is a blocking set.

Extra Slides

Chain Stability

Theorem

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then an allocation is stable if and only if it is chain stable.

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

$$P_f: \{x,y\} \succ \varnothing, \quad P_g: \{x,y\} \succ \varnothing.$$

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

$$P_f: \{x, y\} \succ \varnothing, \quad P_g: \{x, y\} \succ \varnothing.$$

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

$$P_f: \{x, y\} \succ \emptyset, \quad P_g: \{x, y\} \succ \emptyset.$$

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

$$P_f: \{x,y\} \succ \varnothing, \quad P_g: \{x,y\} \succ \varnothing.$$

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

But chain stability...

...is unappealing when X is cyclic.
 F = {*f*, *g*}; *x*_S = *y*_B = *f*; *x*_B = *y*_S = *g*;

$$P_f: \{x, y\} \succ \emptyset, \quad P_g: \{x, y\} \succ \emptyset.$$

• ...is strictly weaker than stability when preferences are not fully substitutable.

Corollary

Suppose that the set of contracts X is acyclic and that preferences are fully substitutable. Then, the set of chain stable allocations is a nonempty lattice.

$$P_f$$
: { x, y } $\succ \emptyset$, P_g : { x, y } $\succ \emptyset$.

- ...is strictly weaker than stability when preferences are not fully substitutable.
- ...does not correspond to standard many-to-many stability.

Extra Slides

The Laws of Aggregate Demand and Supply

Definition

The preferences of $f \in F$ satisfy the **Law of Aggregate Demand (LoAD)** if for all $Y, Y', Z \subseteq X$ such that $Y' \subseteq Y$

$$\left| C_B^f \left(Y | Z
ight) \right| - \left| C_B^f \left(Y' | Z
ight) \right| \geq \left| C_S^f \left(Z | Y
ight) \right| - \left| C_S^f \left(Z | Y'
ight) \right|.$$

Definition

The preferences of $f \in F$ satisfy the Law of Aggregate Supply **(LoAS)** if for all $Y, Z, Z' \subseteq X$ such that $Z' \subseteq Z$

$$\left| C^{f}_{S}\left(Z|Y
ight)
ight| - \left| C^{f}_{S}\left(Z'|Y
ight)
ight| \geq \left| C^{f}_{B}\left(Y|Z
ight)
ight| - \left| C^{f}_{B}\left(Y|Z'
ight)
ight|.$$

Index

Stable Marriage

- Deferred Acceptance
- Stability
- Lattice Structure
- Opposition of Interests
- "Lone Wolf" Theorem
- Generalizations
- Matching with Contracts
 - Substitutability
 - \implies Stability

Literature Survey

Frontiers of Matching Theory

- Matching in Networks
- Cyclic Contract Sets
- Stability \iff Subs
- Extensions
 - LoAD/ "Lone Wolf"
 - Language
 - Completion
 - Money

Conclusion

- Lang/GDA Example
- Chain Stability
- LoAD/LoAS