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Generalized Matching Theory Stable Marriage

The Marriage Problem (Gale–Shapley, 1962)

Question
In a society with a set of men M and a set of women W , how can we
arrange marriages so that no agent wishes for a divorce?

Assumptions
1 Bilateral relationships: only pairs (and possibly singles).

2 Two-sided: men only desire women; women only desire men.

3 Preferences are fully known.
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Generalized Matching Theory Stable Marriage

The Deferred Acceptance Algorithm

Step 1
1 Each man “proposes” to his first-choice woman.

2 Each woman holds onto her most-preferred acceptable proposal
(if any) and rejects all others.

Step t ≥ 2
1 Each rejected man “proposes” to the his favorite woman who

has not rejected him.

2 Each woman holds onto her most-preferred acceptable proposal
(if any) and rejects all others.

At termination, no agent wants a divorce!
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Generalized Matching Theory Stable Marriage

Stability

Definition
A matching µ is a one-to-one correspondence on M ∪W such that

µ(m) ∈ W ∪ {m} for each m ∈ M ,

µ(w) ∈ M ∪ {w} for each w ∈ W , and

µ2(i) = i for all i ∈ M ∪W .

Definition
A marriage matching µ is stable if no agent wants a divorce.

:

Individually Rational: All agents i find their matches µ(i)
acceptable.

Unblocked: There do not exist m,w such that both

m �w µ(w) and w �m µ(m).
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Generalized Matching Theory Stable Marriage

Existence and Lattice Structure

Theorem (Gale–Shapley, 1962)

A stable marriage matching exists.

Theorem (Conway, 1976)

Given two stable matchings µ, ν, there is a stable match µ ∨ ν
(µ ∧ ν) which every man likes weakly more (less) than µ and ν.

If all men (weakly) prefer stable match µ to stable match ν,
then all women (weakly) prefer ν to µ.

The man- and woman-proposing deferred acceptance algorithms
respectively find the man- and woman-optimal stable matches.
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Generalized Matching Theory Stable Marriage

Opposition of Interests: A Simple Example

�m1 : w1 � w2 � ∅
�m2 : w2 � w1 � ∅

�w1 : m2 � m1 � ∅
�w2 : m1 � m2 � ∅

man-optimal stable match

woman-optimal stable match

This opposition of interests result also implies that there is no
mechanism which is strategy-proof for both men and women.
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Generalized Matching Theory Stable Marriage

The “Lone Wolf” Theorem (McVitie–Wilson, 1970)

Theorem
The set of matched men (women) is invariant across stable matches.

Proof

Let µ̄ be the man-optimal stable match and µ be any stable
match.

Every man weakly prefers µ̄; the number of married men under µ̄
is weakly greater than under µ.

Every woman weakly prefers µ; the number of married women
under µ is weakly greater than under µ̄.
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Generalized Matching Theory Stable Marriage

Applications

National Residency Matching Program

“Men” are the medical students and “women” are the hospitals.

School choice

“Men” are the students and “women” are the schools.

Labor markets

“Men” are the workers and “women” are the firms.

Auctions

“Men” are the bidders and the “woman” is the auctioneer.

But in general these applications require that women take on multiple
partners and that relationships take on many forms.
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Generalized Matching Theory Matching with Contracts

Matching with Contracts

A set of doctors D: each doctor has a strict preference order
over contracts involving him,

A set of hospitals H : each hospital has a strict preferences over
subsets of contracts involving it, and

A set of contracts X ⊆ D × H × T , where T is a finite set of
terms such as wages, hours, etc.

xD identifies the doctor of contract x ;
xH identifies the hospital of contract x .

An outcome is a set of contracts Y ⊆ X such that if x , z ∈ Y
and xD = zD , then x = z .
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Generalized Matching Theory Matching with Contracts

Choice Functions

C d(Y ) ≡ maxPd{x ∈ Y : xD = d}.
C h(Y ) ≡ maxPh{Z ⊆ Y : ZH = {h}}.
We define the rejection functions

RD(Y ) ≡ Y − ∪d∈DC d(Y ),

RH(Y ) ≡ Y − ∪h∈HC h(Y ).

