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Lattice L — “integer vector space”

unimodular
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L’s matrix has determinant 1
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even unimodular lattice L...

“rare”

rank(L) = 8n
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even unimodular lattice L...

extremal
shortest vector ↔ as long as possible
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We care because...

extremal even unimodular lattices are useful

Sphere-packing problems
Storing n-dimensional oranges

Chemical lattices (in dimensions n ≤ 3)

(Continuous) communication decoding
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Methods: Theta Functions

Slogan:

“The theta function of a lattice L

encodes the lengths of L’s vectors.”

How:

“dot product 〈x, x〉” ⇐⇒ “length”

What:

ΘL(τ) =
∑

x∈L

eiπτ〈x,x〉 =
∞∑

k=1

ake
iπτ(k)
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Methods: Theta Functions

Slogan:

“The theta function
∑

x∈L eiπτ〈x,x〉 of a lattice L

encodes the lengths of L’s vectors.”

Example:

ΘZ2(τ) =
∑

x∈L

eiπτ〈x,x〉 = 1 + 4eiπτ + 4e2iπτ + 4e4iπτ + · · ·
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Methods: Theta Functions

Slogan:

“The theta function
∑

x∈L eiπτ〈x,x〉 of a lattice L

encodes the lengths of L’s vectors.”

Why we care:

We can write down the spaces of modular forms explicitly.

We can therefore study the function ΘL...

...even if we cannot write down a basis for L.
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Methods: Theta Functions

Slogan:

“The theta function
∑

x∈L eiπτ〈x,x〉 of a lattice L

is a modular form which
encodes the lengths of L’s vectors.”

What we do:

We study weighted theta functions
∑

x∈L P (x)eiπτ〈x,x〉

(also modular forms) and obtain linear systems of
equations...

...which give combinatorial information about lattice
vectors.
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Results

Theorem Template. For L even unimodular and extremal
of rank n, the minimal-norm vectors of L generate L.

Folklore: n ∈ {8, 24}

Venkov: n ∈ {32}

Ozeki: n ∈ {32, 48}

S. D. Kominers: n ∈ {56, 72, 96}

N. D. Elkies: n ∈ {120} (much harder!)
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Theorem. For L even unimodular and extremal of rank
n ∈ {8, 24, 32, 48, 56, 72, 96, 120}, the minimal-norm vectors of
L generate L.

Such lattices are known to exist for n ∈ {8, 24, 32, 48, 56}.
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Results

Theorem. For L even unimodular and extremal of rank
n ∈ {8, 24, 32, 48, 56, 72, 96, 120}, the minimal-norm vectors of
L generate L.

Such lattices are known to exist for n ∈ {8, 24, 32, 48, 56}.

Such lattices are not known to exist for n ∈ {72, 96, 120}.
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Theorem. For L even unimodular and extremal of rank
n ∈ {8, 24, 32, 48, 56, 72, 96, 120}, the minimal-norm vectors of
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Note: The analogous result is false for n = 16.

Now: What about n = 40?

Bad news: The analogous result fails for n = 40.
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Results

Theorem. For L even unimodular and extremal of rank
n ∈ {8, 24, 32, 48, 56, 72, 96, 120}, the minimal-norm vectors of
L generate L.

Note: The analogous result is false for n = 16.

Now: What about n = 40?

Bad news: The analogous result fails for n = 40.

Good news: It is almost true.
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Theorem. Let m(L) be the minimal norm of vectors in an
extremal even unimodular lattice L of rank n. The vectors in L

having norms m(L) and (m(L) + 2) generate L.
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extremal even unimodular lattice L of rank n. The vectors in L

having norms m(L) and (m(L) + 2) generate L.

Folklore: n ∈ {16}

Ozeki: n ∈ {40}

S. D. Kominers & Z. Abel: n ∈ {40, 80, 120}

Configurations of ExtremalEven Unimodular Lattices – p. 25/33



Results

Theorem. Let m(L) be the minimal norm of vectors in an
extremal even unimodular lattice L of rank n. The vectors in L

having norms m(L) and (m(L) + 2) generate L.

Folklore: n ∈ {16}

Ozeki: n ∈ {40}

S. D. Kominers & Z. Abel: n ∈ {40, 80, 120} (unified
method!)
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Results

Theorem. Let m(L) be the minimal norm of vectors in an
extremal even unimodular lattice L of rank n. The vectors in L

having norms m(L) and (m(L) + 2) generate L.

Folklore: n ∈ {16}

Ozeki: n ∈ {40}

S. D. Kominers & Z. Abel: n ∈ {40, 80, 120} (unified
method!)

Note: This bound is sharp for n ∈ {16, 40, 80}
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stluseR

Natural Question. If we can learn about a (possibly
nonexistent) lattice from its theta series, can we learn about a
lattice’s theta series from a lattice’s basis?

Answer: In principle, yes.

Problem: Computationally intensive....
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Theorem. If L is the unique rank-72 even unimodular lattice
with automorphisms given by SL2(Z/71Z) then

ΘL = 1 + 71712q3 + 6213012336q4 + 15281966487168q5 + · · · .

N. D. Elkies, Z. Abel, & S. D. Kominers
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stluseR

Theorem. If L is the unique rank-72 even unimodular lattice
with automorphisms given by SL2(Z/71Z) then

ΘL = 1 + 71712q3 + 6213012336q4 + 15281966487168q5 + · · · .

(Just proven by N. D. Elkies, Z. Abel, & S. D. Kominers.)
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Where do we go from here?

Configuration results for non-extremal even unimodular
lattices of ranks n ∈ {56, 72, 96, 120}?

Theta series of the unique rank-80 even unimodular
lattice with automorphisms given by SL2(Z/79Z)?

Rank-72 extremal even unimodular lattices?
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