Recent Advances in Generalized Matching Theory

John William Hatfield

Stanford Graduate School of Business

Scott Duke Kominers

Becker Friedman Institute, University of Chicago

"Matching Problems: Economics meets Mathematics" Conference Becker Friedman Institute & Stevanovich Center, University of Chicago June 4, 2012

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with a set of men M and a set of women W, how can we arrange marriages so that no agent wishes for a divorce?

The Marriage Problem (Gale-Shapley, 1962)

Question

In a society with a set of men M and a set of women W, how can we arrange marriages so that no agent wishes for a divorce?

Assumptions

- **1** Bilateral relationships: only pairs (and possibly singles).
- 2 Two-sided: men only desire women; women only desire men.
- Preferences are fully known.

The Deferred Acceptance Algorithm

Step 1

- Each man "proposes" to his first-choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

The Deferred Acceptance Algorithm

Step 1

- **1** Each man "proposes" to his first-choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

Step $t \ge 2$

- Each rejected man "proposes" to the his favorite woman who has not rejected him.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

The Deferred Acceptance Algorithm

Step 1

- **1** Each man "proposes" to his first-choice woman.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

Step $t \ge 2$

- Each rejected man "proposes" to the his favorite woman who has not rejected him.
- Each woman holds onto her most-preferred acceptable proposal (if any) and rejects all others.

At termination, no agent wants a divorce!

Stability

Definition

A matching μ is a one-to-one correspondence on $M \cup W$ such that

- $\mu(m) \in W \cup \{m\}$ for each $m \in M$,
- $\mu(w) \in M \cup \{w\}$ for each $w \in W$, and
- $\mu^2(i) = i$ for all $i \in M \cup W$.

Definition

A marriage matching μ is **stable** if no agent wants a divorce.

Stability

Definition

A matching μ is a one-to-one correspondence on $M \cup W$ such that

- $\mu(m) \in W \cup \{m\}$ for each $m \in M$,
- $\mu(w) \in M \cup \{w\}$ for each $w \in W$, and

•
$$\mu^2(i) = i$$
 for all $i \in M \cup W$.

Definition

A marriage matching μ is **stable** if no agent wants a divorce:

- Individually Rational: All agents *i* find their matches $\mu(i)$ acceptable.
- **Unblocked**: There do not exist *m*, *w* such that both

$$m \succ_w \mu(w)$$
 and $w \succ_m \mu(m)$.

Theorem (Gale–Shapley, 1962)

A stable marriage matching exists.

Theorem (Gale–Shapley, 1962)

A stable marriage matching exists.

Theorem (Conway, 1976)

 Given two stable matchings μ, ν, there is a stable match μ ∨ ν (μ ∧ ν) which every man likes weakly more (less) than μ and ν.

Theorem (Gale–Shapley, 1962)

A stable marriage matching exists.

Theorem (Conway, 1976)

- Given two stable matchings μ, ν, there is a stable match μ ∨ ν (μ ∧ ν) which every man likes weakly more (less) than μ and ν.
- If all men (weakly) prefer stable match μ to stable match ν, then all women (weakly) prefer ν to μ.

Theorem (Gale–Shapley, 1962)

A stable marriage matching exists.

Theorem (Conway, 1976)

- Given two stable matchings μ, ν, there is a stable match μ ∨ ν (μ ∧ ν) which every man likes weakly more (less) than μ and ν.
- If all men (weakly) prefer stable match μ to stable match ν, then all women (weakly) prefer ν to μ.
- The man- and woman-proposing deferred acceptance algorithms respectively find the man- and woman-optimal stable matches.

$$\succ_{m_1} : w_1 \succ w_2 \succ \emptyset$$

$$\succ_{m_2} : w_2 \succ w_1 \succ \emptyset$$

 $\succ_{w_1} : m_2 \succ m_1 \succ \emptyset$ $\succ_{w_2} : m_1 \succ m_2 \succ \emptyset$

イロト イポト イヨト イヨト

$$\succ_{m_1} : w_1 \succ w_2 \succ \emptyset \qquad \qquad \succ_{w_1} : m_2 \succ m_1 \succ \emptyset$$

$$\succ_{m_2} : w_2 \succ w_1 \succ \emptyset \qquad \qquad \succ_{w_2} : m_1 \succ m_2 \succ \emptyset$$

man-optimal stable match

- 4 🗗 ▶

$$\succ_{m_1} : w_1 \succ w_2 \succ \emptyset \qquad \qquad \succ_{w_1} : m_2 \succ m_1 \succ \emptyset$$

$$\succ_{m_2} : w_2 \succ w_1 \succ \emptyset \qquad \qquad \succ_{w_2} : m_1 \succ m_2 \succ \emptyset$$

man-optimal stable match woman-optimal stable match

$$\succ_{m_1} : w_1 \succ w_2 \succ \emptyset \qquad \qquad \succ_{w_1} : m_2 \succ m_1 \succ \emptyset$$

$$\succ_{m_2} : w_2 \succ w_1 \succ \emptyset \qquad \qquad \succ_{w_2} : m_1 \succ m_2 \succ \emptyset$$

man-optimal stable match woman-optimal stable match

• This opposition of interests result also implies that there is no mechanism which is **strategy-proof** for both men and women.

