Configurations of Extremal Even Unimodular Lattices

Scott D. Kominers

Harvard Mathematics Department

Brown University SUMS March 8, 2008

Lattice *L*

• free \mathbb{Z} -module

- free \mathbb{Z} -module
- with an inner product $\langle \cdot, \cdot \rangle : L \times L \to \mathbb{R}$

rank

rank

number of basis vectors

even

• **EVEN** • $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$

Solution Lattice L — "integer vector space"

even

- $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$
- all vectors have even squared length

unimodular

unimodular

L is "self-dual"

unimodular

- L is "self-dual"
- \checkmark L's matrix has determinant 1

• Review: **even unimodular lattice** *L*

• Review: **EVEN** unimodular lattice *L*

all vectors have even squared length

• Review: **even Unimodular** lattice *L*

"self-dual"

Review: even unimodular lattice L

"integer vector space"

"rare"

• "rare"

•
$$\operatorname{rank}(L) = 8n$$

Key Terms

• even unimodular lattice *L*...

extremal

Key Terms

even unimodular lattice L...

extremal

shortest vector

Key Terms

even unimodular lattice L...

sextremal

 \square shortest vector \leftrightarrow as long as possible

We care about...

extremal even unimodular lattices

extremal even unimodular lattices

extremal even unimodular lattices are useful

Sphere-packing problems

- Sphere-packing problems
 - Storing *n*-dimensional oranges

- Sphere-packing problems
 - Storing *n*-dimensional oranges
 - Chemical lattices (in dimensions $n \leq 3$)

- Sphere-packing problems
 - Storing *n*-dimensional oranges
 - Chemical lattices (in dimensions $n \leq 3$)
 - (Continuous) communication decoding

Methods: Theta Functions

Methods: Theta Functions

Slogan:

"The *theta function* of a lattice *L encodes* the lengths of *L*'s vectors."

Methods: Theta Functions

Slogan:

"The *theta function* of a lattice *L encodes* the lengths of *L*'s vectors."

"dot product $\langle x, x \rangle$ " \iff "length"
Slogan:

"The *theta function* of a lattice L *encodes* the lengths of L's vectors."

🧕 How:

"dot product $\langle x, x \rangle$ " \iff "length"

• What:

$$\Theta_L(\tau) = \sum_{x \in L} e^{i\pi\tau \langle x, x \rangle} = \sum_{k=1}^{\infty} a_k e^{i\pi\tau(k)}$$

Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

● Example:

 $\Theta_{\mathbb{Z}^2}(au)$

Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

● Example:

$$\Theta_{\mathbb{Z}^2}(\tau) = \sum_{x \in L} e^{i\pi\tau \langle x, x \rangle} = 1 + 4e^{i\pi\tau} + 4e^{2i\pi\tau} + 4e^{4i\pi\tau} + \cdots$$

• Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

Mhy we care:

Theta functions of even unimodular lattices are examples of *modular forms*.

Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

Mhy we care:

Theta functions of even unimodular lattices are examples of *modular forms*.

We can write down the spaces of modular forms explicitly.

Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

Mhy we care:

We can write down the spaces of modular forms explicitly.

Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

Mhy we care:

We can write down the spaces of modular forms explicitly.

We can therefore study the function Θ_L ...

Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L encodes* the lengths of *L*'s vectors."

Mhy we care:

We can write down the spaces of modular forms explicitly.

We can therefore study the function Θ_L ...

...even if we cannot write down a basis for L.

🥑 Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L* is a modular form which *encodes* the lengths of *L*'s vectors."

• Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L* is a modular form which *encodes* the lengths of *L*'s vectors."

● What we do:

We study weighted theta functions $\sum_{x \in L} P(x)e^{i\pi\tau \langle x,x \rangle}$ (also modular forms) and obtain linear systems of equations...

• Slogan:

"The *theta function* $\sum_{x \in L} e^{i\pi\tau \langle x, x \rangle}$ of a lattice *L* is a modular form which *encodes* the lengths of *L*'s vectors."

● What we do:

We study weighted theta functions $\sum_{x \in L} P(x)e^{i\pi\tau \langle x,x \rangle}$ (also modular forms) and obtain linear systems of equations...

...which give combinatorial information about lattice vectors.

Theorem.

Theorem Template.

Theorem Template. For L even unimodular and extremal of rank n, the minimal-norm vectors of L generate L.

Folklore: $n \in \{8, 24\}$

Theorem Template. For L even unimodular and extremal of rank n, the minimal-norm vectors of L generate L.

Folklore: $n \in \{8, 24\}$ Venkov: $n \in \{32\}$

Theorem Template. For L even unimodular and extremal of rank n, the minimal-norm vectors of L generate L.

Folklore: $n \in \{8, 24\}$ Venkov: $n \in \{32\}$ Ozeki: $n \in \{32, 48\}$

- **Folklore:** $n \in \{8, 24\}$
- Venkov: $n \in \{32\}$
- **Ozeki:** $n \in \{32, 48\}$
- **S. D. Kominers:** $n \in \{56, 72, 96\}$

- **Folklore:** $n \in \{8, 24\}$
- Venkov: $n \in \{32\}$
- **Ozeki:** $n \in \{32, 48\}$
- **S. D. Kominers:** $n \in \{56, 72, 96\}$
- **N. D. Elkies:** $n \in \{120\}$

- **Folklore:** $n \in \{8, 24\}$
- Venkov: $n \in \{32\}$
- **Ozeki:** $n \in \{32, 48\}$
- **S. D. Kominers:** $n \in \{56, 72, 96\}$
- N. D. Elkies: $n \in \{120\}$ (much harder!)

