Market Design Approaches to Inequality II: Design of Affirmative Action Mechanisms

Scott Duke Kominers

Becker Friedman Institute for Research in Economics, University of Chicago

Summer School on Socioeconomic Inequality
University of Chicago
July 13, 2012
Overview

Yesterday
- Balancing Fairness, Efficiency, and Incentives

Today
- Quota-Based Mechanisms
- Minority Reserves
- Slot-Specific Priorities
The Setting

- Centralized assignment of K-12 public school seats.

- Students (i.e. their parents) are (potentially) strategic agents.

- School seats are “goods”; students have unit demand.

- Students’ priorities at schools are *exogenous*.
Basic Theory (Abdulkadiroğlu–Sönmez, 2003)

- $I \sim$ set of students
- $C \sim$ set of schools
- $P_i \sim$ preference ranking of $i \in I$ over schools (and \emptyset)
- $\Pi^c \sim$ priority ranking of $c \in C$ over students
- $q_c \sim$ total capacity of $c \in C$

A **match** μ specifies an assignment of students to schools.
 (must respect capacities $- |\mu(c)| \leq q_c$)

A **mechanism** φ assigns a match, given submitted preferences.
Basic Design Goals

- **Individual Rationality** (\(\sim\) participation)
 - No student wants to drop out (i.e. \(\mu(i)P^i\emptyset\)).

- **Elimination of Justified Envy** (\(\sim\) stability)
 - If \(i\) envies \(j\), then \(j\) has higher priority than \(i\) at \(\mu(j)\) (i.e. \(\mu(j)P^i\mu(i) \implies j\Pi^{\mu(j)}i\)).

- **Strategy-proofness**
 - Truthfulness is dominant (i.e. \(\varphi(P^i, P^{-i})P^i\varphi(\overline{P}^i, P^{-i})\)).

- **Pareto Efficiency**

- **Respect of (unambiguous) Improvements in Priority**
“No choice in school choice?” (Calsamiglia–Miralles, 2012)

Definition
A mechanism does not respect the spirit of school choice if it always assigns students to their “neighborhood schools.”

Bad News
- In a large market with binary, “neighborhood” priority and agreement as to the worst school, neither SOSM nor Boston respects the spirit of school choice.
- Natural “fixes” involve favoring already-advantaged students.

Slightly Better News
- TTC does respect the spirit of school choice (but does not help students who live in the bad neighborhood).
Use insights from matching theory to inform the design of affirmative action mechanisms.
Overview

Yesterday

- Balancing Fairness, Efficiency, and Incentives

Today

- Quota-Based Mechanisms
- Minority Reserves
- Slot-Specific Priorities
Backdrop

Affirmative Action refers to positive steps aimed at increasing the inclusion of historically excluded groups in employment, education and business. Such steps are not designed to offer preferential treatment to, or exclude from participation, any group. To the contrary, Affirmative Action policies are intended to promote access for the traditionally underrepresented through heightened outreach and efforts at inclusion.

(American Association for Affirmative Action)
“Affirmative action” means positive steps taken to increase the representation of women and minorities in areas of employment, education, and business from which they have been historically excluded. When those steps involve [...] selection on the basis of race, gender, or ethnicity [...] affirmative action generates intense controversy.

(Stanford Encyclopedia of Philosophy)
Forty years ago, as the United States experienced the civil rights movement [...] After a full generation [...] a plethora of government-enforced diversity policies have marginalized many white workers.

(Sen. James Webb, 2010)

The Civil Rights Act of 1964 gave the federal government unprecedented power over the hiring, employee relations, and customer service practices of every business in the country. The result was a massive violation of the rights of private property and contract, which are the bedrocks of free society.

While there is (heated) disagreement about the value of affirmative action; there is little disagreement about what affirmative action actually does.
While there is (heated) disagreement about the value of affirmative action; there is little disagreement about what affirmative action actually does.

But...

Popular “majority quota”-based affirmative action policies can hurt every minority student.
Extended Model (Kojima, 2012)

- \(I \sim \) set of students (each \(i \in I \) has type M or m)
- \(C \sim \) set of schools
- \(P^i \sim \) preference ranking of \(i \in I \) over schools (and \(\emptyset \))
- \(\Pi^c \sim \) priority ranking of \(c \in C \) over students
- \(q_c \sim \) total capacity of \(c \in C \); \(q^M_c \sim \) majority quota of \(c \in C \)

A **match** \(\mu \) specifies an assignment of students to schools.

