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Background

What are position auctions?

Definition
In a position auction, individuals submit bids for M
positions, which are allocated via an auction rule.

@ Position auctions are used to allocate sponsored
search links to advertisers!
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Why study position auctions?

@ Sponsored search is a multibillion-dollar industry
@ The mechanisms used are relatively new
@ Welfare implications not well-understood
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Framework & Conventions

Our Dynamic Model

e Extends Athey and Ellison (2008)

@ Dynamic setting

Sequential rounds

Synchronous updating

Advertisers play a “best-response” strategy
Consumers ignorant of dynamics
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Results

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding
strategy, then their bids converge to the fixed point;
this convergence is efficient.

@ The dynamic model is “well-approximated” by the
static model.
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Results

Lemma
At every round
t>t =2+ |Og,y**((1 — 7**)(qM — qM+1)/qM+1).'

b7r>q/\/]+1 7T<M+1,
b, = q, > M+ 1.

@ Within t; rounds, the N — M lowest-quality
advertisers “drop out” of contention.
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Results

Convergence of the M Positions
@ By the Lemma, we need only show that the M
positions stabilize after round t;.
o Set of stable positions: P ={p+1,..., M}

e Set of advertisers in positions of P: m(P)
o Next round, all advertisers in 7(P) repeat their bids.

o If 7(P)={1,..., M}, then we are done.
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@ By the Lemma, we need only show that the M
positions stabilize after round t;.
o Set of stable positions: P ={p+1,..., M}
e Set of advertisers in positions of P: m(P)
e Next round, all advertisers in 7(P) repeat their bids.

Look at the advertiser 7 ¢ m(P) with the lowest bid.
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Convergence of the M Positions
@ By the Lemma, we need only show that the M
positions stabilize after round t;.
@ Set of stable positions: P ={p+1,..., M}
e Set of advertisers in positions of P: m(P)
e Next round, all advertisers in 7(P) repeat their bids.

Look at the advertiser m ¢ w(P) with the lowest bid.
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@ Set of stable positions: P={p+1,..., M}

@ Advertiser m ¢ 7(P) with the lowest bid

o Case 2: 7 targets position p > p
o = P ={p,..., M} is stable

@ Depends upon the specific functional form of ~;(q)
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Results

Convergence of the M Positions
@ Set of stable positions: P={p+1,..., M}

@ Advertiser m ¢ 7(P) with the lowest bid

o Case 2: 7 targets position p > p

o = P ={p,..., M} is stable
@ Depends upon the specific functional form of ~;(q)
@ (Significant divergence from Cary et al. (2008))
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Results

Lemma

Let
>|<>|< : M
= S8 (=) mingylas — a| (T - ).
At most Iogl/w((ql — gm+1)/€) consecutive instances of
Case 3 may occur.
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e Case 3: 7 targets position p < p
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Our Model

Results

Convergence of the M Positions
@ Set of stable positions: P={p+1,..., M}

@ Advertiser m ¢ 7(P) with the lowest bid
e Case 3: 7 targets position p < p
@ = P remains stable
minimum bid of advertisers not in w(P) increases
after finitely many rounds, Case 1 or 2 must occur

o = QED
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Results

We have proven:

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding
strategy, then their bids converge to the fixed point;
this convergence is efficient.

@ This also yields probability-1 efficient convergence in
an asynchronous bidding model.
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Possible Generalizations

@ Our method ~ Cary et al. (2008)'s method;
its applicability is naively surprising.
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Possible Generalizations

@ Our method ~ Cary et al. (2008)'s method

Three key steps:
@ restriction of the strategy space
© analysis of low-quality advertisers’ behaviors
@ proof that the M positions stabilize

Three key conditions:
@ unique envy-free equilibrium
@ low-quality advertisers drop out efficiently
© monotone equilibrium strategy
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Discussion

Conclusion

Convergence should be demonstrable in dynamic position
auction models with sufficiently well-behaved static
equilibrium strategies.
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kominers@fas.harvard.edu
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