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

• Let $\bar{\mu}$ be the man-optimal stable match and μ be any stable match.

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

- Let $\bar{\mu}$ be the man-optimal stable match and μ be any stable match.
- Every man weakly prefers $\bar{\mu}$; the number of married men under $\bar{\mu}$ is weakly greater than under μ .

Theorem

The set of matched men (women) is invariant across stable matches.

Proof

- Let $\bar{\mu}$ be the man-optimal stable match and μ be any stable match.
- Every man weakly prefers $\bar{\mu}$; the number of married men under $\bar{\mu}$ is weakly greater than under μ .
- Every woman weakly prefers μ ; the number of married women under μ is weakly greater than under $\bar{\mu}$.

э

メロト メロト メヨト

- National Residency Matching Program
 - "Men" are the medical students and "women" are the hospitals.

- National Residency Matching Program
 - "Men" are the medical students and "women" are the hospitals.
- School choice
 - "Men" are the students and "women" are the schools.

- National Residency Matching Program
 - "Men" are the medical students and "women" are the hospitals.
- School choice
 - "Men" are the students and "women" are the schools.
- Labor markets
 - "Men" are the workers and "women" are the firms.

- National Residency Matching Program
 - "Men" are the medical students and "women" are the hospitals.
- School choice
 - "Men" are the students and "women" are the schools.
- Labor markets
 - "Men" are the workers and "women" are the firms.
- Auctions
 - "Men" are the bidders and the "woman" is the auctioneer.

- National Residency Matching Program
 - "Men" are the medical students and "women" are the hospitals.
- School choice
 - "Men" are the students and "women" are the schools.
- Labor markets
 - "Men" are the workers and "women" are the firms.
- Auctions
 - "Men" are the bidders and the "woman" is the auctioneer.

But in general these applications require that women take on multiple partners and that relationships take on many forms.

• A set of doctors *D*: each doctor has a strict preference order over contracts involving him,

- A set of doctors *D*: each doctor has a strict preference order over contracts involving him,
- A set of hospitals *H*: each hospital has a strict preferences over subsets of contracts involving it, and

- A set of doctors *D*: each doctor has a strict preference order over contracts involving him,
- A set of hospitals *H*: each hospital has a strict preferences over subsets of contracts involving it, and
- A set of contracts X ⊆ D × H × T, where T is a finite set of terms such as wages, hours, etc.

- A set of doctors *D*: each doctor has a strict preference order over contracts involving him,
- A set of hospitals *H*: each hospital has a strict preferences over subsets of contracts involving it, and
- A set of contracts X ⊆ D × H × T, where T is a finite set of terms such as wages, hours, etc.
 - *x_D* identifies the doctor of contract *x*;

- A set of doctors *D*: each doctor has a strict preference order over contracts involving him,
- A set of hospitals *H*: each hospital has a strict preferences over subsets of contracts involving it, and
- A set of contracts X ⊆ D × H × T, where T is a finite set of terms such as wages, hours, etc.
 - x_D identifies the doctor of contract x;
 - x_H identifies the hospital of contract x.

- A set of doctors *D*: each doctor has a strict preference order over contracts involving him,
- A set of hospitals *H*: each hospital has a strict preferences over subsets of contracts involving it, and
- A set of contracts X ⊆ D × H × T, where T is a finite set of terms such as wages, hours, etc.
 - x_D identifies the doctor of contract x;
 - x_H identifies the hospital of contract x.
- An **outcome** is a set of contracts $Y \subseteq X$ such that if $x, z \in Y$ and $x_D = z_D$, then x = z.