- (must respect capacities – \(|\mu(c)| \leq q_c \) –
- and quotas – \(|\mu(c) \cap I_M| \leq q^M_c \))
Extended Model (Kojima, 2012)

Definition

A match is **stable** (in the presence of quotas) if

1. it is **individually rational** – $\mu(i)P^i\emptyset$ for all $i \in I$ – and
2. it is **unblocked** – if $cP^i\mu(i)$, then either
 - $|\mu(c)| = q_c$ and $j\Pi^c i$ for all $j \in \mu(c)$, or
 - $t(i) = M$, c’s majority quota is met (i.e. $|\mu(c) \cap l_M| = q_c^M$), and all $j \in (\mu(c) \cap l_M)$ have higher priority at c than i.

(This looks really complicated...)
Market Design Approaches to Inequality

Quota-Based Mechanisms

Extended Model
(Kojima, 2012)

Definition

A match is **stable** (in the presence of quotas) if

1. it is **individually rational** – \(\mu(i) \succ_P i \) for all \(i \in I \) – and
2. it is **unblocked** – if \(c \in P^i \mu(i) \), then either
 - \(|\mu(c)| = q_c \) and \(j \in \mu(c) \) for all \(j \in \mu(c) \), or
 - \(t(i) = M \), \(c \)'s majority quota is met (i.e. \(|\mu(c) \cap I_M| = q^M_c \)), and all \(j \in (\mu(c) \cap I_M) \) have higher priority at \(c \) than \(i \).

Definition

A mechanism is **stable** if it always selects stable outcomes.
Definition

A mechanism respects the spirit of quota-based affirmative action if when majority quotas are decreased ($q^M_c \rightarrow \tilde{q}^M_c < q^M_c$), minority outcomes improve.
Affirmative Action with Majority Quotas (Kojima, 2012)

Definition

A mechanism **respects the spirit of quota-based affirmative action** if when majority quotas are decreased ($q_c^M \rightarrow \tilde{q}_c^M < q_c^M$), minority outcomes improve.

Bad News

- No stable mechanism respects the spirit of quota-based affirmative action.
No stable mechanism respects the spirit of quota-based affirmative action.

\[\Pi^c_1 : i_1^M \succ i_2^M \succ i^m \succ \emptyset \]
\[\Pi^c_2 : i_2^M \succ i^m \succ i_1^M \succ \emptyset \]

\[q_{c_1} = 2; \quad q_{c_1}^M = 2 \]
\[q_{c_2} = 1; \quad q_{c_2}^M = 1 \]

\[P^{i_1^M} : c_1 \succ \emptyset \]
\[P^{i_2^M} : c_1 \succ c_2 \succ \emptyset \]
\[P^{i^m} : c_2 \succ c_1 \succ \emptyset \]
No stable mechanism respects the spirit of quota-based affirmative action.

\[
\begin{align*}
\Pi^c_1 : \ i^M_1 &\succ i^M_2 \succ i^m \succ \emptyset \\
\Pi^c_2 : \ i^M_2 &\succ i^m \succ i^M_1 \succ \emptyset \\
q_{c_1} &= 2; \quad q^M_{c_1} = 1 \\
q_{c_2} &= 1; \quad q^M_{c_2} = 1
\end{align*}
\]

\[
\begin{align*}
P^{i^M_1} : \ c_1 &\succ \emptyset \\
P^{i^M_2} : \ c_1 &\succ c_2 \succ \emptyset \\
P^{i^m} : \ c_2 &\succ c_1 \succ \emptyset
\end{align*}
\]
Affirmative Action with Majority Quotas (Kojima, 2012)

Definition

A mechanism respects the spirit of quota-based affirmative action if when majority quotas are decreased ($q^M_c \rightarrow \tilde{q}^M_c < q^M_c$), minority outcomes improve.

Bad News

- No stable mechanism respects the spirit of quota-based affirmative action.
Affirmative Action with Majority Quotas (Kojima, 2012)

Definition

A mechanism respects the spirit of quota-based affirmative action if when majority quotas are decreased \(q^M_c \rightarrow \tilde{q}^M_c < q^M_c \), minority outcomes improve.

