Dynamic Position Auctions with Consumer Search

Scott Duke Kominers

Harvard University

Algorithmic Aspects in Information and Management June 16, 2009

Background

What are position auctions?

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 2 / 17

< A

э

Background

What are position auctions?

Definition

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 2 / 17

э

Definition In a position auction,

Definition In a position auction,

Definition

In a position auction, individuals submit bids for M positions

Definition

In a position auction, individuals submit bids for M positions

Definition

In a position auction, individuals submit bids for M positions, which are allocated via an auction rule.

Definition

In a position auction, individuals submit bids for M positions, which are allocated via an auction rule.

Definition

In a position auction, individuals submit bids for M positions, which are allocated via an auction rule.

• Position auctions are used to allocate sponsored search links to advertisers!

Background

Why study position auctions?

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 3 / 17

< □ > < 同 > <

э

Why study position auctions?

• Sponsored search is a multibillion-dollar industry

Why study position auctions?

- Sponsored search is a multibillion-dollar industry
- The mechanisms used are relatively new

Why study position auctions?

- Sponsored search is a multibillion-dollar industry
- The mechanisms used are relatively new
- Welfare implications not well-understood

Background

Previous Position Auction Models

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

< □ ▶ < 何

June 16, 2009 4 / 17

э

Exogenous Click-through Rates

> Aggarwal, Goel, and Motwani (2006)

Exogenous Click-through Rates

> Aggarwal, Goel, and Motwani (2006)

• Varian (2007)

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

• Chen and He (2006)

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

- Chen and He (2006)
- Athey and Ellison (2008)

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

- Chen and He (2006)
- Athey and Ellison (2008)

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

- Chen and He (2006)
- Athey and Ellison (2008)

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Cary et al. (2008) dynamic extension

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Cary et al. (2008) dynamic extension \sim convergence

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Cary et al. (2008) dynamic extension \sim convergence

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Cary et al. (2008) dynamic extension \sim convergence

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Cary et al. dynamic extension \sim convergence

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Our dynamic extension \sim convergence

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Our dynamic extension \sim convergence

Exogenous Click-through Rates

- Aggarwal, Goel, and Motwani (2006)
- Varian (2007)
- Edelman, Ostrovsky, and Schwarz (2007)

Endogenous Click-through Rates

- Chen and He (2006)
- Athey and Ellison (2008)

• Our dynamic extension \sim convergence

Our Model

Framework & Conventions

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 5 / 17

< □ > < 同 >

э

Our Model

Framework & Conventions

Athey and Ellison (2008) Model

Our Model

Framework & Conventions

Athey and Ellison (2008) Model • *N* advertisers

Framework & Conventions

Athey and Ellison (2008) Model

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"

- N advertisers
 - quality: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"

Athey and Ellison (2008) Model

• N advertisers

• quality:
$$q_{\pi}$$
 $(\pi = 1, 2, \dots, N)$

- Interpretation: "probability of meeting a consumer's need"
- Distribution: $F(\cdot)$

Athey and Ellison (2008) Model

• N advertisers

• quality:
$$q_{\pi}$$
 $(\pi=1,2,\ldots,N)$

- Interpretation: "probability of meeting a consumer's need"
- Distribution: $F(\cdot)$ (public)

- N advertisers
 - quality: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"
 - Distribution: $F(\cdot)$ (public)
 - Sorted: $q_1 \ge q_2 \ge \cdots \ge q_N$.

- N advertisers
 - quality: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"
 - Distribution: $F(\cdot)$ (public)
 - Sorted: $q_1 \ge q_2 \ge \cdots \ge q_N$.