Choice Functions

< □ > < 🗇 >

Choice Functions

•
$$C^d(Y) \equiv \max_{P^d} \{x \in Y : x_D = d\}.$$

< □ > < 🗇 >

Choice Functions

•
$$C^{d}(Y) \equiv \max_{P^{d}} \{x \in Y : x_{D} = d\}.$$

• $C^{h}(Y) \equiv \max_{P^{h}} \{Z \subseteq Y : Z_{H} = \{h\}\}$

•
$$C^n(Y) \equiv \max_{P^h} \{ Z \subseteq Y : Z_H = \{h\} \}.$$

メロト メロト メヨト

Choice Functions

•
$$C^d(Y) \equiv \max_{P^d} \{x \in Y : x_D = d\}.$$

•
$$C^h(Y) \equiv \max_{P^h} \{ Z \subseteq Y : Z_H = \{h\} \}.$$

• We define the rejection functions

$$R^D(Y) \equiv Y - \cup_{d \in D} C^d(Y),$$

 $R^H(Y) \equiv Y - \cup_{h \in H} C^h(Y).$

Choice Functions

•
$$C^d(Y) \equiv \max_{P^d} \{x \in Y : x_D = d\}.$$

•
$$C^h(Y) \equiv \max_{P^h} \{ Z \subseteq Y : Z_H = \{h\} \}.$$

• We define the **rejection functions**

$$R^D(Y) \equiv Y - \cup_{d \in D} C^d(Y),$$

 $R^H(Y) \equiv Y - \cup_{h \in H} C^h(Y).$

Definition

The preferences of hospital *h* are **substitutable** if for all $Y \subseteq X$, if $z \notin C^h(Y)$, then $z \notin C^h(\{x\} \cup Y)$ for all $x \neq z$.

Equilibrium

Definition

An outcome A is **stable** if it is

- **O** Individually rational:
 - for all $d \in D$, if $x \in A$ and $x_D = d$, then $x \succ_d \emptyset$,
 - for all $h \in H$, $C^h(A) = A_H$.
- **2** Unblocked: There does not exist a nonempty blocking set $Z \subseteq X A$ and hospital h such that $Z \subseteq C^h(A \cup Z)$ and $Z \subseteq C^D(A \cup Z)$.

Equilibrium

Definition

An outcome A is **stable** if it is

- **O** Individually rational:
 - for all $d \in D$, if $x \in A$ and $x_D = d$, then $x \succ_d \emptyset$,

• for all
$$h \in H$$
, $C^h(A) = A_H$.

- **2** Unblocked: There does not exist a nonempty blocking set $Z \subseteq X A$ and hospital h such that $Z \subseteq C^h(A \cup Z)$ and $Z \subseteq C^D(A \cup Z)$.
 - Stability is a price-theoretic notion:
 - Every contract not taken ...
 - ... is available to some agent who does not choose it.

Characterization of Stable Outcomes

• Consider the operator

$$\Phi_{H} (X^{D}) \equiv X - R_{D} (X^{D})$$

$$\Phi_{D} (X^{H}) \equiv X - R_{H} (X^{H})$$

$$\Phi (X^{D}, X^{H}) = (\Phi_{D} (X^{H}), \Phi_{H} (X^{D}))$$

Characterization of Stable Outcomes

Consider the operator

$$\Phi_{H} (X^{D}) \equiv X - R_{D} (X^{D})$$

$$\Phi_{D} (X^{H}) \equiv X - R_{H} (X^{H})$$

$$\Phi (X^{D}, X^{H}) = (\Phi_{D} (X^{H}), \Phi_{H} (X^{D}))$$

Theorem

Suppose that the preferences of hospitals are substitutable. Then if $\Phi(X^D, X^H) = (X^D, X^H)$, the outcome $X^D \cap X^H$ is stable. Conversely, if A is a stable outcome, there exist $X^D, X^H \subseteq X$ such that $\Phi(X^D, X^H) = (X^D, X^H)$ and $X^D \cap X^H = A$.

Existence of Stable Allocations

Theorem

Suppose that hospitals' preferences are substitutable. Then there exists a nonempty finite lattice of fixed points (X^D, X^H) of Φ which correspond to stable outcomes $A = X^D \cap X^H$.

Existence of Stable Allocations

Theorem

Suppose that hospitals' preferences are substitutable. Then there exists a nonempty finite lattice of fixed points (X^D, X^H) of Φ which correspond to stable outcomes $A = X^D \cap X^H$.

• The proof follows from the isotonicity of the operator Φ.

Existence of Stable Allocations

Theorem

Suppose that hospitals' preferences are substitutable. Then there exists a nonempty finite lattice of fixed points (X^D, X^H) of Φ which correspond to stable outcomes $A = X^D \cap X^H$.

- The proof follows from the isotonicity of the operator Φ.
- The lattice result implies opposition of interests.

The Law of Aggregate Demand

Definition

The preferences of $h \in H$ satisfy the Law of Aggregate Demand (LoAD) if for all $Y' \subseteq Y \subseteq X$,

$$\left|C^{h}(Y)\right| \geq \left|C^{h}(Y')\right|.$$

The Law of Aggregate Demand

Definition

The preferences of $h \in H$ satisfy the Law of Aggregate Demand (LoAD) if for all $Y' \subseteq Y \subseteq X$,

$$\left|C^{h}(Y)\right| \geq \left|C^{h}(Y')\right|.$$

The Law of Aggregate Demand

Definition

The preferences of $h \in H$ satisfy the Law of Aggregate Demand (LoAD) if for all $Y' \subseteq Y \subseteq X$,

$$\left|C^{h}(Y)\right| \geq \left|C^{h}(Y')\right|.$$

• Intuition: When *h* receives new offers, he hires at least as many doctors as he did before: no doctor can do the work of two.