Definition
The preferences of hospital h are substitutable if for all Y ⊆ X , if
z /∈ C h(Y ), then z /∈ C h({x} ∪ Y ) for all x 6= z .
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Generalized Matching Theory Matching with Contracts

Equilibrium

Definition
An outcome A is stable if it is

1 Individually rational:

for all d ∈ D, if x ∈ A and xD = d , then x �d ∅,
for all h ∈ H, Ch(A) = AH .

2 Unblocked: There does not exist a nonempty blocking set
Z ⊆ X − A and hospital h such that Z ⊆ C h (A ∪ Z ) and
Z ⊆ C D(A ∪ Z ).

Stability is a price-theoretic notion:

Every contract not taken . . .
. . . is available to some agent who does not choose it.
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Generalized Matching Theory Matching with Contracts

Characterization of Stable Outcomes

Consider the operator

ΦH

(
X D
)
≡ X − RD

(
X D
)

ΦD

(
X H
)
≡ X − RH

(
X H
)

Φ
(
X D ,X H

)
=
(
ΦD

(
X H
)
,ΦH

(
X D
))

Theorem
Suppose that the preferences of hospitals are substitutable. Then if
Φ
(
X D ,X H

)
=
(
X D ,X H

)
, the outcome X D ∩ X H is stable.

Conversely, if A is a stable outcome, there exist X D ,X H ⊆ X such
that Φ

(
X D ,X H

)
=
(
X D ,X H

)
and X D ∩ X H = A.
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Generalized Matching Theory Matching with Contracts

Existence of Stable Allocations

Theorem
Suppose that hospitals’ preferences are substitutable. Then there
exists a nonempty finite lattice of fixed points

(
X D ,X H

)
of Φ which

correspond to stable outcomes A = X D ∩ X H .

The proof follows from the isotonicity of the operator Φ.

The lattice result implies opposition of interests.

Hatfield & Kominers June 4, 2012 13
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Generalized Matching Theory Matching with Contracts

The Law of Aggregate Demand

Definition
The preferences of h ∈ H satisfy the Law of Aggregate Demand
(LoAD) if for all Y ′ ⊆ Y ⊆ X ,∣∣C h (Y )

∣∣ ≥ ∣∣C h (Y ′)
∣∣ .

Intuition: When h receives new offers, he hires at least as many
doctors as he did before: no doctor can do the work of two.
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Generalized Matching Theory Matching with Contracts

The Rural Hospitals Theorem and

Strategy-Proofness

Theorem
If all hospitals’ preferences are substitutable and satisfy the LoAD,
then each doctor and hospital signs the same number of contracts at
each stable outcome.

Theorem
If all hospitals’ preferences are substitutable and satisfy the LoAD,
the doctor-optimal stable many-to-one matching mechanism is
(group) strategy-proof.

Hatfield & Kominers June 4, 2012 15
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Generalized Matching Theory Matching with Contracts

Matching Without Substitutes

Substitutability is sufficient, but is it “necessary”?

No: Hatfield and Kojima (2010) showed that a weaker
condition, bilateral substitutability, is sufficient.

In simple many-to-one matching, substitutability is necessary.

This has important applications: Sönmez and Switzer (2011),
Sönmez (2011) consider the matching of cadets to U.S. Army
branches, where preferences are not substitutable, but are
unilaterally substitutable.

Open question: What is the necessary and sufficient condition
for matching with contracts?
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Generalized Matching Theory Supply Chain Matching

Supply Chain Matching (Ostrovsky, 2008)
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complements.

⇒ Objects are
fully substitutable.

Theorem
Stable outcomes exist.
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Generalized Matching Theory Supply Chain Matching

Full Substitutability is Essential (Hatfield–Kominers, 2012)

Although (full) substitutability is not necessary for many-to-one
matching with contracts, it is necessary for

supply chain matching, and
many-to-many matching with contracts.

This poses a problem for couples matching.