Athey and Ellison (2008) Model*M* < *N* positions

- M < N positions
 - Awarded in a Generalized Second-Price Auction

- M < N positions
 - Awarded in a Generalized Second-Price Auction
 - click-through rate: determined endogenously

- M < N positions
 - Awarded in a Generalized Second-Price Auction
 - click-through rate: determined endogenously
- continuum of consumers

- M < N positions
 - Awarded in a Generalized Second-Price Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click

- M < N positions
 - Awarded in a Generalized Second-Price Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met

- M < N positions
 - Awarded in a Generalized Second-Price Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met or until expected benefit $< s_i$

- M < N positions
 - Awarded in a Generalized Second-Price Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met or until expected benefit $< s_i$
 - Distribution: $G(\cdot)$

- M < N positions
 - Awarded in a Generalized Second-Price Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met or until expected benefit $< s_i$
 - Distribution: $G(\cdot)$ (public)

Our Model

Framework & Conventions

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 6 / 17

<

э

Our Model

Framework & Conventions

Our Dynamic Model

• Extends Athey and Ellison (2008)

- Extends Athey and Ellison (2008)
- Dynamic setting

- Extends Athey and Ellison (2008)
- Dynamic setting
 - Sequential rounds

- Extends Athey and Ellison (2008)
- Dynamic setting
 - Sequential rounds
 - Synchronous updating

- Extends Athey and Ellison (2008)
- Dynamic setting
 - Sequential rounds
 - Synchronous updating
 - Advertisers play a "best-response" strategy

- Extends Athey and Ellison (2008)
- Dynamic setting
 - Sequential rounds
 - Synchronous updating
 - Advertisers play a "best-response" strategy
 - Consumers ignorant of dynamics

Our Model

Framework & Conventions

Our Model

Framework & Conventions

Balanced Bidding

 $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar q_j)\cdot (1-q_\pi)\cdot (q_\pi-b_{\pi_{j+1}})=G(ar q_{j-1})\cdot (q_\pi-b_\pi)$$

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar q_j)\cdot (1-q_\pi)\cdot (q_\pi-b_{\pi_{j+1}})=G(ar q_{j-1})\cdot (q_\pi-b_\pi)$$

Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

- Unique fixed point
 - Athey and Ellison (2008) Envy-Free Equilibrium

Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position j
 among the positions below the current position
 which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* among the positions below the current position which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* among the positions below the current position which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Main Result

Image: A matrix and a matrix

Main Result Theorem (Convergence Theorem)

Main Result Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

• The dynamic model is "well-approximated" by the static model.

Parameters

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 9 / 17

-

Image: A matrix and a matrix

Parameters

•
$$\gamma_j(q) = (1-q) \frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})}$$

-

Image: A matrix and a matrix

Parameters

•
$$\gamma_j(q) = (1-q) \frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})}$$

• $\gamma^*(q) = (1-q) \max_{j>0} \left(\frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})} \right)$

Image: A mathematical states and a mathem

Parameters

•
$$\gamma_j(q) = (1-q) \frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})}$$

• $\gamma^*(q) = (1-q) \max_{j>0} \left(\frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})} \right)$
• $\gamma^{**} = \max_{1 \le \pi \le N} \gamma^*(q_\pi)$

Scott Duke Kominers (Harvard)

Image: A mathematical states and a mathem

Our Model

Results

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 9 / 17

æ

< ∃⇒

< □ > < 同 > < 三 >

Lemma

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 9 / 17

<ロト <団ト < 団

Lemma *At every round* $t > t_1 = 2 + \log_{\gamma^{**}}((1 - \gamma^{**})(q_M - q_{M+1})/q_{M+1}):$

Lemma At every round $t > t_1 = 2 + \log_{\gamma^{**}}((1 - \gamma^{**})(q_M - q_{M+1})/q_{M+1}):$ $\int b_r > q_{M+1}, \quad \pi < M + 1$

$$\left\{egin{array}{ll} b_\pi > q_{\mathcal{M}+1} & \pi < \mathcal{M}+1, \ b_\pi = q_\pi & \pi \geq \mathcal{M}+1. \end{array}
ight.$$

Scott Duke Kominers (Harvard)

Lemma

At every round $t > t_1 = 2 + \log_{\gamma^{**}}((1 - \gamma^{**})(q_M - q_{M+1})/q_{M+1}):$ $\int h > q_{M+1} \quad \pi < M + 1$

$$\left\{egin{array}{ll} b_\pi > q_{M+1} & \pi < M+1, \ b_\pi = q_\pi & \pi \geq M+1. \end{array}
ight.$$

• Within t_1 rounds, the N - M lowest-quality advertisers "drop out" of contention.