The Rural Hospitals Theorem and Strategy-Proofness

Theorem

If all hospitals' preferences are substitutable and satisfy the LoAD, then each doctor and hospital signs the same number of contracts at each stable outcome.

The Rural Hospitals Theorem and Strategy-Proofness

Theorem

If all hospitals' preferences are substitutable and satisfy the LoAD, then each doctor and hospital signs the same number of contracts at each stable outcome.

Theorem

If all hospitals' preferences are substitutable and satisfy the LoAD, the doctor-optimal stable many-to-one matching mechanism is (group) strategy-proof.

• Substitutability is sufficient, but is it "necessary"?

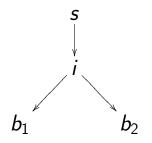
- Substitutability is sufficient, but is it "necessary"?
- No: Hatfield and Kojima (2010) showed that a weaker condition, *bilateral substitutability*, is sufficient.

- Substitutability is sufficient, but is it "necessary"?
- No: Hatfield and Kojima (2010) showed that a weaker condition, *bilateral substitutability*, is sufficient.
 - In simple many-to-one matching, substitutability is necessary.

- Substitutability is sufficient, but is it "necessary"?
- No: Hatfield and Kojima (2010) showed that a weaker condition, *bilateral substitutability*, is sufficient.
 - In simple many-to-one matching, substitutability is necessary.
- This has important applications: Sönmez and Switzer (2011), Sönmez (2011) consider the matching of cadets to U.S. Army branches, where preferences are not substitutable, but are *unilaterally substitutable*.

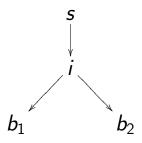
- Substitutability is sufficient, but is it "necessary"?
- No: Hatfield and Kojima (2010) showed that a weaker condition, *bilateral substitutability*, is sufficient.
 - In simple many-to-one matching, substitutability is necessary.
- This has important applications: Sönmez and Switzer (2011), Sönmez (2011) consider the matching of cadets to U.S. Army branches, where preferences are not substitutable, but are *unilaterally substitutable*.
- Open question: What is the necessary and sufficient condition for matching with contracts?

Supply Chain Matching (Ostrovsky, 2008)



- Same-side contracts are *substitutes*.
- Cross-side contracts are *complements*.
- ⇒ Objects are fully substitutable.

Supply Chain Matching (Ostrovsky, 2008)



Theorem

Stable outcomes exist.

- Same-side contracts are *substitutes*.
- Cross-side contracts are *complements*.
- ⇒ Objects are fully substitutable.

Full Substitutability is Essential (Hatfield-Kominers, 2012)

- Although (full) substitutability is not necessary for many-to-one matching with contracts, it *is* necessary for
 - supply chain matching, and
 - many-to-many matching with contracts.

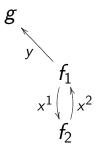
Full Substitutability is Essential (Hatfield-Kominers, 2012)

- Although (full) substitutability is not necessary for many-to-one matching with contracts, it *is* necessary for
 - supply chain matching, and
 - many-to-many matching with contracts.
- This poses a problem for couples matching.

Full Substitutability is Essential (Hatfield-Kominers, 2012)

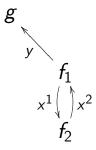
- Although (full) substitutability is not necessary for many-to-one matching with contracts, it *is* necessary for
 - supply chain matching, and
 - many-to-many matching with contracts.
- This poses a problem for couples matching.
- But new large-market results may provide a partial solution: Kojima-Pathak-Roth (2011); Ashlagi-Braverman-Hassidim (2011); Azevedo-Weyl-White (2012); Azevedo-Hatfield (in preparation).

Cyclic Contract Sets



 $\mathcal{P}^{f_1}: \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$ $\mathcal{P}^{f_2}: \{x^2, x^1\} \succ \varnothing$ $\mathcal{P}^g: \{y\} \succ \varnothing$

Cyclic Contract Sets



$$\mathcal{P}^{f_1}: \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$$

 $\mathcal{P}^{f_2}: \{x^2, x^1\} \succ \varnothing$
 $\mathcal{P}^g: \{y\} \succ \varnothing$

Theorem

Acyclicity is necessary for stability.

The Rural Hospitals Theorem

Theorem (two-sided)

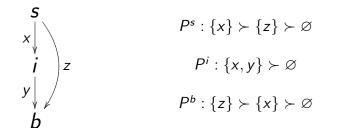
In many-to-one (or -many) matching with contracts, if all preferences are substitutable and satisfy the LoAD, then each doctor and hospital signs the same number of contracts at each stable outcome.