But new large-market results may provide a partial solution:
Kojima–Pathak–Roth (2011); Ashlagi–Braverman–Hassidim (2011);

Azevedo–Weyl–White (2012); Azevedo–Hatfield (in preparation).
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Generalized Matching Theory Supply Chain Matching

Cyclic Contract Sets

g

f1

y

^^=======

x1
��

f2

x2

TT

P f1 : {y , x2} � {x1, x2} � ∅

P f2 : {x2, x1} � ∅

Pg : {y} � ∅

Theorem
Acyclicity is necessary for stability.
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Generalized Matching Theory Supply Chain Matching

The Rural Hospitals Theorem

Theorem (two-sided)

In many-to-one (or -many) matching with contracts, if all preferences
are substitutable and satisfy the LoAD, then each doctor and hospital
signs the same number of contracts at each stable outcome.
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Generalized Matching Theory Supply Chain Matching

The Rural Hospitals Theorem

Theorem (two-sided)

In many-to-one (or -many) matching with contracts, if all preferences
are substitutable and satisfy the LoAD, then each doctor and hospital
signs the same number of contracts at each stable outcome.

Theorem (supply chain)

Suppose that X is acyclic and that all preferences are fully
substitutable and satisfy LoAD (and LoAS). Then, for each agent
f ∈ F , the difference between the number of contracts the f buys and
the number of contracts f sells is invariant across stable outcomes.
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Generalized Matching Theory The Assignment Problem

The Model (Koopmans–Beckmann, 1957; Gale, 1960; Shapley–Shubik, 1972)

ζm,w ∼ total surplus of marriage of man m and woman w

assignment indicators: am,w ≡

{
1 m,w married

0 otherwise

Stable assignment (ãm,w ) solves the integer program

max
∑
m

∑
w

am,wζm,w

∣∣∣∣ 0 ≤
∑

w am,w ≤ 1 ∀m
0 ≤

∑
m am,w ≤ 1 ∀w
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Generalized Matching Theory The Assignment Problem

“Efficient Mating”

zm,w ≡ ζm,w − ζm,∅ − ζ∅,w ∼ marital surplus

max
∑
m

∑
w

am,wζm,w = max

(∑
m

∑
w

am,wzm,w +
∑
m

ζm,∅ +
∑
w

ζ∅,w

)

Theorem
Stable assignment maximizes aggregate marriage output.

Note
Even with am,w ∈ [0, 1], the optimum is always an integer solution.
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Generalized Matching Theory The Assignment Problem

Other Notes

Dual problem shows us “shadow prices” which describe the
social cost of removing an agent from the pool of singles.

If ζm,w = h(xm, yw ), then complementarity (substitution) in
traits leads to positive (negative) assortative mating. (Becker, 1973)

Matches stable in the presence of transfers need not be stable if
transfers are not allowed, and vice versa. (Jaffe–Kominers, tomorrow)
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Generalization to Networks

Main Results
In arbitrary trading networks with

1 bilateral contracts,

2 transferable utility, and

3 fully substitutable preferences,

competitive equilibria exist and coincide with stable outcomes.

Full substitutability is necessary for these results.

Correspondence results extend to other solutions concepts.
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Cyclic Contract Sets
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Related Literature
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

The Setting: Trades and Contracts

Finite set of agents I

Finite set of bilateral trades Ω

each trade ω ∈ Ω has a seller s(ω) ∈ I and a buyer b(ω) ∈ I

An arrangement is a pair [Ψ; p], where Ψ ⊆ Ω and p ∈ R|Ω|.

Set of contracts X := Ω× R
each contract x ∈ X is a pair (ω, pω)
τ(Y ) ⊆ Ω ∼ set of trades in contract set Y ⊆ X

A (feasible) outcome is a set of contracts A ⊆ X which
uniquely prices each trade in A.
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

The Setting: Demand

Each agent i has quasilinear utility over arrangements:

Ui ([Ψ; p]) = ui(Ψi) +
∑
ψ∈Ψi→

pψ −
∑
ψ∈Ψ→i

pψ.

Ui extends naturally to (feasible) outcomes.

For any price vector p ∈ R|Ω|, the demand of i is

Di(p) = argmaxΨ⊆Ωi
Ui([Ψ; p]).

For any set of contracts Y ⊆ X , the choice of i is

Ci(Y ) = argmaxZ⊆Yi
Ui(Z ).
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Assumptions on Preferences

1 ui(Ψ) ∈ R ∪ {−∞}.

2 ui(∅) ∈ R.

