Sticky Content and the Structure of the Web

Scott Duke Kominers

Harvard University

Workshop on the Economics of Networks, Systems, and Computation July 7, 2009

NetEcon'09 - July 7, 2009

1 / 17

What is "sticky content"?

NetEcon'09 - July 7, 2009 2 / 17

What is "sticky content"?

Sticky content is....

→ □ > < □ >

э

What is "sticky content"?

Sticky content is website content which induces return traffic.

Sticky content is website content which induces return traffic and holds user attention.

news/weather updates

- news/weather updates
- horoscopes

- news/weather updates
- horoscopes
- webmail

- news/weather updates
- horoscopes
- webmail
- online games

Sticky content is website content which induces return traffic and holds user attention.

- news/weather updates
- horoscopes
- webmail
- online games

Observation

Sticky content is prevalent on the internet.

Sticky content is website content which induces return traffic and holds user attention.

- news/weather updates
- horoscopes
- webmail
- online games

Observation

Sticky content is prevalent on the internet.

Sticky content is website content which induces return traffic and holds user attention.

- news/weather updates
- horoscopes
- webmail
- online games

Observation

Sticky content is prevalent on commercial sites/portals.

Sticky content is website content which induces return traffic and holds user attention.

- news/weather updates
- horoscopes
- webmail
- online games

Observation

Sticky content is prevalent on commercial sites/portals.

Why study sticky content?

Observation

Sticky content is prevalent on commercial sites/portals.

Observation

Sticky content is prevalent on commercial sites/portals.

Observation

Sticky content is prevalent on commercial sites/portals.

Moreover...


• Sticky content has received little attention

Why study sticky content?

Scott Duke Kominers (Harvard)

Why study sticky content?

Scott Duke Kominers (Harvard)

Observation

Sticky content is prevalent on commercial sites/portals.

Moreover...

• Sticky content has received little attention

Observation

Sticky content is prevalent on commercial sites/portals.

Moreover...

• Sticky content has received very little attention

Observation

Sticky content is prevalent on commercial sites/portals.

Moreover...

• Sticky content has received very little attention

Observation

Sticky content is prevalent on commercial sites/portals.

- Sticky content has received very little attention
- Sticky content may be universally beneficial

Observation

Sticky content is prevalent on commercial sites/portals.

- Sticky content has received very little attention
- Sticky content may be universally beneficial
 - for content providers

Observation

Sticky content is prevalent on commercial sites/portals.

- Sticky content has received very little attention
- Sticky content may be universally beneficial
 - for content providers (marketers believe)

Observation

Sticky content is prevalent on commercial sites/portals.

- Sticky content has received very little attention
- Sticky content may be universally beneficial
 - for content providers (marketers believe)
 - for consumers

Observation

Sticky content is prevalent on commercial sites/portals.

- Sticky content has received very little attention
- Sticky content may be universally beneficial
 - for content providers (marketers believe)
 - for consumers (conjectural)

Attracting vs. Entrapping

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 4 / 17

イロト イポト イヨト イヨト

3

Recall our examples of sticky content:

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Question

Which of these do you use daily?

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Question

Which of these do you use daily?

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Question

Which of these do you use daily?

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Question

Which of these do you use daily? Hourly?

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Question

Which of these do you use daily? Hourly?

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Definitions

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Definitions Attracting sticky content

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Definitions Attracting sticky content – attracts

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Definitions

Attracting sticky content – attracts Entrapping sticky content

Recall our examples of sticky content:

- news/weather updates
- horoscopes
- webmail
- online games

Definitions

Attracting sticky content – attracts Entrapping sticky content – attracts AND entraps

We will...

æ

・ロン ・聞と ・ ヨン ・ ヨン

We will...

