Using Matching with Preferences over Colleagues to Solve Classical Matching Problems

Scott Duke Kominers

Harvard University

Boston Undergraduate Research Symposium April 11, 2009

April 11, 2009

1 / 13

Scott Duke Kominers (Harvard)

■ ▶ ◀ ≣ ▶ ≡ ∽ ९. April 11, 2009 2 / 13

Image: Image:

College Admissions

Scott Duke Kominers (Harvard)

April 11, 2009 2 / 13

College Admissions

• Students

College Admissions

• Students, with preferences over colleges

- Students, with preferences over colleges
- Colleges

- Students, with preferences over colleges
- Colleges, with preferences over students

- Students, with strict preferences over colleges
- Colleges, with strict preferences over students

- Students, with strict preferences over colleges
- Colleges, with strict preferences over students

College Admissions

- Students, with strict preferences over colleges
- Colleges, with strict preferences over students

Question

How do we match students to colleges?

College Admissions

- Students, with strict preferences over colleges
- Colleges, with strict preferences over students

Question

How do we match students to colleges in a stable way?

College Admissions

- Students, with strict preferences over colleges
- Colleges, with strict preferences over students

Question

How do we match students to colleges in a stable way?

Question

How do we match students to colleges in a stable way?

Question How do we match students to colleges in a stable way?

What is "stability"?

Question How do we match students to colleges in a stable way?

What is "instability"?

Question How do we match students to colleges in a stable way?

What is "instability"?

Question

How do we match students to colleges in a stable way?

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if...
student s₁ matched to college Y

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if...

• student s_1 matched to college Y $(s_1 \rightarrow Y)$

Question

How do we match students to colleges in a stable way?

- student s_1 matched to college Y $(s_1 \rightarrow Y)$
- student s_2 matched to college Z

Question

How do we match students to colleges in a stable way?

- student s_1 matched to college Y $(s_1 \rightarrow Y)$
- student s_2 matched to college Z ($s_2 \rightarrow Z$)

Question

How do we match students to colleges in a stable way?

- student s_1 matched to college Y $(s_1 \rightarrow Y)$
- student s_2 matched to college Z ($s_2 \rightarrow Z$)
- student s_1 prefers college Z to college Y

Question

How do we match students to colleges in a stable way?

- student s_1 matched to college Y $(s_1 \rightarrow Y)$
- student s_2 matched to college Z ($s_2 \rightarrow Z$)
- student s_1 prefers college Z to college Y $(Z \succ_{s_1} Y)$

Question

How do we match students to colleges in a stable way?

- student s_1 matched to college Y $(s_1 \rightarrow Y)$
- student s_2 matched to college Z ($s_2 \rightarrow Z$)
- student s_1 prefers college Z to college Y $(Z \succ_{s_1} Y)$
- college Z prefers student s_1 to student s_2

Question

How do we match students to colleges in a stable way?

- student s_1 matched to college Y $(s_1 \rightarrow Y)$
- student s_2 matched to college Z ($s_2 \rightarrow Z$)
- student s_1 prefers college Z to college Y $(Z \succ_{s_1} Y)$
- college Z prefers student s_1 to student s_2 ($s_1 \succ_7 s_2$)

Question

How do we match students to colleges in a stable way?

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

$$s_1 \to Y, \quad s_2 \to Z, \quad Z \succ_{s_1} Y, \quad s_1 \succ_Z s_2.$$

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

$$s_1 \to Y, \quad s_2 \to Z, \quad Z \succ_{s_1} Y, \quad s_1 \succ_Z s_2.$$

Why is instability bad?

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

$$s_1 \to Y, \quad s_2 \to Z, \quad Z \succ_{s_1} Y, \quad s_1 \succ_Z s_2.$$

Why is instability bad?

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

$$s_1 \to Y, \quad s_2 \to Z, \quad Z \succ_{s_1} Y, \quad s_1 \succ_Z s_2.$$

Why is instability bad?

Good news:

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

$$s_1 \to Y, \quad s_2 \to Z, \quad Z \succ_{s_1} Y, \quad s_1 \succ_Z s_2.$$

Why is instability bad?

Good news: a stable matching always exists.