The Rural Hospitals Theorem

Theorem (two-sided)

In many-to-one (or -many) matching with contracts, if all preferences are substitutable and satisfy the LoAD, then each doctor and hospital signs the same number of contracts at each stable outcome.

• What happens in supply chains?



The Rural Hospitals Theorem

Theorem (two-sided)

In many-to-one (or -many) matching with contracts, if all preferences are substitutable and satisfy the LoAD, then each doctor and hospital signs the same number of contracts at each stable outcome.

Theorem (supply chain)

Suppose that X is acyclic and that all preferences are fully substitutable and satisfy LoAD (and LoAS). Then, for each agent $f \in F$, the difference between the number of contracts the f buys and the number of contracts f sells is invariant across stable outcomes. The Model (Koopmans-Beckmann, 1957; Gale, 1960; Shapley-Shubik, 1972)

• $\zeta_{m,w} \sim$ total surplus of marriage of man m and woman w

The Model (Koopmans-Beckmann, 1957; Gale, 1960; Shapley-Shubik, 1972)

- $\zeta_{m,w} \sim$ total surplus of marriage of man m and woman w
- assignment indicators: $a_{m,w} \equiv \begin{cases} 1 & m, w \text{ married} \\ 0 & \text{otherwise} \end{cases}$

The Model (Koopmans-Beckmann, 1957; Gale, 1960; Shapley-Shubik, 1972)

• $\zeta_{m,w} \sim$ total surplus of marriage of man m and woman w

• assignment indicators:
$$a_{m,w} \equiv \begin{cases} 1 & m, w \text{ married} \\ 0 & \text{otherwise} \end{cases}$$

Stable assignment $(\tilde{a}_{m,w})$ solves the integer program

$$\max \sum_{m} \sum_{w} a_{m,w} \zeta_{m,w} \qquad \qquad \begin{vmatrix} 0 \leq \sum_{w} a_{m,w} \leq 1 & \forall m \\ 0 \leq \sum_{m} a_{m,w} \leq 1 & \forall w \end{vmatrix}$$

ı.

"Efficient Mating"

•
$$z_{m,w} \equiv \zeta_{m,w} - \zeta_{m,\emptyset} - \zeta_{\emptyset,w} \sim \text{marital surplus}$$

$$\max \sum_{m} \sum_{w} a_{m,w} \zeta_{m,w} = \max \left(\sum_{m} \sum_{w} a_{m,w} z_{m,w} + \sum_{m} \zeta_{m,\emptyset} + \sum_{w} \zeta_{\emptyset,w} \right)$$

Theorem

Stable assignment maximizes aggregate marriage output.

Note

Even with $a_{m,w} \in [0,1]$, the optimum is always an integer solution.

Other Notes

- Dual problem shows us "shadow prices" which describe the social cost of removing an agent from the pool of singles.
- If $\zeta_{m,w} = h(x_m, y_w)$, then complementarity (substitution) in traits leads to positive (negative) assortative mating. (Becker, 1973)
- Matches stable in the presence of transfers need not be stable if transfers are not allowed, and vice versa. (Jaffe-Kominers, tomorrow)

Generalization to Networks

Main Results

In arbitrary trading networks with

- bilateral contracts,
- Itransferable utility, and
- Interpretended in the second secon

competitive equilibria exist and coincide with stable outcomes.

Generalization to Networks

Main Results

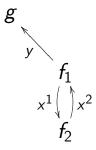
In arbitrary trading networks with

- bilateral contracts,
- Itransferable utility, and
- Interpretended in the second state of the s

competitive equilibria exist and coincide with stable outcomes.

- Full substitutability is necessary for these results.
- Correspondence results extend to other solutions concepts.

Cyclic Contract Sets



 $P^{f_1}: \{y, x^2\} \succ \{x^1, x^2\} \succ \varnothing$ $P^{f_2}: \{x^2, x^1\} \succ \varnothing$ $P^g: \{y\} \succ \varnothing$

Theorem

Acyclicity is necessary for stability!

Related Literature

Matching:

- Kelso-Crawford (1982): Many-to-one (with transfers); (GS)
- Ostrovsky (2008): Supply chain networks; (SSS) and (CSC)
- Hatfield-Kominers (2012): Trading networks (sans transfers)

Exchange economies with indivisibilities:

- Koopmans–Beckmann (1957); Shapley–Shubik (1972)
- Gul–Stachetti (1999): (GS)
- Sun-Yang (2006, 2009): (GSC)

The Setting: Trades and Contracts

• Finite set of agents I

The Setting: Trades and Contracts

- Finite set of agents I
- Finite set of bilateral trades Ω
 - each trade $\omega \in \Omega$ has a seller $s(\omega) \in I$ and a buyer $b(\omega) \in I$
- An arrangement is a pair $[\Psi; p]$, where $\Psi \subseteq \Omega$ and $p \in \mathbb{R}^{|\Omega|}$.