Model sticky content

э

- Model sticky content
 - Based upon Katona and Sarvary (2009)

- Model sticky content
 - Based upon Katona and Sarvary (2009)
- Discuss effects of sticky content

- Model sticky content
 - Based upon Katona and Sarvary (2009)
- Discuss effects of sticky content
 - Attracting

- Model sticky content
 - Based upon Katona and Sarvary (2009)
- Discuss effects of sticky content
 - Attracting
 - Entrapping

- Model sticky content
 - Based upon Katona and Sarvary (2009)
- Discuss effects of sticky content
 - Attracting
 - Entrapping
- Conclude

メロト メポト メヨト メヨト

æ

Two parties of interest

-

э

Two parties of interest

• Content providers ("sites")

Two parties of interest

- Content providers ("sites")
- Consumers

Two parties of interest

- Content providers ("sites") finitely many, n
- Consumers

Two parties of interest

- Content providers ("sites") finitely many, n
- Consumers measure 1

The Model

NetEcon'09 - July 7, 2009 7 / 17

(日)

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 7 / 17

æ

• commercial content parameter $c_i \in [0, 1]$

э

• commercial content parameter $c_i \in [0, 1]$ (sale value)

э

- commercial content parameter $c_i \in [0, 1]$ (sale value)
- sticky content parameter s_i

- commercial content parameter $c_i \in [0, 1]$ (sale value)
- sticky content parameter s_i

...and links

Sites

Parameters...

- commercial content parameter $c_i \in [0, 1]$ (sale value)
- sticky content parameter s_i

...and links

sold in a market

Sites

Parameters...

- commercial content parameter $c_i \in [0, 1]$ (sale value)
- sticky content parameter s_i

...and links

- sold in a market
 - $q_i :=$ per-click price of a link from site i

Sites

Parameters...

- commercial content parameter $c_i \in [0, 1]$ (sale value)
- sticky content parameter s_i

...and links

- sold in a market
 - $q_i :=$ per-click price of a link from site $i \left(\frac{\partial q_i}{\partial c_i} > 0 \right)$

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 8 / 17

(日)

Measure 1 of consumers

→ 《 문 ▶ 《 문 ▶

< 口 > < 同

æ

Measure 1 of consumers browse the web

э

Measure 1 of consumers browse the web

Question

How can we track consumer traffic?

Measure 1 of consumers browse the web

Question *How can we track consumer traffic?*

Answer PageRank!

Measure 1 of consumers browse the web

Question How can we track consumer traffic?

Answer PageRank!

Measure 1 of consumers randomly walk the web

Question How can we track consumer traffic?

Answer PageRank!

Measure 1 of consumers randomly walk the web

э

Measure 1 of consumers randomly walk the web, buying content from the sites they visit

Consumers

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

Consumers

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)} = \left(\frac{s_1}{S}, \ldots, \frac{s_n}{S}\right),$$

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

where $S = \sum_{i=1}^{n} s_i$.

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(rac{s_1}{S},\ldots,rac{s_n}{S}
ight),$$

$$M_{ij} = \begin{cases} \frac{1}{d_i^{\text{out}}+1} & i = j, \\ \frac{1}{d_i^{\text{out}}+1} & i \to j, \\ 0 & i \neq j. \end{cases}$$

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

$$M_{ij} = \begin{cases} \frac{1}{d_i^{\text{out}}+1} & i = j, \\ \frac{1}{d_i^{\text{out}}+1} & i \to j, \\ 0 & i \not\to j. \end{cases}$$

•
$$r^{(t+1)} = \delta \cdot r^{(t)} \cdot M + (1-\delta) \cdot r^{(0)}$$

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 10 / 17

臣

• In the case $s_i \equiv s$

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 10 / 17

・聞き ・ ヨキ・ ・ ヨキ

э

• In the case
$$s_i \equiv s$$
, $r^{(0)} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$.

臣

- In the case $s_i \equiv s$, $r^{(0)} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$.
- We recover the model of Katona and Sarvary (*Marketing Science*, 2009).

Results Attracting Sticky Content

Equilibrium Results

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 11 / 17

伺 ト イヨト イヨト

э

Proposition

Set of network equilibria is independent of sticky content distribution.

Proposition

Set of network equilibria is independent of sticky content distribution.

Corollary

In equilibrium, out-degree weakly decreases in c_i.