Bad News

- No stable mechanism respects the spirit of quota-based affirmative action. (The quota outcome can be Pareto inferior!)
Affirmative Action with Majority Quotas (Kojima, 2012)

Definition
A mechanism respects the spirit of quota-based affirmative action if when majority quotas are decreased \((q^M_c \rightarrow \tilde{q}^M_c < q^M_c)\), minority outcomes improve.

Bad News
- No stable mechanism respects the spirit of quota-based affirmative action. (The quota outcome can be Pareto inferior!)
- Quotas \(\sim\) unpredictable. (They can cause Pareto improvement.)
- Similar results for \{“priority-based” affirmative action, TTC\}.
Affirmative Action with Majority Quotas (Kojima, 2012)

Definition

A mechanism respects the spirit of quota-based affirmative action if when majority quotas are decreased ($q_c^M \rightarrow \tilde{q}_c^M < q_c^M$), minority outcomes improve.

Bad News

- No stable mechanism respects the spirit of quota-based affirmative action. (The quota outcome can be Pareto inferior!)

(But wait...)
Re-examining the Example

- No stable mechanism respects the spirit of quota-based affirmative action.

\[\Pi^c_1 : i^M_1 \succ i^M_2 \succ i^m \succ \emptyset \]
\[\Pi^c_2 : i^M_2 \succ i^m \succ i^M_1 \succ \emptyset \]

\[q^c_1 = 2; \quad q^M_1 = 2 \]
\[q^c_2 = 1; \quad q^M_2 = 1 \]

\[P^{i_1^M} : c_1 \succ \emptyset \]
\[P^{i_2^M} : c_1 \succ c_2 \succ \emptyset \]
\[P^{i^m} : c_2 \succ c_1 \succ \emptyset \]
No stable mechanism respects the spirit of quota-based affirmative action.

\[\prod^{c_1} : i_1^M \succ i_2^M \succ i^m \succ \emptyset \]
\[\prod^{c_2} : i_2^M \succ i^m \succ i_1^M \succ \emptyset \]
\[q_{c_1} = 2; \quad q_{c_1}^M = 1 \]
\[q_{c_2} = 1; \quad q_{c_2}^M = 1 \]

\[P^{i_1^M} : c_1 \succ \emptyset \]
\[P^{i_2^M} : c_1 \succ c_2 \succ \emptyset \]
\[P^{i^m} : c_2 \succ c_1 \succ \emptyset \]
The reason that a quota for majority students can have adverse effects on minority students is simple. Consider a situation in which a school c is mostly desired by majorities. Then having a majority quota for c decreases the number of majority students that can be assigned to c even if there are empty seats. This, in turn, increases the competition for other schools and thus can even make the minority students worse off.

(Hafalir–Yenmez–Yıldırım, forth.)
Overview

Yesterday
- Balancing Fairness, Efficiency, and Incentives

Today
- Quota-Based Mechanisms
- Minority Reserves
- Slot-Specific Priorities
Overview

Yesterday
- Balancing Fairness, Efficiency, and Incentives

Today
- Quota-Based Mechanisms
- Minority Reserves
- Slot-Specific Priorities
The number of minority students preferring a school to another is not known a priori by the policymakers. Even most intelligent guesses of quota levels will be prone to small deviations in minority students’ realized desire to attend a particular school, which might cascade inefficiencies throughout the system. [...] Moreover, these quotas are usually set by third parties such as courts or school districts, which means that they cannot be readjusted easily if schools have empty seats.

(Hafalir–Yenmez–Yildirim, forth.)
Extended Model (Kojima, 2012)

- $I \sim$ set of students (each $i \in I$ has type M or m)
- $C \sim$ set of schools

- $P^i \sim$ preference ranking of $i \in I$ over schools (and \emptyset)

- $\Pi^c \sim$ priority ranking of $c \in C$ over students
- $q_c \sim$ total capacity of $c \in C$; $q^M_c \sim$ majority quota of $c \in C$

- A **match** μ specifies an assignment of students to schools.
 (must respect capacities – $|\mu(c)| \leq q_c$ – and quotas – $|\mu(c) \cap I_M| \leq q^M_c$)
Extended Model (Hafalir–Yenmez–Yildirim, forth.)