The Setting: Trades and Contracts

- Finite set of agents I
- Finite set of bilateral trades Ω
 - each trade $\omega \in \Omega$ has a seller $s(\omega) \in I$ and a buyer $b(\omega) \in I$
- An **arrangement** is a pair $[\Psi; p]$, where $\Psi \subseteq \Omega$ and $p \in \mathbb{R}^{|\Omega|}$.
- Set of contracts $X := \Omega \times \mathbb{R}$
 - each contract $x \in X$ is a pair (ω, p_{ω})
 - $\tau(Y) \subseteq \Omega \sim$ set of trades in contract set $Y \subseteq X$
- A (feasible) outcome is a set of contracts A ⊆ X which uniquely prices each trade in A.

The Setting: Demand

• Each agent *i* has quasilinear utility over arrangements:

$$U_i\left(\left[\Psi; oldsymbol{p}
ight]
ight) = u_i(\Psi_i) + \sum_{\psi \in \Psi_{i
ightarrow}} p_\psi - \sum_{\psi \in \Psi_{
ightarrow i}} p_\psi.$$

• U_i extends naturally to (feasible) outcomes.

The Setting: Demand

• Each agent *i* has quasilinear utility over arrangements:

$$U_i\left(\left[\Psi;
ho
ight]
ight) = u_i(\Psi_i) + \sum_{\psi \in \Psi_{i
ightarrow}}
ho_\psi - \sum_{\psi \in \Psi_{
ightarrow i}}
ho_\psi.$$

• U_i extends naturally to (feasible) outcomes.

• For any price vector $p \in \mathbb{R}^{|\Omega|}$, the **demand** of *i* is

$$D_i(p) = \operatorname{argmax}_{\Psi \subseteq \Omega_i} U_i([\Psi; p]).$$

• For any set of contracts $Y \subseteq X$, the **choice** of *i* is

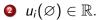
$$C_i(Y) = \operatorname{argmax}_{Z \subseteq Y_i} U_i(Z).$$

Assumptions on Preferences

$$u_i(\Psi) \in \mathbb{R} \cup \{-\infty\}.$$

Assumptions on Preferences

$$u_i(\Psi) \in \mathbb{R} \cup \{-\infty\}.$$



Assumptions on Preferences

$$u_i(\Psi) \in \mathbb{R} \cup \{-\infty\}.$$

$2 \quad u_i(\emptyset) \in \mathbb{R}.$

9 Full substitutability...

Full Substitutability (I)

Definition

The preferences of agent i are **fully substitutable** (in **choice language**) if

- **1** same-side contracts are substitutes for *i*, and
- **2** cross-side contracts are complements for *i*.

Full Substitutability (I)

Definition

The preferences of agent *i* are **fully substitutable** (in **choice language**) if for all sets of contracts $Y, Z \subseteq X_i$ such that $|C_i(Z)| = |C_i(Y)| = 1$,

- if $Y_{i\rightarrow} = Z_{i\rightarrow}$, and $Y_{\rightarrow i} \subseteq Z_{\rightarrow i}$, then for $Y^* \in C_i(Y)$ and $Z^* \in C_i(Z)$, we have $(Y_{\rightarrow i} Y^*_{\rightarrow i}) \subseteq (Z_{\rightarrow i} Z^*_{\rightarrow i})$ and $Y^*_{i\rightarrow} \subseteq Z^*_{i\rightarrow}$;
- if $Y_{\rightarrow i} = Z_{\rightarrow i}$, and $Y_{i \rightarrow} \subseteq Z_{i \rightarrow}$, then for $Y^* \in C_i(Y)$ and $Z^* \in C_i(Z)$, we have $(Y_{i \rightarrow} Y^*_{i \rightarrow}) \subseteq (Z_{i \rightarrow} Z^*_{i \rightarrow})$ and $Y^*_{\rightarrow i} \subseteq Z^*_{\rightarrow i}$.

イロト イポト イヨト イヨト 二日

Full Substitutability (II)

Theorem

Choice-language full substitutability

- In the sequivalents in demand and "indicator" languages;
- a holds if and only if the indirect utility function

$$V_i(p) := \max_{\Psi \subseteq \Omega_i} U_i([\Psi; p])$$

is submodular $(V_i(p \lor q) + V_i(p \land q) \le V_i(p) + V_i(q)).$

Solution Concepts

Definition

An outcome A is **stable** if it is

- **Q** Individually rational: for each $i \in I$, $A_i \in C_i(A)$;
- **2 Unblocked**: There is no nonempty, feasible $Z \subseteq X$ such that
 - $Z \cap A = \emptyset$ and
 - for each *i*, and for each $Y_i \in C_i(Z \cup A)$, we have $Z_i \subseteq Y_i$.