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

$$s_1 \to Y, \quad s_2 \to Z, \quad Z \succ_{s_1} Y, \quad s_1 \succ_Z s_2.$$

Why is instability bad?

Good news: a stable matching always exists.

Question

How do we match students to colleges in a stable way?

An matching of students to colleges is "unstable" if there exist students s_1, s_2 and colleges Y, Z such that

$$s_1 \to Y, \quad s_2 \to Z, \quad Z \succ_{s_1} Y, \quad s_1 \succ_Z s_2.$$

Why is instability bad?

<u>Good news: a stable matching always exists.¹</u>

¹Gale–Shapley (1962)

Scott Duke Kominers (Harvard)

An Example

Scott Duke Kominers (Harvard)

э

Image: A mathematical states and a mathem

• One college: Z

<

- One college: Z
- Three students: s_1, s_2, s_3

- One college: Z
- Three students: s_1, s_2, s_3 want to go to college

- One college: Z
- Three students: s_1, s_2, s_3 want to go to college

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

Possible Matchings

• $s_1 \rightarrow Z$, $s_2, s_3 \rightarrow \emptyset$ — unstable

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

Possible Matchings

• $s_1 \rightarrow Z$, $s_2, s_3 \rightarrow \emptyset$ — unstable

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1 \rightarrow Z$, $s_2, s_3 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1 \rightarrow Z$, $s_2, s_3 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2, s_3 \rightarrow Z$, $\rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2, s_3 \rightarrow Z$, $\rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2, s_3 \rightarrow Z$, $\rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2, s_3 \rightarrow Z$, $\rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable

- One college: Z can only admit two students
- Three students: s_1, s_2, s_3 want to go to college
- $s_1 \succ_Z s_2 \succ_Z s_3$

•
$$s_1 \rightarrow Z$$
, $s_2, s_3 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable
• $s_2, s_3 \rightarrow Z$, $s_1 \rightarrow \emptyset$ — unstable
• $s_1, s_2 \rightarrow Z$, $s_3 \rightarrow \emptyset$ — stable

Using Matching with Preferences over Colleagues

Real-world Applications

Scott Duke Kominers (Harvard)

■ ▶ ◀ ≣ ▶ ≣ ዏ � 여 April 11, 2009 5 / 13

Matching of...

Matching of...

students to schools

Matching of...

• students to schools (in Boston and New York)

Matching of...

- students to schools (in Boston and New York)
- (medical) students to residencies

Matching of...

- students to schools (in Boston and New York)
- (medical) students to residencies
- students to sororities

Real-world Applications

Matching of...

- students to schools (in Boston and New York)
- (medical) students to residencies
- students to sororities

However...

Real-world Applications

Matching of...

- students to schools (in Boston and New York)
- (medical) students to residencies
- students to sororities

However...

• no direct application to college admissions

Real-world Applications

Matching of...

- students to schools (in Boston and New York)
- (medical) students to residencies
- students to sororities

However...

• no direct application to college admissions (yet)

-∢ ≣ →

▲□▶ ▲圖▶ ▲ 圖

• We just described "classical matching".

- We just described "classical matching".
- Recall the title slide....

Using Matching with Preferences over Colleagues to Solve Classical Matching Problems

Scott Duke Kominers

Harvard University

Boston Undergraduate Research Symposium April 11, 2009

- We just described "classical matching".
- Recall the title slide....

- We just described "classical matching".
- Recall the title slide....

Natural Question

- We just described "classical matching".
- Recall the title slide....

Natural Question

What is "matching with preferences over colleagues"?

The Problem

College Admissions

- Students, with strict preferences over colleges
- Colleges, with strict preferences over students

Question

College Admissions

- Students, with strict preferences over colleges
- Colleges, with strict preferences over students

Question

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved, with an Algorithm How do we match students to colleges in a stable way?

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved, with an Algorithm How do we match students to colleges in a stable way?^a

^aEchenique-Yenmez (2007)

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved, with an Algorithm How do we match students to colleges in a stable way?

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved, with an Algorithm How do we match students to colleges in a stable way?

Question

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved, with an Algorithm How do we match students to colleges in a stable way?

Nontrivial Question

College Admissions

- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved, with an Algorithm How do we match students to colleges in a stable way?