3 Full substitutability...
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Full Substitutability (I)

Definition
The preferences of agent i are fully substitutable (in choice
language) if

1 same-side contracts are substitutes for i , and

2 cross-side contracts are complements for i .
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Full Substitutability (I)

Definition
The preferences of agent i are fully substitutable (in choice
language) if for all sets of contracts Y ,Z ⊆ Xi such that
|Ci(Z )| = |Ci(Y )| = 1,

1 if Yi→ = Zi→, and Y→i ⊆ Z→i , then for Y ∗ ∈ Ci(Y ) and
Z ∗ ∈ Ci(Z ), we have (Y→i − Y ∗→i) ⊆ (Z→i − Z ∗→i) and
Y ∗i→ ⊆ Z ∗i→;

2 if Y→i = Z→i , and Yi→ ⊆ Zi→, then for Y ∗ ∈ Ci(Y ) and
Z ∗ ∈ Ci(Z ), we have (Yi→ − Y ∗i→) ⊆ (Zi→ − Z ∗i→) and
Y ∗→i ⊆ Z ∗→i .
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Full Substitutability (II)

Theorem
Choice-language full substitutability

1 has equivalents in demand and “indicator” languages;

2 holds if and only if the indirect utility function

Vi(p) := max
Ψ⊆Ωi

Ui([Ψ; p])

is submodular (Vi(p ∨ q) + Vi(p ∧ q) ≤ Vi(p) + Vi(q)).
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Solution Concepts

Definition
An outcome A is stable if it is

1 Individually rational: for each i ∈ I , Ai ∈ Ci(A);

2 Unblocked: There is no nonempty, feasible Z ⊆ X such that

Z ∩ A = ∅ and
for each i , and for each Yi ∈ Ci (Z ∪ A), we have Zi ⊆ Yi .

Definition
Arrangement [Ψ; p] is a competitive equilibrium (CE) if for each i ,

Ψi ∈ Di(p).
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Existence of Competitive Equilibria

Theorem
If preferences are fully substitutable, then a CE exists.

Proof
1 Modify : Transform potentially unbounded ui to ûi .

2 Associate: Construct a two-sided one-to-many matching market:
i → “firm”: valuation ũi(Ψ) := ûi(Ψ→i ∪ (Ω−Ψ)i→);

ω → “worker”: wants high wages;

p → “wage”.

3 A CE exists in the associated market (Kelso–Crawford, 1982).

4 CE associated → CE modified = CE original.
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Structure of Competitive Equilibria

Theorem (First Welfare Theorem)

Let [Ψ; p] be a CE. Then Ψ is efficient.

Theorem (Second Welfare Theorem)

Suppose agents’ preferences are fully substitutable. Then, for any
CE [Ξ; p] and efficient set of trades Ψ, [Ψ; p] is a CE.

Theorem (Lattice Structure)

The set of CE price vectors is a lattice.

Hatfield & Kominers June 4, 2012 34



Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Structure of Competitive Equilibria

Theorem (First Welfare Theorem)

Let [Ψ; p] be a CE. Then Ψ is efficient.

Theorem (Second Welfare Theorem)

Suppose agents’ preferences are fully substitutable. Then, for any
CE [Ξ; p] and efficient set of trades Ψ, [Ψ; p] is a CE.

Theorem (Lattice Structure)

The set of CE price vectors is a lattice.

Hatfield & Kominers June 4, 2012 34



Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Structure of Competitive Equilibria

Theorem (First Welfare Theorem)

Let [Ψ; p] be a CE. Then Ψ is efficient.

Theorem (Second Welfare Theorem)

Suppose agents’ preferences are fully substitutable. Then, for any
CE [Ξ; p] and efficient set of trades Ψ, [Ψ; p] is a CE.

Theorem (Lattice Structure)

The set of CE price vectors is a lattice.

Hatfield & Kominers June 4, 2012 34



Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

The Relationship Between Stability and CE

Theorem
If [Ψ; p] is a CE, then A ≡ ∪ψ∈Ψ{(ψ, pψ)} is stable.

The reverse implication is not true in general.