- $I \sim$ set of students (each $i \in I$ has type M or m)
- $C \sim$ set of schools
- $P^i \sim$ preference ranking of $i \in I$ over schools (and \emptyset)
- $\Pi^c \sim$ priority ranking of $c \in C$ over students
- $q_c \sim$ total capacity of $c \in C$; $r^m_c \sim$ minority reserve of $c \in C$

A match μ specifies an assignment of students to schools. (must respect capacities $|\mu(c)| \leq q_c$ – and reserves)
Definition

A match is **stable** (in the presence of reserves) if

1. it is **individually rational** and
2. it is **unblocked** – if \(cP_i \mu(i) \), then \(|\mu(c)| = q_c \) and either
 - \(t(i) = m \) and all \(j \in \mu(c) \) have higher priority than \(i \),
 - \(t(i) = M \), \(c \)'s reserved slots are full, and all \(j \in \mu(c) \) have higher priority at \(c \) than \(i \), or
 - \(t(i) = M \), \(c \)'s reserved slots are not full, and all \(j \in (\mu(c) \cap l_M) \) have higher priority at \(c \) than \(i \).
Minority Reserves “Work” (Hafalir–Yenmez–Yildirim, forth.)

1. For any match μ stable under quotas q^M, there exists a match stable under reserves $r^m = q - q^M$ that Pareto improves on μ.

2. Minority students never (Pareto) prefer the SOSM without affirmative action to the SOSM with minority reserves.

3. Under natural conditions, minority students (Pareto) prefer SOSM with reserves to the SOSM without affirmative action.

4. Similar results hold for “TTC with minority reserves.”
Reserves improve minority welfare (but can hurt majorities).

SOSM with minority reserves “significantly” Pareto dominates SOSM with majority quotas (for all students).

Quota-based mechanism outcomes are sensitive to quota size.

Students on average prefer TTC to SOSM for all affirmative action policies.
Related Approaches

- **Regional Quotas** (Kamada–Kojima, 2011)
- **“Complex Constraints”** (Westkamp, 2012)
- **Slot-Specific Priorities** (K.–Sönmez, 2012)
Overview

Yesterday
- Balancing Fairness, Efficiency, and Incentives

Today
- Quota-Based Mechanisms
- Minority Reserves
- Slot-Specific Priorities
Overview

Yesterday

- Balancing Fairness, Efficiency, and Incentives

Today

- Quota-Based Mechanisms
- Minority Reserves
- Slot-Specific Priorities
Last component of the talk—current/ongoing research.
Last component of the talk—current/ongoing research.

(Please mind the notation.)
So far...

Theory \longrightarrow Practice \longrightarrow Evaluation
Meanwhile...

Theory → Practice → Evaluation
Now...

Theory \rightarrow Practice \rightarrow Evaluation
Now...

Theory ← Evaluation
Socioeconomic Affirmative Action in Chicago

The Setting:
- Students ↔ Elite Public High Schools

The Problem:
- 15% of slots are reserved for each class ($t \in \{4, 3, 2, 1\}$).
 ⇒ Priorities vary across slots.

Ad Hoc Solution:
- Divide each school into (five) sub-schools;
Thought Experiment

Chicago School Choice:
Test scores \Rightarrow global priority π; some slots have minority reserves.

$$S^0 : \{4, 3, 2, 1\}$$
$$S^4 : 4 \succ \{3, 2, 1\}$$
$$S^3 : 3 \succ \{4, 2, 1\}$$
$$S^2 : 2 \succ \{4, 3, 1\}$$
$$S^1 : 1 \succ \{4, 3, 2\}$$

Facts
- Minorities (e.g., Tier 1) have systematically low test scores.
- 16,372 students compete for 4,270 elite high school slots.
Thought Experiment

Chicago School Choice:
Test scores \Rightarrow global priority π; some slots have minority reserves.