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Such lattices are known to exist for $n \in \{8, 24, 32, 48, 56\}$.

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Such lattices are known to exist for $n \in \{8, 24, 32, 48, 56\}$. Such lattices are *not* known to exist for $n \in \{72, 96, 120\}$.

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Note: The analogous result is false for n = 16.

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Note: The analogous result is false for n = 16.

Now: What about n = 40?

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Note: The analogous result is false for n = 16.

Now: What about n = 40?

Bad news: The analogous result fails for n = 40.

Theorem. For *L* even unimodular and extremal of rank $n \in \{8, 24, 32, 48, 56, 72, 96, 120\}$, the minimal-norm vectors of *L* generate *L*.

Note: The analogous result is false for n = 16.

Now: What about n = 40?

Bad news: The analogous result fails for n = 40.

Good news: It is *almost* true.

Theorem. Let m(L) be the minimal norm of vectors in an extremal even unimodular lattice L of rank n. The vectors in L having norms m(L) and (m(L) + 2) generate L.

Theorem. Let m(L) be the minimal norm of vectors in an extremal even unimodular lattice L of rank n. The vectors in L having norms m(L) and (m(L) + 2) generate L.

Folklore: $n \in \{16\}$

Theorem. Let m(L) be the minimal norm of vectors in an extremal even unimodular lattice L of rank n. The vectors in L having norms m(L) and (m(L) + 2) generate L.

Folklore: $n \in \{16\}$ **Ozeki:** $n \in \{40\}$

Theorem. Let m(L) be the minimal norm of vectors in an extremal even unimodular lattice L of rank n. The vectors in L having norms m(L) and (m(L) + 2) generate L.

Folklore: $n \in \{16\}$

Ozeki: $n \in \{40\}$

S. D. Kominers & Z. Abel: $n \in \{40, 80, 120\}$

Theorem. Let m(L) be the minimal norm of vectors in an extremal even unimodular lattice L of rank n. The vectors in L having norms m(L) and (m(L) + 2) generate L.

Folklore: $n \in \{16\}$

Ozeki: $n \in \{40\}$

S. D. Kominers & Z. Abel: $n \in \{40, 80, 120\}$ (unified method!)

Theorem. Let m(L) be the minimal norm of vectors in an extremal even unimodular lattice L of rank n. The vectors in L having norms m(L) and (m(L) + 2) generate L.

Folklore: $n \in \{16\}$

Ozeki: $n \in \{40\}$

S. D. Kominers & Z. Abel: $n \in \{40, 80, 120\}$ (unified method!)

Note: This bound is sharp for $n \in \{16, 40, 80\}$

Natural Question.

Natural Question.

Natural Question. If we can learn about a (possibly nonexistent) lattice from its theta series, can we learn about a lattice's theta series from a lattice's basis?

Natural Question. If we can learn about a (possibly nonexistent) lattice from its theta series, can we learn about a lattice's theta series from a lattice's basis?

Answer: In principle, yes.

Natural Question. If we can learn about a (possibly nonexistent) lattice from its theta series, can we learn about a lattice's theta series from a lattice's basis?

Answer: In principle, yes.

Problem: Computationally intensive....

Theorem. If *L* is the unique rank-72 even unimodular lattice with automorphisms given by $SL_2(\mathbb{Z}/71\mathbb{Z})$ then

 $\Theta_L = 1 + 71712q^3 + 6213012336q^4 + 15281966487168q^5 + \cdots$

Theorem. If *L* is the unique rank-72 even unimodular lattice with automorphisms given by $SL_2(\mathbb{Z}/71\mathbb{Z})$ then

 $\Theta_L = 1 + 71712q^3 + 6213012336q^4 + 15281966487168q^5 + \cdots$

(Just proven by N. D. Elkies, Z. Abel, & S. D. Kominers.)

✓ Configuration results for non-extremal even unimodular lattices of ranks $n \in \{56, 72, 96, 120\}$?

- ✓ Configuration results for non-extremal even unimodular lattices of ranks $n \in \{56, 72, 96, 120\}$?
- Theta series of the unique rank-80 even unimodular lattice with automorphisms given by $SL_2(\mathbb{Z}/79\mathbb{Z})$?

- ✓ Configuration results for non-extremal even unimodular lattices of ranks $n \in \{56, 72, 96, 120\}$?
- Theta series of the unique rank-80 even unimodular lattice with automorphisms given by $SL_2(\mathbb{Z}/79\mathbb{Z})$?
- Rank-72 extremal even unimodular lattices?

Acknowledgements

- Harvard Mathematics Department
 - Prof. Noam D. Elkies
 - Zachary Abel
 - Prof. Benedict Gross
- Center for Excellence in Education / Research Science Institute
 - Mr. Christopher Mihelich
 - Dr. John Rickert
- Harvard College PRISE
- Brown University SUMS
- Keith Conrad

Questions?