Proposition

Set of network equilibria is independent of sticky content distribution.

Corollary

In equilibrium, out-degree weakly decreases in c_i.

Corollary

In equilibrium, in-degree and limit traffic increase in c_i.

Results Attracting Sticky Content

Equilibrium Results

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 11 / 17

伺 ト イヨト イヨト

э

Corollary

Attracting sticky content is strictly beneficial for sites.

Corollary

Attracting sticky content is strictly beneficial for sites.

Corollary

Attracting sticky content is strictly beneficial for sites.

And now for something...

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 11 / 17

Corollary

Attracting sticky content is strictly beneficial for sites.

And now for something...

...surprisingly different.

NetEcon'09 - July 7, 2009 11 / 17

Scott Duke Kominers (Harvard)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで NetEcon'09 - July 7, 2009 12 / 17

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

$$M_{ij} = \begin{cases} \frac{1}{d_i^{\text{out}}+1} & i = j, \\ \frac{1}{d_i^{\text{out}}+1} & i \to j, \\ 0 & i \not\to j. \end{cases}$$

•
$$r^{(t+1)} = \delta \cdot r^{(t)} \cdot M + (1-\delta) \cdot r^{(0)}$$

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

$$M_{ij} = \begin{cases} \frac{1}{d_i^{\text{out}}+1} & i = j, \\ \frac{1}{d_i^{\text{out}}+1} & i \to j, \\ 0 & i \not\to j. \end{cases}$$

•
$$r^{(t+1)} = \delta \cdot r^{(t)} \cdot M + (1-\delta) \cdot r^{(0)}$$

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

$$M_{ij} = \begin{cases} \frac{\mathbf{s}_i}{d_i^{\text{out}} + \mathbf{s}_i} & i = j, \\ \frac{1}{d_i^{\text{out}} + \mathbf{s}_i} & i \to j, \\ 0 & i \not\to j. \end{cases}$$

•
$$r^{(t+1)} = \delta \cdot r^{(t)} \cdot M + (1-\delta) \cdot r^{(0)}$$

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

$$M_{ij} = \begin{cases} \frac{s_i}{d_i^{\text{out}} + s_i} & i = j, \\ \frac{1}{d_i^{\text{out}} + s_i} & i \to j, \\ 0 & i \not\to j. \end{cases}$$

•
$$r^{(t+1)} = \delta \cdot r^{(t)} \cdot M + (1-\delta) \cdot r^{(0)}$$

Measure 1 of consumers randomly walk the web, buying content from the sites they visit with probability 1

• Starting distribution depends on stickiness:

$$r^{(0)}=\left(\frac{s_1}{S},\ldots,\frac{s_n}{S}\right),$$

$$M'_{ij} = \begin{cases} \frac{s_i}{d_i^{\text{out}} + s_i} & i = j, \\ \frac{1}{d_i^{\text{out}} + s_i} & i \to j, \\ 0 & i \not\to j. \end{cases}$$

•
$$r^{(t+1)} = \delta \cdot r^{(t)} \cdot M' + (1-\delta) \cdot r^{(0)}$$

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 13 / 17

臣

イロト イヨト イヨト イヨト

• In the case $s_i \equiv 1$

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 13 / 17

・聞き ・ ヨキ・ ・ ヨキ

э

• In the case
$$s_i \equiv 1$$
, $r^{(0)} = \left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$.

臣

イロト イヨト イヨト イヨト

• In the case $s_i \equiv 1$, $r^{(0)} = \left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$ and M' = M.

э

• • = • • = •

- In the case $s_i \equiv 1$, $r^{(0)} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$ and M' = M.
- We again recover the model of Katona and Sarvary (2009) as a special case.

- In the case $s_i \equiv 1$, $r^{(0)} = \left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$ and M' = M.
- We again recover the model of Katona and Sarvary (2009) as a special case.
- However, we do not recover any other cases of the attracting content model.

Results Entrapping Sticky Content

臣

・ロン ・部と ・ヨン ・ヨン

Key Result

If s_i^* is site *i*'s optimal level of entrapping sticky content...