Theorem
Suppose that agents’ preferences are fully substitutable and A is
stable. Then, there exists a price vector p ∈ R|Ω| such that

1 [τ(A); p] is a CE, and

2 if (ω, p̄ω) ∈ A, then pω = p̄ω.
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Full Substitutability is Necessary

Theorem
Suppose that there exist at least four agents and that the set of
trades is exhaustive. Then, if the preferences of some agent i are not
fully substitutable, there exist “simple” preferences for all agents
j 6= i such that no stable outcome exists.

Corollary
Under the conditions of the above theorem, there exist “simple”
preferences for all agents j 6= i such that no CE exists.
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Alternative Solution Concepts

Definition
An outcome A is in the core if there is no group deviation Z such
that Ui(Z ) > Ui(A) for all i associated with Z .

Definition
A set of contracts Z is a chain if its elements can be arranged in some

order y1, . . . , y |Z | such that s(y `+1) = b(y `) for all ` < |Z |.

Definition
Outcome A is stable if it is individually rational and

Unblocked: There is no nonempty, feasible Z ⊆ X such that

Z ∩ A = ∅ and
for each i , and for each Yi ∈ Ci (Z ∪ A), we have Zi ⊆ Yi .
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Alternative Solution Concepts

Definition
An outcome A is in the core if there is no group deviation Z such
that Ui(Z ) > Ui(A) for all i associated with Z .

Definition
A set of contracts Z is a chain if its elements can be arranged in some

order y1, . . . , y |Z | such that s(y `+1) = b(y `) for all ` < |Z |.

Definition
Outcome A is strongly group stable if it is individually rational and

Unblocked: There is no nonempty, feasible Z ⊆ X such that

Z ∩ A = ∅ and
for each i associated with Z , there exists a Y i ⊆ Z ∪ A such
that Zi ⊆ Y i and Ui (Y

i ) > Ui (A).
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Generalized Matching Theory Stability and Competitive Equilibrium in Trading Networks

Relationship Between the Concepts

CE

��
Strongly Group Stable //

))SSSSSSSSSSSSSSSS Stable //

nn

Chain Stablejj

Core //
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�
�

Efficient
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Generalized Matching Theory Multilateral Matching

Multilateral Contracts
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Toymaker

Full substitutability is “necessary”
in (Discrete, Bilateral) Contract Matching with Transfers.
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Generalized Matching Theory Multilateral Matching

Multilateral Contracts
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Residual Networks

Full substitutability is “necessary”
in (Discrete, Bilateral) Contract Matching with Transfers.
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Generalized Matching Theory Multilateral Matching

Multilateral Contracts

Main Results
In arbitrary trading networks with

1 multilateral contracts,

2 transferable utility,

3 concave preferences, and

4 continuously divisible contracts,

competitive equilibria exist and coincide with stable outcomes.

=⇒ Some production complementarities “work” in matching!
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Generalized Matching Theory Conclusion

Discussion

Applications of stability in absence of CE?

Linear programming approach?

Empirical applications?

Substitutability vs. concavity?

\end{Talk}
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Extra Slides

Demand-Language Full Substitutability

Definition
The preferences of agent i are fully substitutable in demand
language if for all p, p′ ∈ R|Ω| such that |Di(p)| = |Di(p′)| = 1,

1 if pω = p′ω for all ω ∈ Ωi→, and pω ≥ p′ω for all ω ∈ Ω→i , then
for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have

Ψi→ ⊆ Ψ′i→, {ω ∈ Ψ′→i : pω = p′ω} ⊆ Ψ→i ;

2 if pω = p′ω for all ω ∈ Ω→i , and pω ≤ p′ω for all ω ∈ Ωi→, then
for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have

Ψ→i ⊆ Ψ′→i , {ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→.

Hatfield & Kominers June 4, 2012 41



Extra Slides

Indicator-Language Full Substitutability

e i
ω(Ψ) =


1 ω ∈ Ψ→i

−1 ω ∈ Ψi→

0 otherwise

Definition
The preferences of agent i are fully substitutable in indicator
language if for all price vectors p, p′ ∈ R|Ω| such that
|Di(p)| = |Di(p′)| = 1 and p ≤ p′, for Ψ ∈ Di(p) and Ψ′ ∈ Di(p′),
we have

e i
ω(Ψ) ≤ e i

ω(Ψ′)

for each ω ∈ Ωi such that pω = p′ω.
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