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Introduction to Matching and Allocation Problems (II) Introduction

Organization of This Lecture

(Review of) One-to-One “Marriage” Matching

Many-to-One “College Admissions” Matching

(Brief Comments on) Many-to-Many Matching

Many-to-One Matching with Transfers
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

The Marriage Problem

Question
In a society with a set of men M and a set of women W , how can we
arrange marriages so that no agent wishes for a divorce?

Assumptions
1 Agents have strict preferences(!).

2 Bilateral relationships: only pairs (and possibly singles).

3 Two-sided: men only desire women; women only desire men.

4 Preferences are fully known.

Scott Duke Kominers June 23, 2014 3



Introduction to Matching and Allocation Problems (II) One-to-One Matching

The Marriage Problem

Question
In a society with a set of men M and a set of women W , how can we
arrange marriages so that no agent wishes for a divorce?

Assumptions
1 Agents have strict preferences(!).

2 Bilateral relationships: only pairs (and possibly singles).

3 Two-sided: men only desire women; women only desire men.

4 Preferences are fully known.

Scott Duke Kominers June 23, 2014 3



Introduction to Matching and Allocation Problems (II) One-to-One Matching

The Deferred Acceptance Algorithm

Step 1
1 Each man “proposes” to his first-choice woman.

2 Each woman holds onto her most-preferred acceptable proposal
(if any) and rejects all others.

Step t ≥ 2
1 Each rejected man “proposes” to the his favorite woman who

has not rejected him.

2 Each woman holds onto her most-preferred acceptable proposal
(if any) and rejects all others.

At termination, no agent wants a divorce!
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

Stability

Definition
A matching µ is a one-to-one correspondence on M ∪W such that

µ(m) ∈ W ∪ {m} for each m ∈ M ,

µ(w) ∈ M ∪ {w} for each w ∈ W , and

µ2(i) = i for all i ∈ M ∪W .

Definition
A marriage matching µ is stable if no agent wants a divorce.

:

Individually Rational: All agents i find their matches µ(i)
acceptable.

Unblocked: There do not exist m,w such that both

m �w µ(w) and w �m µ(m).
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

Existence and Lattice Structure

Theorem (Gale–Shapley, 1962)

A stable marriage matching exists.

Theorem (Conway, 1976; Knuth, 1976)

Given two stable matchings µ, ν, there is a stable match µ ∨ ν
(µ ∧ ν) which every man likes weakly more (less) than µ and ν.

If all men (weakly) prefer stable match µ to stable match ν,
then all women (weakly) prefer ν to µ.

The man- and woman-proposing deferred acceptance algorithms
respectively find the man- and woman-optimal stable matches.
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

(Two-Sidedness is Important)

Consider four potential roommates:

P1 : 2 � 3 � 4 � ∅,
P2 : 3 � 1 � 4 � ∅,
P3 : 1 � 2 � 4 � ∅,
P4 : w/e.

 No stable roommate matching exists!
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Consider four potential roommates:

P1 : 2 � 3 � 4 � ∅,
P2 : 3 � 1 � 4 � ∅,
P3 : 1 � 2 � 4 � ∅,
P4 : w/e.

 No stable roommate matching exists!

(But wait until Wednesday....)
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

Opposition of Interests: A Simple Example

�m1 : w1 � w2 � ∅
�m2 : w2 � w1 � ∅

�w1 : m2 � m1 � ∅
�w2 : m1 � m2 � ∅

man-optimal stable match

woman-optimal stable match

This opposition of interests result also implies that there is no
mechanism which is strategy-proof for both men and women.
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

The “Lone Wolf” Theorem

Theorem (McVitie–Wilson, 1970)

The set of matched men (women) is invariant across stable matches.
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The “Lone Wolf” Theorem

Theorem (McVitie–Wilson, 1970)

The set of matched men (women) is invariant across stable matches.