$S^0 : \{4, 3, 2, 1\}$
$S^4 : 4 \succ \{3, 2, 1\}$
$S^3 : 3 \succ \{4, 2, 1\}$
$S^2 : 2 \succ \{4, 3, 1\}$
$S^1 : 1 \succ \{4, 3, 2\}$

Facts

- Minorities (e.g., Tier 1) have systematically low test scores.
- 16,372 students compete for 4,270 elite high school slots.
Impact of Chicago Slot-Precedence Order (I)

Simulation confirms our intuition:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

- Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th>Current Mechanism</th>
<th>Counterfactual</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^o : {4, 3, 2, 1}$</td>
<td>$S^4 : 4 \succ {3, 2, 1}$</td>
</tr>
<tr>
<td>$S^4 : 4 \succ {3, 2, 1}$</td>
<td>$S^3 : 3 \succ {4, 2, 1}$</td>
</tr>
<tr>
<td>$S^3 : 3 \succ {4, 2, 1}$</td>
<td>$S^2 : 2 \succ {4, 3, 1}$</td>
</tr>
<tr>
<td>$S^2 : 2 \succ {4, 3, 1}$</td>
<td>$S^1 : 1 \succ {4, 3, 2}$</td>
</tr>
<tr>
<td>$S^1 : 1 \succ {4, 3, 2}$</td>
<td>$S^o : {4, 3, 2, 1}$</td>
</tr>
</tbody>
</table>

Total changeover: 766 slots $\approx 18\%$
Simulation confirms our intuition:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

- Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Current Mechanism (Open Slots First)</th>
<th>Effect of Switching (to fill Open Slots Last)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tier 4</td>
<td>Tier 3</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>114</td>
</tr>
<tr>
<td>3</td>
<td>87</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>210</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>121</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>655</td>
<td>412</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>92</td>
<td>129</td>
</tr>
<tr>
<td>TOT</td>
<td>1561</td>
<td>1113</td>
</tr>
</tbody>
</table>
Impact of Chicago Slot-Precedence Order (III)

Simulation confirms our intuition:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

- Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th>Tier 4</th>
<th>Tier 3</th>
<th>Tier 2</th>
<th>Tier 1</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135</td>
<td>53</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>138</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>94</td>
<td>121</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>102</td>
<td>108</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>230</td>
<td>98</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>146</td>
<td>54</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>684</td>
<td>449</td>
<td>253</td>
<td>244</td>
</tr>
<tr>
<td>8</td>
<td>93</td>
<td>54</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>65</td>
<td>134</td>
<td>109</td>
<td>97</td>
</tr>
</tbody>
</table>

“Reserves” converted into “Quotas”
Simulation confirms our intuition:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

- Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Tier 4</th>
<th>Tier 3</th>
<th>Tier 2</th>
<th>Tier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefer Actual</td>
<td>62</td>
<td>50</td>
<td>108</td>
<td>175</td>
</tr>
<tr>
<td>Indifferent</td>
<td>3748</td>
<td>4287</td>
<td>4092</td>
<td>3474</td>
</tr>
<tr>
<td>Prefer Counterfactual</td>
<td>225</td>
<td>108</td>
<td>43</td>
<td>0</td>
</tr>
</tbody>
</table>

Tier 1 unambiguously prefers the current mechanism.
Socioeconomic Affirmative Action in Chicago

The Setting:
- Students ↔ Elite Public High Schools

The Problem:
- 15% of slots are reserved for each class ($t \in \{4, 3, 2, 1\}$).
 ⇒ Priorities vary across slots.

Ad Hoc Solution:
- Divide each school into (five) sub-schools;
Neighborhood Priority in Boston

The Setting:
- Students ↔ K–12 Public Schools

The Problem:
- 50% of slots give “walk-zone priority.”
- Priorities vary across slots.

Ad Hoc Solution:
- Divide each school into (two) sub-schools;
Side-by-Side Comparison

<table>
<thead>
<tr>
<th>Chicago</th>
<th>Boston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Walk-Zone</td>
</tr>
<tr>
<td>Reserved</td>
<td>Open</td>
</tr>
</tbody>
</table>
Cadet–Branch Matching

The Setting:
- US Military Cadets ↔ Branches of Service

The Problem:
- To increase retention, allow “bidding” for bottom 25% of slots.
⇒ Priorities vary across slots.

