Configurations of Extremal Type II Lattices and Codes

Scott Duke Kominers

Department of Economics, Harvard University, and Harvard Business School

AMS-MAA-SIAM Session on Research in Mathematics by Undergraduates $\begin{array}{c} \text{Joint Mathematics Meetings} \\ \text{January 15, 2010} \end{array}$

lattice

"integer vector space"

- "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle : L \times L \to \mathbb{R}$

- "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle : L \times L \to \mathbb{R}$
- rank \sim size of basis

- lattice ∼ "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

unimodular lattice

- \bullet unimodular \sim self-dual
 - basis matrix has determinant 1
- lattice \sim "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

even unimodular lattice

- ullet even \sim all vectors have even norm
 - $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$
- unimodular \sim self-dual
 - basis matrix has determinant 1
- lattice \sim "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

even unimodular lattice Type II

- ullet even \sim all vectors have even norm
 - $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$
- ullet unimodular \sim self-dual
 - basis matrix has determinant 1
- lattice ∼ "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

even unimodular lattice

- ullet even \sim all vectors have even norm
 - $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$
- ullet unimodular \sim self-dual
 - basis matrix has determinant 1
- lattice \sim "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

extremal even unimodular lattice

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
 - $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$
- ullet unimodular \sim self-dual
 - basis matrix has determinant 1
- lattice \sim "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

extremal even unimodular lattice

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
 - $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$
- unimodular \sim self-dual
 - basis matrix has determinant 1
- lattice \sim "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

extremal even unimodular lattice

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
 - $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$
- unimodular \sim self-dual
 - basis matrix has determinant 1
- lattice \sim "integer vector space"
 - free \mathbb{Z} -module with an inner product $\langle \cdot, \cdot \rangle$
 - rank \sim size of basis

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice \sim "integer vector space"
 - rank \sim size of basis

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice ~ "integer vector space"
 - rank \sim size of basis

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice ~ "integer vector space"
 - rank \sim size of basis
- For a Type II lattice L, rank(L) = 8n...

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice ~ "integer vector space"
 - rank \sim size of basis
- For a Type II lattice L, rank(L) = 8n...

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice \sim "integer vector space"
 - rank \sim size of basis

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice \sim "integer vector space"
 - rank \sim size of basis
- Applications to sphere-packing problems

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice ~ "integer vector space"
 - rank \sim size of basis
- Applications to dim-8n sphere-packing problems

- ullet extremal \sim shortest vector is as long as possible
- ullet even \sim all vectors have even norm
- ullet unimodular \sim self-dual
- lattice ~ "integer vector space"
 - rank \sim size of basis
- Applications to dim-8n sphere-packing problems

Theorem

Theorem Template

Theorem Template

Theorem Template

If L is Type II and extremal of rank n, then the minimal-norm vectors of L generate L.

• Folklore: $n \in \{8, 24\}$

Theorem Template

- Folklore: $n \in \{8, 24\}$
- Venkov (1984): $n \in \{32\}$

Theorem Template

- Folklore: $n \in \{8, 24\}$
- Venkov (1984): n ∈ {32}
- Ozeki (1986): $n \in \{32, 48\}$

Theorem Template

- Folklore: $n \in \{8, 24\}$
- Venkov (1984): n ∈ {32}
- Ozeki (1986): n ∈ {32, 48}
- K. (2009): $n \in \{56, 72, 96\}$

Theorem Template

- Folklore: $n \in \{8, 24\}$
- Venkov (1984): $n \in \{32\}$
- Ozeki (1986): n ∈ {32, 48}
- K. (2009): $n \in \{56, 72, 96\}$
- Elkies (2010): $n \in \{120\}$

Theta Functions

• Slogan:

"The *theta function* of a lattice *L* encodes the lengths of *L*'s vectors."

• Slogan:

"The theta function of a lattice L encodes the lengths of L's vectors."

• How:

"norm $\langle x, x \rangle$ " \iff "length"

• Slogan:

"The theta function of a lattice L encodes the lengths of L's vectors."

