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Our Model

Framework & Conventions
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Parameters

γj(q) = (1− q)
G (q̄j)
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Our Model

Results

Convergence of the M Positions

By the Lemma

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.
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positions stabilize after round t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

If π(P) = {1, . . . ,M}, then we are done.

Look at the advertiser π 6∈ π(P) with the lowest bid.
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Results

Lemma
Let
ε = G (q̄M)

2G (q̄1)(1− γ∗∗) minφ 6=φ′ |qφ − qφ′|
(∏M

j=1(1− qj)
)

.
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Let
ε = G (q̄M)

2G (q̄1)(1− γ∗∗) minφ 6=φ′ |qφ − qφ′|
(∏M

j=1(1− qj)
)

.

At most log1/γ∗∗((q1 − qM+1)/ε) consecutive instances of
Case 3 may occur.
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This also yields probability-1 efficient convergence in
an asynchronous bidding model.
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Possible Generalizations

1 restriction of the strategy space
2 analysis of low-quality advertisers’ behaviors
3 proof that the M positions stabilize

1 unique envy-free equilibrium
2 low-quality advertisers drop out efficiently
3 monotone equilibrium strategy
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Discussion

Conclusion

Convergence should be demonstrable in dynamic position
auction models with sufficiently well-behaved static
equilibrium strategies.
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QED

Questions?

kominers@fas.harvard.edu
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