Ad Hoc Solution:
- Divide each branch into (two) sub-branches;
Matching with Slot-Specific Priorities (K.–Sönmez, 2012)

- Affirmative Action in Chicago
- Neighborhood Priority in Boston
- Cadet–Branch Matching

Problem:
Priorities vary across slots.
Matching with Slot-Specific Priorities (K.–Sönmez, 2012)

- Affirmative Action in Chicago
- Neighborhood Priority in Boston
- Cadet–Branch Matching

Problem:

Priorities vary across slots.

Now

A general and unified framework for these applications in which:

- Key substitutability conditions do not hold.
- Agent-optimal stable outcomes may not exist.
- The cumulative offer mechanism is nevertheless *stable*, *strategy-proof*, and *improvement-respecting*.
Agents have preferences over contracts with branches.
Model (Informal)

- **Agents** have preferences over *contracts* with *branches*.
- Each branch has *slots* which can be assigned contracts.
Model (Informal)

- *Agents* have preferences over *contracts* with *branches*.

- Each branch has *slots* which can be assigned contracts.

- Each slot
 - has its own priority order, and
 - can hold at most one contract.
Model (Informal)

- *Agents* have preferences over *contracts* with *branches*.
- Each branch has *slots* which can be assigned contracts.
- Each slot
 - has its own priority order, and
 - can hold at most one contract.
- Slots are filled sequentially, according to *precedence order*.
Set I of agents; set B of branches.
Set $X \subseteq I \times B \times T$ of contracts.
Model (Formal)

- Set I of agents; set B of branches.
- Set $X \subseteq I \times B \times T$ of contracts.
- $P^i \sim$ preferences of i over $X_i \equiv \{x \in X : i(x) = i\}$.
 - Choice C^i defined by maximization.
Set I of agents; set B of branches.

Set $X \subseteq I \times B \times T$ of contracts.

$P^i \sim$ preferences of i over $X_i \equiv \{x \in X : i(x) = i\}$.

Choice C^i defined by maximization.

Set S^b of slots at branch b.

Order of slot-precedence \succ^b over S^b.
Set I of agents; set B of branches.

Set $X \subseteq I \times B \times T$ of contracts.

$P_i \sim$ preferences of i over $X_i \equiv \{x \in X : i(x) = i\}$.

Choice C^i defined by maximization.

Set S^b of slots at branch b.

Order of slot-precedence \triangleright^b over S^b.

$\Pi^s \sim$ priorities of $s \in S^b$ over $X_b \equiv \{x \in X : b(x) = b\}$.

Choice C^b defined by \triangleright^b-sequential maximization.
\succ^b-sequential Maximization: An Example

\[\prod_{s_1}^{s_1} : y \succ x \succ z \succ \emptyset \]
\[\prod_{s_2}^{s_2} : x \succ \emptyset \]
\triangleright^b-sequential Maximization: An Example

\[\Pi_{s_1}^b : y \succ x \succ z \succ \emptyset \]

\[\Pi_{s_2}^b : x \succ \emptyset \]

\[C^b(\{x, z\}) = \{x\} \]
\(\succ^{b}_{s} \)-sequential Maximization: An Example

\[
\Pi^{s_{1}}_{b} : y \succ x \succ z \succ \emptyset
\]
\[
\Pi^{s_{2}}_{b} : x \succ \emptyset
\]

\[
C^{b}(\{x, z\}) = \{x\} \quad C^{b}(\{x, y, z\}) = \{y, x\}
\]
Embedded Models

- **“Classical” School Choice**
 - Abdulkadiroğlu–Pathak–Roth (2005; 2009);

- **Affirmative Action in School Choice**
 - Quotas ~ Abdulkadiroğlu–Sönmez (2003);
 Abdulkadiroğlu (2005); Kojima (2012) . . .
 - Reserves ~ Hafalir–Yenmez–Yıldırım (forth.)

- **Cadet–Branch Matching**
 - Sönmez–Switzer (2011); Sönmez (2011)
Solution Concept

Definition

An outcome $Y \subseteq X$ is **stable** if it is

1. **Individually Rational:**
 - $C^i(Y) = Y_i$ for all $i \in I$;
 - $C^b(Y) = Y_b$ for all $b \in B$.