• How:

"norm
$$\langle x, x \rangle$$
" \iff "length"

What:

$$\Theta_L(\tau) = \sum_{x \in I} e^{i\pi\tau\langle x, x \rangle} = \sum_{k=1}^{\infty} a_k e^{i\pi\tau(k)}$$

• Slogan:

- Slogan:
 - "The theta function $\sum_{x \in L} e^{i\pi\tau\langle x, x \rangle}$ of a lattice L encodes the lengths of L's vectors."
- Example:

- Slogan:
 - "The theta function $\sum_{x \in L} e^{i\pi\tau\langle x,x\rangle}$ of a lattice L encodes the lengths of L's vectors."
- Example:

- Slogan:
 - "The theta function $\sum_{x \in L} e^{i\pi\tau\langle x, x \rangle}$ of a lattice L encodes the lengths of L's vectors."
- Example:

$$\Theta_{\mathbb{Z}^2}(au) = \sum_{\mathsf{x} \in \mathbb{Z}^2} \mathrm{e}^{i\pi au \langle \mathsf{x}, \mathsf{x}
angle}$$

- Slogan:
 - "The theta function $\sum_{x \in L} e^{i\pi\tau\langle x, x \rangle}$ of a lattice L encodes the lengths of L's vectors."
- Example:

$$egin{aligned} \Theta_{\mathbb{Z}^2}(au) &= \sum_{ extit{x} \in \mathbb{Z}^2} e^{i\pi au\langle extit{x}, extit{x}
angle} \ &= 1 + 4e^{i\pi au} + 4e^{2i\pi au} \end{aligned}$$

- Slogan:
 - "The theta function $\sum_{x \in L} e^{i\pi \tau \langle x, x \rangle}$ of a lattice L encodes the lengths of L's vectors."
- Example:

$$egin{aligned} \Theta_{\mathbb{Z}^2}(au) &= \sum_{x \in \mathbb{Z}^2} e^{i\pi au \langle x, x
angle} \ &= 1 + 4 e^{i\pi au} + 4 e^{2i\pi au} \ &+ 0 e^{3i\pi au} + 4 e^{4i\pi au} \end{aligned}$$

- Slogan:
 - "The theta function $\sum_{x \in L} e^{i\pi\tau\langle x, x \rangle}$ of a lattice L encodes the lengths of L's vectors."
- Example:

$$egin{aligned} \Theta_{\mathbb{Z}^2}(au) &= \sum_{x \in \mathbb{Z}^2} e^{i\pi au \langle x, x
angle} \ &= 1 + 4 e^{i\pi au} + 4 e^{2i\pi au} \ &+ 0 e^{3i\pi au} + 4 e^{4i\pi au} \ &+ 8 e^{4i\pi au} + \cdots \end{aligned}$$

• Slogan:

• Slogan:

- Why we care:
 - For L Type II of rank n, the theta function Θ_L is a modular form: $\Theta_L \in \mathcal{M}_{n/2}$.

• Slogan:

- Why we care:
 - For L Type II of rank n, the theta function Θ_L is a modular form: $\Theta_L \in \mathcal{M}_{n/2}$.
 - For *n* small, the space $\mathcal{M}_{n/2}$ is small.

• Slogan:

- Why we care:
 - For L Type II of rank n, the theta function Θ_L is a modular form: $\Theta_L \in \mathcal{M}_{n/2}$.
 - For n (relatively) small, the space $\mathcal{M}_{n/2}$ is (very) small.

• Slogan:

- Why we care:
 - For L Type II of rank n, the theta function Θ_L is a modular form: $\Theta_L \in \mathcal{M}_{n/2}$.
 - For n (relatively) small, the space $\mathcal{M}_{n/2}$ is (very) small.

• Slogan:

"The theta function $\sum_{x \in L} e^{i\pi\tau\langle x, x \rangle}$ of a lattice L encodes the lengths of L's vectors."

• Why we care:

- For L Type II of rank n, the theta function Θ_L is a modular form: $\Theta_L \in \mathcal{M}_{n/2}$.
- ullet For n (relatively) small, the space $\mathcal{M}_{n/2}$ is (very) small.
- We can therefore study the function Θ_L even if we cannot write down a basis for L.

• Slogan:

"The theta function $\sum_{x \in L} e^{i\pi\tau\langle x,x\rangle}$ of a lattice L is a modular form which encodes the lengths of L's vectors."

• Slogan:

"The theta function $\sum_{x \in L} e^{i\pi\tau\langle x,x\rangle}$ of a lattice L is a modular form which encodes the lengths of L's vectors."

What we do:

• Slogan:

- What we do:
 - We study weighted theta functions $\sum_{x \in L} P(x)e^{i\pi\tau\langle x,x\rangle}$ which encode norms and distributions of lattice vectors.

• Slogan:

- What we do:
 - We study weighted theta functions $\sum_{x \in L} P(x)e^{i\pi\tau\langle x,x\rangle}$ which encode norms and distributions of lattice vectors.
 - We obtain a "system of equations in vector distributions" which proves our configuration results.

Theorem Template

If L is Type II and extremal of rank n, then the minimal-norm vectors of L generate L.

- Folklore: $n \in \{8, 24\}$
- Venkov (1984): $n \in \{32\}$
- Ozeki (1986): n ∈ {32, 48}
- K. (2009): $n \in \{56, 72, 96\}$
- Elkies (2010): $n \in \{120\}$

Theorem Template

If L is Type II and extremal of rank n, then the minimal-norm vectors of L generate L.

