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Weight Enumerators

Theta Function Slogan:
“The theta function ΘL(τ) of a lattice L
encodes the lengths of L’s vectors.”

Weight Enumerator Slogan:
“The weight enumerator WC (x , y) of a code C

encodes the weights of C ’s codewords.”
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Code Configuration Results

Theorem Template
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minimal-weight codewords of C generate C .

Folklore(?): n ∈ {8, 24}

K. (2009): n ∈ {32, 48, 56, 72, 96}

Likely: Analog of slightly weaker result for n ∈ {40, 80, 120}
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Example Code

The codewords of the extended Hamming code e8 are
given by the columns of the matrix

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


.
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Theta Function Conditions: n = 72 Case

Fix an equivalence class [x0] where 〈x0, x0〉 = 2t
(t ≥ 5) is mimimal for some t ≥ 5.

For all x ∈ Λ8(L), we have | 〈x0, x〉 | ≤ 4.

ΘL,P ≡ 0 for 0 < (deg P)/2 ≤ 5.∑
x∈Λ8(L) 〈x , x0〉2k = 2

∑4
j=1 j2k · Nj(x0).

6218175600 = |Λ8(L)| = N0(x0) + 2
∑4

j=1 Nj(x0).

225395472t(168t4−2800t3 +17745t2−50635t +54834) = 0⇒ t = 0⇒⇐.
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