2. **Unblocked:** There does not exist a nonempty **blocking set** $Z \not\subseteq Y$ such that
 - $Z_i \subseteq C^i(Y \cup Z)$ for all $i \in i(Z)$;
 - $Z_b \subseteq C^b(Y \cup Z)$ for all $b \in b(Z)$.
The Cumulative Offer Process (I)

Step 1

1. One agent “proposes” her first-choice contract, x.
2. $A_{b}^{b(x)} = \{x\}$; $A_{b}^{b} \equiv \emptyset$ for $b \neq b(x)$.
3. Each branch b “holds” $C^{b}(A_{2}^{b})$.
 - I.e. if x is acceptable to some $s \in S^{b(x)}$, then $b(x)$ holds x.

4. Some agent for whom no contract is held proposes a contract y which has not yet been rejected.
5. $A_{b}^{b(y)}_{\ell+1} = A_{b}^{b(y)}_{\ell} \cup \{y\}$; $A_{b}^{b(y)}_{\ell+1} \equiv A_{b}^{b(y)}_{\ell}$ for $b \neq b(y)$.
6. Each branch b “holds” $C^{b}(A_{\ell+1}^{b})$.

1. Scott Duke Kominers
2. July 13, 2012
The Cumulative Offer Process (I)

Step 1
1. One agent “proposes” her first-choice contract, x.
2. $A^{b(x)}_2 = \{x\}$; $A^b_2 \equiv \emptyset$ for $b \neq b(x)$.
3. Each branch b “holds” $C^b(A^b_2)$.
 - i.e. if x is acceptable to some $s \in S^{b(x)}$, then $b(x)$ holds x.

Step $\ell \geq 2$
1. Some agent for whom no contract is held proposes a contract y which has not yet been rejected.
2. $A^{b(y)}_{\ell+1} = A^{b(y)}_{\ell} \cup \{y\}$; $A^{b}_{\ell+1} \equiv A^{b}_{\ell}$ for $b \neq b(y)$.
3. Each branch b holds $C^b(A^b_{\ell+1})$.
The Cumulative Offer Process (II)

Definition

The **cumulative offer mechanism** Φ_Π imposes the outcome of the cumulative offer process under priorities Π and submitted preferences.
Central Result

Theorem

The cumulative offer mechanism Φ_Π is stable and strategy-proof.
Central Result

Theorem

The cumulative offer mechanism Φ_Π *is stable and strategy-proof.*

(Observation: This *looks* like a standard result.)
Opposition of Agents’ Interests

Example

1. \(I = \{i, j, k\}; B = \{b\}; S^b = \{s^1_b, s^2_b\}; X = \{i_1, i_2, j_1, j_2, k_1, k_2\} \).

 \[
 P^i : i_1 \succ i_2 \succ \emptyset \\
 P^j : j_1 \succ j_2 \succ \emptyset \\
 P^k : k_1 \succ k_2 \succ \emptyset \\
 \Pi^s_1 : i_2 \succ j_2 \succ k_2 \succ i_1 \succ j_1 \succ k_1 \succ \emptyset \\
 \Pi^s_2 : i_1 \succ i_2 \succ j_1 \succ j_2 \succ k_1 \succ k_2 \succ \emptyset
 \]

2. Stable outcomes: \(Y \equiv \{j_2, i_1\} \) and \(Y' \equiv \{i_2, j_1\} \).

3. \(i \) prefers \(Y \); \(j \) prefers \(Y' \).
Our Approach

Theorem

The cumulative offer mechanism Φ_Π is stable and strategy-proof.

Proof Strategy

1. Construct associated *one-to-one* agent–slot matching market.
 - “Slot-stable” outcomes induce stable outcomes (by projection).

2. Show that the cumulative offer process corresponds to the agent-optimal slot-stable mechanism in the agent–slot market.
 1. Slots’ contracts improve during the cumulative offer process.
 2. The cumulative offer process outcome \sim slot-stable.
 3. ... and agent-optimal in the agent–slot market.
Completing the Proof

Theorem

The cumulative offer process outcome corresponds to the outcome of the agent-optimal slot-stable mechanism in the agent–slot market.
Completing the Proof

Theorem

The cumulative offer process outcome corresponds to the outcome of the agent-optimal slot-stable mechanism in the agent–slot market.