- Folklore: $n \in \{8, 24\}$
- Venkov (1984): n ∈ {32}
- Ozeki (1986): $n \in \{32, 48\}$
- K. (2009): $n \in \{56, 72, 96\}$
- Elkies (2010): $n \in \{120\}$

Theorem Template

Theorem Template

If L is Type II and extremal of rank n with minimal norm m(L), then L is generated by its vectors of norms m(L) and (m(L) + 2).

• Folklore: $n \in \{16\}$

Theorem Template

- Folklore: $n \in \{16\}$
- Ozeki (1989): n ∈ {40}

Theorem Template

- Folklore: $n \in \{16\}$
- Ozeki (1989): n ∈ {40}
- Abel-K. (2008): $n \in \{40, 80, 120\}$ (unified method)

Theorem Template

- Folklore: $n \in \{16\}$
- Ozeki (1989): n ∈ {40}
- Abel-K. (2008): $n \in \{40, 80, 120\}$ (unified method)
- Elkies–K. (2010): Norm-(m(L) + 2) suffices for $n \in \{40, 80\}$

• We just described configurations of lattices.

- We just described configurations of lattices.
- Recall the title slide....

Configurations of Extremal Type II Lattices and Codes

Scott Duke Kominers

Department of Economics, Harvard University, and Harvard Business School

 ${\small \mathsf{AMS}\text{-}\mathsf{MAA}\text{-}\mathsf{SIAM}}\ \mathsf{Session}\ \mathsf{on}\ \mathsf{Research}\ \mathsf{in}\ \mathsf{Mathematics}\ \mathsf{by}\ \mathsf{Undergraduates}$ $\mathsf{Joint}\ \mathsf{Mathematics}\ \mathsf{Meetings}$

- We just described configurations of lattices.
- Recall the title slide....

- We just described configurations of lattices.
- Recall the title slide....

Natural Question

- We just described configurations of lattices.
- Recall the title slide....

Natural Question

What about codes?

Key Concepts

- lattice of rank $n \sim$ "integer vector space" of rank n
- ullet code of length $n\sim$ linear subspace of \mathbb{F}_2^n

- ullet unimodular \sim self-dual
- ullet self-dual \sim self-dual

- ullet even \sim all vectors have even norm
- ullet doubly-even \sim 4 divides all codewords' weights

- ullet extremal \sim shortest vector is as long as possible
- ullet extremal \sim smallest codeword is as large as possible

extremal doubly-even self-dual code

• Theta Function Slogan:

"The theta function $\Theta_L(\tau)$ of a lattice L encodes the lengths of L's vectors."

• Theta Function Slogan:

"The theta function $\Theta_L(\tau)$ of a lattice L encodes the lengths of L's vectors."

• Weight Enumerator Slogan:

"The weight enumerator $W_C(x, y)$ of a code C encodes the weights of C's codewords."

• Theta Function Slogan:

"The theta function $\Theta_L(\tau)$ of a lattice L is a modular form which encodes the lengths of L's vectors."

• Weight Enumerator Slogan:

"The weight enumerator $W_C(x, y)$ of a code C encodes the weights of C's codewords."

• Theta Function Slogan:

"The theta function $\Theta_L(\tau)$ of a lattice L is a modular form which encodes the lengths of L's vectors."

• Weight Enumerator Slogan:

"The weight enumerator $W_C(x, y)$ of a code C encodes the weights of C's codewords."

• Theta Function Slogan:

"The theta function $\Theta_L(\tau)$ of a lattice L is a modular form which encodes the lengths of L's vectors."

• Weight Enumerator Slogan:

"The weight enumerator $W_C(x, y)$ of a code C is a classifiable polynomial which encodes the weights of C's codewords."

• Theta Function Slogan:

"The theta function $\Theta_L(\tau)$ of a lattice L is a modular form which encodes the lengths of L's vectors."

• Weight Enumerator Slogan:

"The weight enumerator $W_C(x, y)$ of a code C is a classifiable polynomial which encodes the weights of C's codewords."

• Theta Function Slogan:

"The weighted theta function $\Theta_{L,P}(\tau)$ of L is a modular form which encodes the distributions of L's vectors."

• Weight Enumerator Slogan:

"The harmonic weight enumerator $W_{C,Q}(x,y)$ of C is a classifiable polynomial which encodes the distributions of C's codewords."

• Theta Function Slogan:

"The weighted theta function $\Theta_{L,P}(\tau)$ of L is a modular form which encodes the distributions of L's vectors."