Convergence of the *M* Positions • By the Lemma

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions converge to the fixed point after round *t*₁.

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions converge to the fixed point after round *t*₁.

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions stabilize after round *t*₁.

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions stabilize after round t_1 .

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.
 - If $\pi(P) = \{1, \dots, M\}$, then we are done.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.
 - Look at the advertiser $\pi \notin \pi(P)$ with the lowest bid.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.
 - Look at the advertiser $\pi \notin \pi(P)$ with the lowest bid.

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 1: π targets position p

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \not\in \pi(P)$ with the lowest bid
 - Case 1: π targets position p
 - $\Rightarrow P' = P \cup \{p\}$ is stable

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$
 - $\Rightarrow P' = {\hat{p}, \dots, M}$ is stable

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$
 - $\Rightarrow P' = \{\hat{p}, \dots, M\}$ is stable
 - Depends upon the specific functional form of $\gamma_{\hat{p}}(q)$

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \not\in \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$

•
$$\Rightarrow P' = \{\hat{p}, \ldots, M\}$$
 is stable

- Depends upon the specific functional form of $\gamma_{\hat{p}}(q)$
- (Significant divergence from Cary et al. (2008))

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases

Our Model

Results

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 12 / 17

æ

< ≣⇒

<ロト < 同ト < 三ト

Lemma

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 12 / 17

æ

< ∃⇒

Image: A matrix and a matrix

Lemma

Let
$$\epsilon = \frac{G(\bar{q}_M)}{2G(\bar{q}_1)} (1 - \gamma^{**}) \min_{\phi \neq \phi'} |q_\phi - q_{\phi'}| \left(\prod_{j=1}^M (1 - q_j) \right).$$

æ

< ∃⇒

Image: A matrix and a matrix

Lemma

Let

$$\epsilon = \frac{G(\bar{q}_M)}{2G(\bar{q}_1)}(1 - \gamma^{**}) \min_{\phi \neq \phi'} |q_\phi - q_{\phi'}| \left(\prod_{j=1}^M (1 - q_j)\right).$$

At most $\log_{1/\gamma^{**}}((q_1 - q_{M+1})/\epsilon)$ consecutive instances of
Case 3 may occur.

æ

< ∃⇒

Image: A matrix and a matrix

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases after finitely many rounds, Case 1 or 2 must occur

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases after finitely many rounds, Case 1 or 2 must occur

 $\bullet \ \Rightarrow \mathbb{QED}$

We have proven:

3 x 3

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then the M positions stabilize in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then the M positions stabilize in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

We have proven:

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

We have proven:

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

• This also yields probability-1 efficient convergence in an asynchronous bidding model.

Discussion

Possible Generalizations

3) (3

< A

• Our method pprox Cary et al. (2008)'s method

 Our method ≈ Cary et al. (2008)'s method; its applicability is naïvely surprising.

• Our method pprox Cary et al. (2008)'s method

• Our method pprox Cary et al. (2008)'s method

Three key steps:

Three key conditions:

• Our method pprox Cary et al. (2008)'s method

Three key steps:

restriction of the strategy space

Three key conditions:

unique envy-free equilibrium

• Our method pprox Cary et al. (2008)'s method

Three key steps:

- restriction of the strategy space
- analysis of low-quality advertisers' behaviors

Three key conditions:

- unique envy-free equilibrium
- Iow-quality advertisers drop out efficiently

• Our method pprox Cary et al. (2008)'s method

Three key steps:

- restriction of the strategy space
- analysis of low-quality advertisers' behaviors
- **o** proof that the *M* positions stabilize
- Three key conditions:
 - unique envy-free equilibrium
 - Iow-quality advertisers drop out efficiently
 - monotone equilibrium strategy

Discussion

Conclusion

∃ >

Image: A mathematical states of the state

æ

Conclusion

Convergence should be demonstrable in dynamic position auction models with sufficiently well-behaved static equilibrium strategies.

Questions?

QED

kominers@fas.harvard.edu

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

June 16, 2009 17 / 17

э