Definition

Arrangement $[\Psi; p]$ is a **competitive equilibrium (CE)** if for each *i*,

$$\Psi_i \in D_i(p).$$

Existence of Competitive Equilibria

Theorem

If preferences are fully substitutable, then a CE exists.

Proof

- **()** *Modify*: Transform potentially unbounded u_i to \hat{u}_i .
- A CE exists in the associated market (Kelso–Crawford, 1982).
- CE associated \rightarrow CE modified = CE original.

Structure of Competitive Equilibria

Theorem (First Welfare Theorem) Let $[\Psi; p]$ be a CE. Then Ψ is efficient.

Structure of Competitive Equilibria

Theorem (First Welfare Theorem) Let $[\Psi; p]$ be a CE. Then Ψ is efficient.

Theorem (Second Welfare Theorem)

Suppose agents' preferences are fully substitutable. Then, for any CE $[\Xi; p]$ and efficient set of trades Ψ , $[\Psi; p]$ is a CE.

Structure of Competitive Equilibria

Theorem (First Welfare Theorem) Let $[\Psi; p]$ be a CE. Then Ψ is efficient.

Theorem (Second Welfare Theorem)

Suppose agents' preferences are fully substitutable. Then, for any CE $[\Xi; p]$ and efficient set of trades Ψ , $[\Psi; p]$ is a CE.

Theorem (Lattice Structure) The set of CE price vectors is a lattice.

The Relationship Between Stability and CE

Theorem

If $[\Psi; p]$ is a CE, then $A \equiv \bigcup_{\psi \in \Psi} \{(\psi, p_{\psi})\}$ is stable.

• The reverse implication is not true in general.

The Relationship Between Stability and CE

Theorem

If $[\Psi; p]$ is a CE, then $A \equiv \cup_{\psi \in \Psi} \{(\psi, p_{\psi})\}$ is stable.

• The reverse implication is not true in general.

Theorem

Suppose that agents' preferences are fully substitutable and A is stable. Then, there exists a price vector $p \in \mathbb{R}^{|\Omega|}$ such that

1
$$[\tau(A); p]$$
 is a CE, and

2) if
$$(\omega, ar{p}_{\omega}) \in A$$
, then $p_{\omega} = ar{p}_{\omega}$.

Full Substitutability is Necessary

Theorem

Suppose that there exist at least four agents and that the set of trades is exhaustive. Then, if the preferences of some agent i are not fully substitutable, there exist "simple" preferences for all agents $j \neq i$ such that no stable outcome exists.

Full Substitutability is Necessary

Theorem

Suppose that there exist at least four agents and that the set of trades is exhaustive. Then, if the preferences of some agent i are not fully substitutable, there exist "simple" preferences for all agents $j \neq i$ such that no stable outcome exists.

Corollary

Under the conditions of the above theorem, there exist "simple" preferences for all agents $j \neq i$ such that no CE exists.

Definition

An outcome A is in the **core** if there is no group deviation Z such that $U_i(Z) > U_i(A)$ for all *i* associated with Z.

Definition

An outcome A is in the **core** if there is no group deviation Z such that $U_i(Z) > U_i(A)$ for all *i* associated with Z.

Definition

A set of contracts Z is a **chain** if its elements can be arranged in some order $y^1, \ldots, y^{|Z|}$ such that $s(y^{\ell+1}) = b(y^{\ell})$ for all $\ell < |Z|$.

Definition

An outcome A is in the **core** if there is no group deviation Z such that $U_i(Z) > U_i(A)$ for all *i* associated with Z.

Definition

A set of contracts Z is a **chain** if its elements can be arranged in some order $y^1, \ldots, y^{|Z|}$ such that $s(y^{\ell+1}) = b(y^{\ell})$ for all $\ell < |Z|$.

Definition

Outcome A is **stable** if it is individually rational and

- **Unblocked**: There is no nonempty, feasible $Z \subseteq X$ such that
 - $Z \cap A = \emptyset$ and
 - for each *i*, and for each $Y_i \in C_i(Z \cup A)$, we have $Z_i \subseteq Y_i$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Definition

An outcome A is in the **core** if there is no group deviation Z such that $U_i(Z) > U_i(A)$ for all *i* associated with Z.

Definition

A set of contracts Z is a **chain** if its elements can be arranged in some order $y^1, \ldots, y^{|Z|}$ such that $s(y^{\ell+1}) = b(y^{\ell})$ for all $\ell < |Z|$.