• Weight Enumerator Slogan:

"The harmonic weight enumerator $W_{C,Q}(x,y)$ of C is a classifiable polynomial which encodes the distributions of C's codewords."

Theorem Template

If C is Type II and extremal of length n, then the minimal-weight codewords of C generate C.

Theorem Template

If C is Type II and extremal of length n, then the minimal-weight codewords of C generate C.

• Folklore(?): $n \in \{8, 24\}$

Theorem Template

If C is Type II and extremal of length n, then the minimal-weight codewords of C generate C.

- Folklore(?): $n \in \{8, 24\}$
- K. (2009): $n \in \{32, 48, 56, 72, 96\}$

Theorem Template

If C is Type II and extremal of length n, then the minimal-weight codewords of C generate C.

- Folklore(?): $n \in \{8, 24\}$
- K. (2009): $n \in \{32, 48, 56, 72, 96\}$
- Likely: Analog of slightly weaker result for $n \in \{40, 80, 120\}$

Lattices

Codes

Prof. Noam D. Elkies

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom
- Harvard College {PRISE, Highbridge} Fellowships

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom
- Harvard College {PRISE, Highbridge} Fellowships
- AMS, MAA, and SIAM

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom
- Harvard College {PRISE, Highbridge} Fellowships
- AMS, MAA, and SIAM
- Advisors

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom
- Harvard College {PRISE, Highbridge} Fellowships
- AMS, MAA, and SIAM
- Advisors, family

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom
- Harvard College {PRISE, Highbridge} Fellowships
- AMS, MAA, and SIAM
- Advisors, family, friends

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom
- Harvard College {PRISE, Highbridge} Fellowships
- AMS, MAA, and SIAM
- Advisors, family, friends, and you!

- Prof. Noam D. Elkies
- Mrs. Susan Schwartz Wildstrom
- Harvard College {PRISE, Highbridge} Fellowships
- AMS, MAA, and SIAM
- Advisors, family, friends, and you! (QED)

Questions?

http://www.scottkom.com/

Extra Slides

Example Code

The codewords of the extended Hamming code e_8 are given by the columns of the matrix

• Fix an equivalence class $[x_0]$ where $\langle x_0, x_0 \rangle = 2t$ $(t \ge 5)$ is minimal for some $t \ge 5$.

- Fix an equivalence class $[x_0]$ where $\langle x_0, x_0 \rangle = 2t$ $(t \ge 5)$ is minimal for some $t \ge 5$.
- For all $x \in \Lambda_8(L)$, we have $|\langle x_0, x \rangle| \leq 4$.

- Fix an equivalence class $[x_0]$ where $\langle x_0, x_0 \rangle = 2t$ $(t \ge 5)$ is minimal for some $t \ge 5$.
- For all $x \in \Lambda_8(L)$, we have $|\langle x_0, x \rangle| \leq 4$.
- $\Theta_{L,P} \equiv 0$ for $0 < (\deg P)/2 \le 5$.
- $\sum_{x \in \Lambda_8(L)} \langle x, x_0 \rangle^{2k} = 2 \sum_{j=1}^4 j^{2k} \cdot N_j(x_0)$.

- Fix an equivalence class $[x_0]$ where $\langle x_0, x_0 \rangle = 2t$ $(t \ge 5)$ is minimal for some $t \ge 5$.
- For all $x \in \Lambda_8(L)$, we have $|\langle x_0, x \rangle| \leq 4$.
- $\Theta_{L,P} \equiv 0 \text{ for } 0 < (\deg P)/2 \le 5.$
- $\bullet \sum_{x \in \Lambda_8(L)} \langle x, x_0 \rangle^{2k} = 2 \sum_{j=1}^4 j^{2k} \cdot N_j(x_0).$
- 6218175600 = $|\Lambda_8(L)| = N_0(x_0) + 2\sum_{j=1}^4 N_j(x_0)$.

- Fix an equivalence class $[x_0]$ where $\langle x_0, x_0 \rangle = 2t$ $(t \ge 5)$ is minimal for some $t \ge 5$.
- For all $x \in \Lambda_8(L)$, we have $|\langle x_0, x \rangle| \leq 4$.
- $\Theta_{L,P} \equiv 0 \text{ for } 0 < (\deg P)/2 \le 5.$
- $\bullet \ \sum_{x \in \Lambda_8(L)} \langle x, x_0 \rangle^{2k} = 2 \sum_{j=1}^4 j^{2k} \cdot N_j(x_0).$
- $6218175600 = |\Lambda_8(L)| = N_0(x_0) + 2\sum_{j=1}^4 N_j(x_0)$.
- $2^{25}3^95^47^2t(168t^4 2800t^3 + 17745t^2 50635t + 54834) = 0 \Rightarrow t = 0 \Rightarrow \Leftarrow$.