Proof
µ̄ = man-optimal stable match; µ = any stable match

µ̄(M)

card
=

µ̄(W )

⊆ ⊇

µ(M)

card
=

µ(W )
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

Weak Pareto Optimality

Theorem (Roth, 1982)

There is no individually rational matching µ (stable or not) such that
µ(m) �m µ̄(m) for all m ∈ M.
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Introduction to Matching and Allocation Problems (II) One-to-One Matching

Weak Pareto Optimality

Theorem (Roth, 1982)

There is no individually rational matching µ (stable or not) such that
µ(m) �m µ̄(m) for all m ∈ M.

Proof
µ would match every man m to some woman w who (1) finds m
acceptable and (2) rejects m under deferred acceptance.

⇒ All women in µ(M) must be matched under µ̄.

⇒ All men must be matched under µ̄, and µ(M) = µ̄(M)!

⇒ Any woman who gets a last-stage proposal in deferred
acceptance has not “held” any men.

⇒ At least one woman in µ̄(M) is single under µ ⇒⇐.

Scott Duke Kominers June 23, 2014 10



Introduction to Matching and Allocation Problems (II) One-to-One Matching

Weak Pareto Optimality

Theorem (Roth, 1982)

There is no individually rational matching µ (stable or not) such that
µ(m) �m µ̄(m) for all m ∈ M.

Proof
µ would match every man m to some woman w who (1) finds m
acceptable and (2) rejects m under deferred acceptance.

⇒ All women in µ(M) must be matched under µ̄.

⇒ All men must be matched under µ̄, and µ(M) = µ̄(M)!

⇒ Any woman who gets a last-stage proposal in deferred
acceptance has not “held” any men.

⇒ At least one woman in µ̄(M) is single under µ ⇒⇐.

Scott Duke Kominers June 23, 2014 10



Introduction to Matching and Allocation Problems (II) One-to-One Matching

Weak Pareto Optimality

Theorem (Roth, 1982)

There is no individually rational matching µ (stable or not) such that
µ(m) �m µ̄(m) for all m ∈ M.

Proof
µ would match every man m to some woman w who (1) finds m
acceptable and (2) rejects m under deferred acceptance.

⇒ All women in µ(M) must be matched under µ̄.

⇒ All men must be matched under µ̄, and µ(M) = µ̄(M)!

⇒ Any woman who gets a last-stage proposal in deferred
acceptance has not “held” any men.

⇒ At least one woman in µ̄(M) is single under µ ⇒⇐.

Scott Duke Kominers June 23, 2014 10



Introduction to Matching and Allocation Problems (II) One-to-One Matching

Weak Pareto Optimality

Theorem (Roth, 1982)

There is no individually rational matching µ (stable or not) such that
µ(m) �m µ̄(m) for all m ∈ M.

Proof
µ would match every man m to some woman w who (1) finds m
acceptable and (2) rejects m under deferred acceptance.

⇒ All women in µ(M) must be matched under µ̄.

⇒ All men must be matched under µ̄, and µ(M) = µ̄(M)!

⇒ Any woman who gets a last-stage proposal in deferred
acceptance has not “held” any men.

⇒ At least one woman in µ̄(M) is single under µ ⇒⇐.

Scott Duke Kominers June 23, 2014 10



Introduction to Matching and Allocation Problems (II) One-to-One Matching

Weak Pareto Optimality

Theorem (Roth, 1982)

There is no individually rational matching µ (stable or not) such that
µ(m) �m µ̄(m) for all m ∈ M.

Proof
µ would match every man m to some woman w who (1) finds m
acceptable and (2) rejects m under deferred acceptance.

⇒ All women in µ(M) must be matched under µ̄.

⇒ All men must be matched under µ̄, and µ(M) = µ̄(M)!

⇒ Any woman who gets a last-stage proposal in deferred
acceptance has not “held” any men.

⇒ At least one woman in µ̄(M) is single under µ ⇒⇐.

Scott Duke Kominers June 23, 2014 10



Introduction to Matching and Allocation Problems (II) One-to-One Matching

Incentives

Theorem (Roth, 1982)

No stable matching mechanism exists for which stating true
preferences is a dominant strategy for every agent.

Theorem (Dubins–Freedman, 1981; Roth, 1982)

The male-optimal stable matching mechanism makes it a dominant
strategy for each man to state his true preferences.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

The College Admissions Problem (I)

Question
In a society with a set of students S and a set of colleges C , how can
we assign students to colleges in a stable fashion?