Nontrivial Question

College Admissions

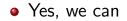
- Students, with strict preferences over colleges and over their possible sets of classmates
- Colleges, with strict preferences over students

Question — Solved, with an Algorithm How do we match students to colleges in a stable way?

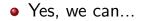
Nontrivial Question

Nontrivial Question

Nontrivial Question



Nontrivial Question



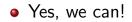
Nontrivial Question

- Yes, we can...
 - with an elementary construction...

Nontrivial Question

- Yes, we can...
 - with an elementary construction...
 - but at a complexity cost.

Nontrivial Question



Nontrivial Question

Can we use this algorithm to solve classical matching?

• Yes, we can!

Theorem

Nontrivial Question

Can we use this algorithm to solve classical matching?

• Yes, we can!

Theorem For any "classical matching" problem

Nontrivial Question

Can we use this algorithm to solve classical matching?

• Yes, we can!

Theorem

For any "classical matching" problem, there is an associated "matching with preferences over colleagues" problem

Nontrivial Question

Can we use this algorithm to solve classical matching?

• Yes, we can!

Theorem

For any "classical matching" problem, there is an associated "matching with preferences over colleagues" problem with stable matchings directly corresponding to the stable matchings of the original classical problem.

Nontrivial Question

Can we use this algorithm to solve classical matching?

• Yes, we can!

Corollary

Given any classical matching problem, we can find **all** stable matchings.

Nontrivial Question

Can we use this algorithm to solve classical matching?

• Yes, we can!

Key Idea Align student and college preferences!

Acknowledgments

Scott Duke Kominers (Harvard)

■ ▶ ◀ ≣ ▶ ≣ ዏ � 여 April 11, 2009 9 / 13

Image: A mathematical states of the state

Using Matching with Preferences over Colleagues

Acknowledgments

• Professors Alvin E. Roth and Peter A. Coles

- Professors Alvin E. Roth and Peter A. Coles
- Zachary Abel, John Hatfield, Noam D. Elkies, Drew Fudenberg, Bettina Klaus, and Fuhito Kojima

- Professors Alvin E. Roth and Peter A. Coles
- Zachary Abel, John Hatfield, Noam D. Elkies, Drew Fudenberg, Bettina Klaus, and Fuhito Kojima
- Harvard College PRISE and Harvard Department of Economics

- Professors Alvin E. Roth and Peter A. Coles
- Zachary Abel, John Hatfield, Noam D. Elkies, Drew Fudenberg, Bettina Klaus, and Fuhito Kojima
- Harvard College PRISE and Harvard Department of Economics

BURS

- Professors Alvin E. Roth and Peter A. Coles
- Zachary Abel, John Hatfield, Noam D. Elkies, Drew Fudenberg, Bettina Klaus, and Fuhito Kojima
- Harvard College PRISE and Harvard Department of Economics
- BURS organizers

- Professors Alvin E. Roth and Peter A. Coles
- Zachary Abel, John Hatfield, Noam D. Elkies, Drew Fudenberg, Bettina Klaus, and Fuhito Kojima
- Harvard College PRISE and Harvard Department of Economics
- BURS organizers and audience

- Professors Alvin E. Roth and Peter A. Coles
- Zachary Abel, John Hatfield, Noam D. Elkies, Drew Fudenberg, Bettina Klaus, and Fuhito Kojima
- Harvard College PRISE and Harvard Department of Economics
- BURS organizers and audience (\mathbb{QED})

Questions?

3

10 / 13

-

April 11, 2009

Image: Image:

Extra Slides

э

11 / 13

ъ

April 11, 2009

Image: Image:

Scott Duke Kominers (Harvard)

Using Matching with Preferences over Colleagues

The Construction

Scott Duke Kominers (Harvard)

■ → ▲ ■ → ■ → へへ April 11, 2009 12 / 13

• One College: Z

Scott Duke Kominers (Harvard)

April 11, 2009 12 / 13

- One College: Z
- Two students: s_1, s_2

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles >

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_1} \emptyset$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_1} \emptyset$
• $Z \succ_{s_2} \emptyset$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

• $Z \triangleright_{s_1} \emptyset$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

• $(Z,) \triangleright_{s_1} (\emptyset,)$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