伺 と く ヨ と く ヨ と

If s_i^* is site *i*'s optimal level of entrapping sticky content...

Proposition

We have
$$\frac{\partial s_i^*}{\partial c_i} > 0$$
.

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

•
$$s_i^*$$
 is well-defined when $R_i \leq \frac{(d_i^{\text{out}})^2}{S}$.

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

\$s_i^*\$ is well-defined when \$R_i \le \frac{(d_i^{\text{out}})^2}{S}\$.
 For any \$i\$ such that \$R_i \le \frac{(d_i^{\text{out}})^2}{S}\$, we have \$\frac{\partial s_i^*}{\partial c_i} > 0\$.

• • = • • = •

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

For $R_i < \frac{(d_i^{out})^2}{S}$ sufficiently large, site *i* would prefer not to have entrapping sticky content.

• • = • • = •

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

For $R_i < \frac{(d_i^{out})^2}{S}$ sufficiently large, site *i* would prefer not to have entrapping sticky content.

• This is different from the result for *attracting* content!

• • = • • = •

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

For $R_i < \frac{(d_i^{out})^2}{S}$ sufficiently large, site *i* would prefer not to have entrapping sticky content.

• This is different from the result for *attracting* content!

• But notice that this is an *ex post* comparative static....

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

For $R_i < \frac{(d_i^{out})^2}{S}$ sufficiently large, site *i* would prefer not to have entrapping sticky content.

• • = • • = •

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

For $R_i < \frac{(d_i^{out})^2}{S}$ sufficiently large, site *i* would prefer not to have entrapping sticky content.

• This implies endogenous business model specialization

伺 と く ヨ と く ヨ と ……

If s_i^* is site *i*'s optimal level of entrapping sticky content and $R_i := \sum_{j \to i} \frac{r_j}{S(d_j^{\text{out}} + s_j)}$ $(r_j = \lim_{t \to \infty} r_j^{(t)})$

Proposition

For $R_i < \frac{(d_i^{out})^2}{S}$ sufficiently large, site *i* would prefer not to have entrapping sticky content.

• This implies endogenous business model specialization

• Entrapping content \iff Little inlink traffic

Conclusion

Summary of Results

Scott Duke Kominers (Harvard)

NetEcon'09 - July 7, 2009 15 / 17

æ

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Summary of Results

• attracting sticky content is always desired

Summary of Results

- attracting sticky content is always desired
- entrapping sticky content is sometimes desired

Summary of Results

- attracting sticky content is always desired
- entrapping sticky content is sometimes desired

... by site owners

- attracting sticky content is always desired
- entrapping sticky content is sometimes desired

... by site owners

- attracting sticky content is always desired
- entrapping sticky content is sometimes desired

... by site owners

• What about consumers?

• What about consumers?

э

- What about consumers?
- Effects on Price Levels

- What about consumers?
- Effects on Price Levels
 Can we sign \frac{\partial q_i}{\partial s_i}?

- What about consumers?
- Effects on Price Levels
 Can we sign ∂q_i/∂s_i?
- Reference Links

- What about consumers?
- Effects on Price Levels
 - Can we sign $\frac{\partial q_i}{\partial s_i}$?
- Reference Links
 - Addressed briefly by Katona and Sarvary (2009)

- What about consumers?
- Effects on Price Levels
 - Can we sign $\frac{\partial q_i}{\partial s_i}$?
- Reference Links
 - Addressed briefly by Katona and Sarvary (2009)
- Non-commercial sites?

- What about consumers?
- Effects on Price Levels
 - Can we sign $\frac{\partial q_i}{\partial s_i}$?
- Reference Links
 - Addressed briefly by Katona and Sarvary (2009)
- Non-commercial sites?
- Update the Wikipedia page?

Questions?

kominers@fas.harvard.edu

Scott Duke Kominers (Harvard)

문▶ ★ 문▶ NetEcon'09 - July 7, 2009 17 / 17

э