Assumptions
1 Agents have strict preferences(!).

2 Students have unit demand.

3 Schools have responsive preferences (defined on the next slide).

4 Two-sided; preferences are fully known.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

The College Admissions Problem (II)

Definition
The preferences Pc of college c over sets of students are responsive
if they are consistent with

1 a complete, transitive preference relation �c over students and

2 a quota qc .

That is, for all S ′ ⊆ S with |S ′| < qc , and any students i , j ∈ S \ S ′,

1 (S ′ ∪ {i})Pc(S ′ ∪ {j}) ⇐⇒ i �c j .

2 (S ′ ∪ {i})PcS ′ ⇐⇒ i �c ∅.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

The College Admissions Problem (III)

Definition
A matching µ is a correspondence on S ∪ C such that

µ(s) ∈ C ∪ {s} for each s ∈ S ,

µ(c) ⊆ S for each c ∈ C , and

s ∈ µ(µ(s)) for all s ∈ S .
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

Stability

Definition
A matching µ is (pairwise) stable if:

Individually Rational: All agents i find their matches µ(i)
acceptable.

Unblocked: There do not exist s, c such that c �s µ(s) and

s �c s
′ for some s ′ ∈ µ(c) or s �c ∅ and |µ(c)| < qc .

N.B. When college preferences are responsive (indeed, when they are
substitutable), pairwise stability is equivalent to group stability
and being in the core.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

A Related One-to-One Market. . .

Replace each college c with c1, . . . , cqc .

Modify students’ preferences:

c ′ �s c �s c
′′ =⇒ c ′ �s c1 �s · · · �s cqc �s c

′′

Theorem (Roth–Sotomayor, 1990)

A college admissions matching is stable if and only if the
corresponding matching in the related one-to-one market is stable.

⇒ A stable college admissions matching exists!
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

Existence and Lattice Structure

Theorem (Gale–Shapley, 1962; Roth–Sotomayor, 1990)

A stable college admissions matching exists.

Theorem
Given two stable matchings µ, ν, there is a stable µ ∨ ν (µ ∧ ν)
which every college likes weakly more (less) than µ and ν.

If all colleges (weakly) prefer stable match µ to stable match ν,
then all students (weakly) prefer ν to µ.

There exist college- and student-optimal stable matchings (and
we can find them via deferred acceptance!).
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

The “Rural Hospitals” Theorem

Theorem (Roth, 1986)

At every stable matching

1 the same students are matched, and

2 the same college positions are filled.

Moreover, if college c fails to fill all its positions in some stable
matching µ, then c has the same set of assigned students, µ(c), at
every stable matching.

Proof
Use the Lone Wolf Theorem in the related one-to-one market. . . .

Look at a college c that does not fill all its positions at the
college-optimal stable matching µ̄; consider some other stable
matching µ; and suppose that µ̄(c) 6= µ(c). . . .

Scott Duke Kominers June 23, 2014 18
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

Incentives (I)

Theorem (Roth, 1985)

The student-optimal stable matching mechanism makes it a
dominant strategy for each student to state his true preferences.

However, no other stable matching mechanism makes it a dominant
strategy for each student to state his true preferences.

Proof
Use the incentives theorems in the related one-to-one market. . . .
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

Incentives (III)

Theorem
Under any stable matching mechanism, any student who can gain by
lying about his preferences can do so by submitting a “truncation” of
his true preference list.

Theorem (Roth, 1985)

When the college-optimal stable matching mechanism is used, the
only students who can gain by lying about their preferences are those
who would have received a different match from the student-optimal
stable mechanism.

Proof
Lattice structure + truncation theorem. . . .
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

Incentives (IV)

Theorem (Roth, 1986)

No stable matching mechanism exists for which stating true
preferences is a dominant strategy for every college.

“Dropping” Strategy: Consider a market with three colleges and
four students, with qc1 = 2 and qc2 = qc3 = 1.