• $(Z,) \triangleright_{s_1} (Z,) \triangleright_{s_1} (\emptyset,)$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

•
$$(Z, \{s_1, s_2\}) \triangleright_{s_1} (Z, \{s_1\}) \triangleright_{s_1} (\emptyset, \emptyset)$$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

•
$$(\mathbb{Z}, \{s_1, s_2\}) \triangleright_{s_1} (\mathbb{Z}, \{s_1\}) \triangleright_{s_1} (\emptyset, \emptyset)$$

• $\mathbb{Z} \triangleright_{s_2} \emptyset$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

- $(Z, \{s_1, s_2\}) \triangleright_{s_1} (Z, \{s_1\}) \triangleright_{s_1} (\emptyset, \emptyset)$
- $(Z,) \triangleright_{s_2} (\emptyset,)$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

• $(Z \{c, c\}) \triangleright_Z (Z \{c\}) \triangleright_Z \emptyset$

- $(Z, \{s_1, s_2\}) \triangleright_{s_1} (Z, \{s_1\}) \triangleright_{s_1} (\emptyset, \emptyset)$
- $(Z, \{s_1, s_2\}) \triangleright_{s_2} (\emptyset, \emptyset)$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

•
$$\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$$

• $(Z \{s_1, s_2\}) \triangleright_Z (Z \{s_1\}) \triangleright_Z \emptyset$

- $(Z, \{s_1, s_2\}) \triangleright_{s_1} (Z, \{s_1\}) \triangleright_{s_1} (\emptyset, \emptyset)$
- $(Z, \{s_1, s_2\}) \triangleright_{s_2} (\emptyset, \emptyset)$

- One College: Z
- Two students: s_1, s_2
- Classical preference profiles \succ

•
$$\{s_1, s_2\} \succ_Z \{s_1\} \succ_Z \emptyset$$

• $Z \succ_{s_i} \emptyset \ (i = 1, 2)$

- Nonclassical preference profiles ▷
 - $\{s_1, s_2\} \triangleright_Z \{s_1\} \triangleright_Z \emptyset$
 - $(Z, \{s_1, s_2\}) \triangleright_{s_1} (Z, \{s_1\}) \triangleright_{s_1} (\emptyset, \emptyset)$
 - $(Z, \{s_1, s_2\}) \triangleright_{s_2} (\emptyset, \emptyset)$

Using Matching with Preferences over Colleagues

Complexity Analysis

Scott Duke Kominers (Harvard)

불▶ ◀ 불 ▶ 불 ∽ ९. April 11, 2009 13 / 13

Image: A mathematical states of the state

• $|\mathcal{P}| :=$ size of largest preference relation in \mathcal{P}

- $|\mathcal{P}| :=$ size of largest preference relation in \mathcal{P}
- $|\mathcal{P}_{GS}| \sim \text{baseline}$

- $|\mathcal{P}| :=$ size of largest preference relation in \mathcal{P}
- $|\mathcal{P}_{GS}| \sim \text{baseline}$ • $|\mathcal{P}_{EY}(\mathcal{P}_{GS})| = O(|\mathcal{P}_{GS}|^2)$

• $|\mathcal{P}| :=$ size of largest preference relation in \mathcal{P}

• $|\mathcal{P}| :=$ size of largest preference relation in \mathcal{P}

- $|\mathcal{P}_{GS}| \sim \mathsf{baseline}$
- $|\mathcal{P}_{EY}(\mathcal{P}_{GS})| = O(|\mathcal{P}_{GS}|^2)$
 - \sim *input size* of our algorithm
 - $\bullet~\sim$ running time of the deferred acceptance algorithm

• $|\mathcal{P}| :=$ size of largest preference relation in \mathcal{P}

|P_{GS}| ~ baseline
|P_{EY}(P_{GS})| = O(|P_{GS}|²)
~ input size of our algorithm
~ running time of the deferred acceptance algorithm

Question

Can we do better?

• $|\mathcal{P}| :=$ size of largest preference relation in \mathcal{P}

|P_{GS}| ~ baseline |P_{EY}(P_{GS})| = O(|P_{GS}|²) ~ input size of our algorithm ~ running time of the deferred acceptance algorithm

Open Question

Can we do better?