Definition

Outcome A is chain stable if it is individually rational and

- **Unblocked**: There is no nonempty, feasible chain $Z \subseteq X$ s.t.
 - $Z \cap A = \varnothing$ and
 - for each *i*, and for each $Y_i \in C_i(Z \cup A)$, we have $Z_i \subseteq Y_i$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Definition

An outcome A is in the **core** if there is no group deviation Z such that $U_i(Z) > U_i(A)$ for all *i* associated with Z.

Definition

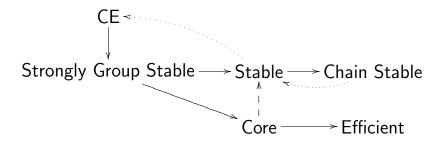
A set of contracts Z is a **chain** if its elements can be arranged in some order $y^1, \ldots, y^{|Z|}$ such that $s(y^{\ell+1}) = b(y^{\ell})$ for all $\ell < |Z|$.

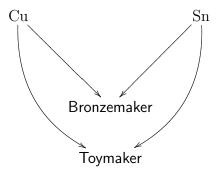
Definition

Outcome A is strongly group stable if it is individually rational and

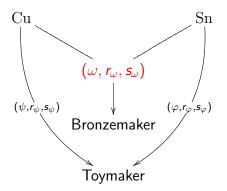
- **Unblocked**: There is no nonempty, feasible $Z \subseteq X$ such that
 - $Z \cap A = \emptyset$ and
 - for each *i* associated with *Z*, there exists a $Y^i \subseteq Z \cup A$ such that $Z_i \subseteq Y^i$ and $U_i(Y^i) > U_i(A)$.

Relationship Between the Concepts

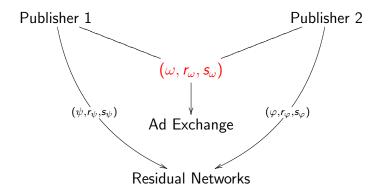




• Full substitutability is "necessary" in (Discrete, Bilateral) Contract Matching with Transfers.



 Full substitutability is "necessary" in (Discrete, Bilateral) Contract Matching with Transfers.



• Full substitutability is "necessary" in (Discrete, Bilateral) Contract Matching with Transfers.

Hatfield & Kominers

Main Results

In arbitrary trading networks with

- multilateral contracts,
- Itransferable utility,
- **o concave** preferences, and
- continuously divisible contracts,

competitive equilibria exist and coincide with stable outcomes.

⇒ Some production complementarities "work" in matching!

Discussion

- Applications of stability in absence of CE?
- Linear programming approach?
- Empirical applications?
- Substitutability vs. concavity?

Discussion

- Applications of stability in absence of CE?
- Linear programming approach?
- Empirical applications?
- Substitutability vs. concavity?

 \end{Talk}

Demand-Language Full Substitutability

Definition

The preferences of agent *i* are **fully substitutable** in **demand language** if for all $p, p' \in \mathbb{R}^{|\Omega|}$ such that $|D_i(p)| = |D_i(p')| = 1$,

• if $p_{\omega} = p'_{\omega}$ for all $\omega \in \Omega_{i \to i}$, and $p_{\omega} \ge p'_{\omega}$ for all $\omega \in \Omega_{\to i}$, then for the unique $\Psi \in D_i(p)$ and $\Psi' \in D_i(p')$, we have

$$\Psi_{i\to}\subseteq \Psi_{i\to}', \quad \{\omega\in \Psi_{\to i}': p_\omega=p_\omega'\}\subseteq \Psi_{\to i};$$

② if $p_{\omega} = p'_{\omega}$ for all $\omega \in \Omega_{\rightarrow i}$, and $p_{\omega} \leq p'_{\omega}$ for all $\omega \in \Omega_{i \rightarrow}$, then for the unique Ψ ∈ $D_i(p)$ and Ψ' ∈ $D_i(p')$, we have

$$\Psi_{\rightarrow i} \subseteq \Psi'_{\rightarrow i}, \quad \{\omega \in \Psi'_{i\rightarrow} : p_{\omega} = p'_{\omega}\} \subseteq \Psi_{i\rightarrow}.$$

Indicator-Language Full Substitutability

$$e^i_\omega(\Psi) = egin{cases} 1 & \omega \in \Psi_{
ightarrow i}\ -1 & \omega \in \Psi_{i
ightarrow}\ 0 & ext{otherwise} \end{cases}$$

Definition

The preferences of agent *i* are **fully substitutable** in **indicator language** if for all price vectors $p, p' \in \mathbb{R}^{|\Omega|}$ such that $|D_i(p)| = |D_i(p')| = 1$ and $p \leq p'$, for $\Psi \in D_i(p)$ and $\Psi' \in D_i(p')$, we have

$$e^i_\omega(\Psi) \leq e^i_\omega(\Psi')$$

for each $\omega \in \Omega_i$ such that $p_\omega = p'_\omega$.