�s1 : c3 � c1 � c2 � ∅ �c1 : s1 � s2 � s3 � s4 � ∅
�s2 : c2 � c1 � c3 � ∅ �c2 : s1 � s2 � s3 � s4 � ∅
�s3 : c1 � c3 � c2 � ∅ �c3 : s3 � s1 � s2 � s4 � ∅
�s4 : c1 � c2 � c3 � ∅

Unique stable matching: c1–{s3, s4}; c2–{s2}; c3–{s1}.
If c1 “drops” s2 and s3: c1–{s1, s4}; c2–{s2}; c3–{s3}.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

Substitutable Preferences

Definition
The preferences of college c are substitutable if for all i , j ∈ S and
S ′ ⊆ S , if i /∈ C c(S ′ ∪ {i}), then i /∈ C c(S ′ ∪ {i , j}).

i.e. There is no student j that (sometimes) “complements” i , in the
sense that gaining access to i makes j more attractive.

Key results for responsive preferences (e.g., the existence of
stable matchings) generalize to the case of substitutable
preferences. (More on this on Wednesday. . . .)

However, the “related one-to-one market” construction does not
work, so we need direct arguments(!).
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching

Weak Pareto Optimality

Theorem (Kojima, 2008)

The student-optimal stable matching is weakly Pareto optimal for
students “if and only if” the preferences of every college are
substitutable and satisfy the law of aggregate demand.a

aThat is, |C c(S ′′)| ≤ |C c(S ′)| whenever S ′′ ⊆ S ′ ⊆ S .

Additionally, Romm (forth.) proves welfare comparative statics
in the case that the preferences of every college are substitutable
and satisfy the law of aggregate demand(!).
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Introduction to Matching and Allocation Problems (II) Many-to-Many Matching

Remarks on Many-to-Many Matching

Many-to-MANY Definitions of Stability. . . .

see Sotomayor (1999); Echenique and Oviedo (2006); Konishi and
Ünver (2006); . . .

Pairwise Stable 6∼= Core.

see Blair (1988)

Pairwise Stable ∼= Stable only when preferences are substitutable.

Nevertheless, key existence and structural results hold in the
presence of substitutable preferences.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching with Transfers

Kelso–Crawford (1982)

Main Results
In two-sided, many-to-one matching markets with

1 bilateral contracts,

2 transferable utility, and

3 substitutable preferences,

competitive equilibria exist and coincide with {stable, core} outcomes.

Scott Duke Kominers June 23, 2014 25



Introduction to Matching and Allocation Problems (II) Many-to-One Matching with Transfers

The Setting

m workers, n firms; many-to-one matching

Workers care about wages and employers, but not colleagues.

Firms care about their wages and employees.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching with Transfers

The (Gross) Substitutability Condition

Definition
Workers are (gross) substitutes for j if for any two salary vectors sj
and s ′j with sj ≤ s ′j , for each Y ∈ Dj(sj), there is some Y ′ ∈ Dj(s

′
j )

such that
{i ∈ Y : sij = s ′ij} ⊆ Y ′.
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Introduction to Matching and Allocation Problems (II) Many-to-One Matching with Transfers

The Salary Adjustment Process (I)

1 Firms face a set of salaries.

2 Firms make offers to their most preferred set of workers. Any
previous offer that was not rejected must be honored.

3 Workers evaluate offers and tentatively hold their best
acceptable offers.

4 For each rejected offer, increment the feasible salary for the
rejecting worker–firm pair.

5 If no new offers are made, terminate the process and implement
the outcome; otherwise, iterate.

Scott Duke Kominers June 23, 2014 28



Introduction to Matching and Allocation Problems (II) Many-to-One Matching with Transfers

The Salary Adjustment Process (II)

Theorem
1 The adjustment process terminates.

2 The final allocation is (generically) unique.

3 The final outcome is
1 in the core, and
2 firm-optimal.

Sound familiar?

Discrete vs. continuous adjustment?

Necessity of substitutability?
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Introduction to Matching and Allocation Problems (II) QED

Similarities... and differences!

One-to-One “Marriage” Matching

Many-to-One “College Admissions” Matching

Many-to-Many Matching

Many-to-One Matching with Transfers
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