Corollary

This implies that the proposal order does not affect the outcome.
Completing the Proof

Theorem
The cumulative offer process outcome corresponds to the outcome of the agent-optimal slot-stable mechanism in the agent–slot market.

Corollary
This implies that the proposal order does not affect the outcome.

“Corollary” (aka Central Theorem)
The cumulative offer mechanism Φ_Π is stable and strategy-proof.
Additional Properties of Φ_Π (I)

Recall: Agent-optimal stable outcomes may not exist.
Recall: Agent-optimal stable outcomes may not exist.

Theorem

If an agent-optimal stable outcome exists, then Φ_Π selects it.
Additional Properties of \(\Phi_\Pi \) (I)

Theorem

If an agent-optimal stable outcome exists, then \(\Phi_\Pi \) selects it.

Proof

- More generally: No stable outcome \(Z \) can Pareto dominate the cumulative offer process outcome \(Y \).
- To see this, we consider alternative proposal order in which
 1. all agents in \(i(Z) \) who wish to propose contracts weakly preferred to those in \(Z \) have the opportunity to propose contracts before any agents in \(I \setminus i(Z) \) do, and
 2. all agents in \(i(Z) \) who wish to propose contracts *not* weakly preferred to those in \(Z \) are not allowed to propose unless no agents in \(I \setminus i(Z) \) wish to propose contracts.
Additional Properties of Φ_Π (II)

Definition

$\bar{\Pi}$ is an unambiguous improvement over priority profile Π for $i \in I$ if $\bar{\Pi}$ is obtained from Π by raising the priorities of some of i’s contracts (at some slots).
Definition

$\bar{\Pi}$ is an unambiguous improvement over priority profile Π for $i \in I$ if $\bar{\Pi}$ is obtained from Π by raising the priorities of some of i’s contracts (at some slots).

Theorem

Φ_{Π} respects unambiguous improvements in agent priority.
Additional Properties of Φ_Π (II)

Definition

$\tilde{\Pi}$ is an unambiguous improvement over priority profile Π for $i \in I$ if $\tilde{\Pi}$ is obtained from Π by raising the priorities of some of i’s contracts (at some slots).

Theorem

Φ_Π respects unambiguous improvements in agent priority.

Proof

- Once again, we consider an alternative proposal order: i proposes contracts only when no other agent is able to propose.
- Under this order i is always the last agent to propose.
- Last contract proposed facing $\tilde{\Pi}$ also proposed facing Π.
Summary of Results

Theorem

The cumulative offer mechanism Φ_Π

1. is stable and strategy-proof,
2. is independent of proposal order,
3. selects agent-optimal stable outcomes when they exist, and
4. respects unambiguous improvements in agent priority.
Summary of Results

Theorem

The cumulative offer mechanism Φ_Π

1. is stable and strategy-proof,
2. is independent of proposal order,
3. selects agent-optimal stable outcomes when they exist, and
4. respects unambiguous improvements in agent priority.

Further Applications

- We can re-derive prior results on quotas vs. reserves.
- Unbiased mechanism for Chicago school choice program.
- Impact of slot-precedence in cadet–branch matching.
Thought Experiment: Revisited

Chicago School Choice:
Test scores \Rightarrow global priority π; some slots have minority reserves.

- $S^\circ : \{4, 3, 2, 1\}
- S^4 : 4 \succ \{3, 2, 1\}
- S^3 : 3 \succ \{4, 2, 1\}
- S^2 : 2 \succ \{4, 3, 1\}
- S^1 : 1 \succ \{4, 3, 2\}
- S^\circ : \{4, 3, 2, 1\}

Facts
- Minorities (e.g., tier 1) have systematically low test scores.
- 16,372 students compete for 4,270 elite high school slots.
Thought Experiment: Revisited

Theory gives no clear answer:

- \(l = \{M, m_1, m_2, m_3\}; \ B = \{b, b'\}. \)

\[
\begin{align*}
P^M : b' &\succ b \succ \emptyset \quad P^{m_1} : b' &\succ b \succ \emptyset \quad P^{m_2} : b' &\succ \emptyset \quad P^{m_3} : b &\succ \emptyset.
\end{align*}
\]

Test scores \(\Rightarrow \) global priority order

- \(\pi : m_1 \succ M \succ m_2 \succ m_3 \succ \emptyset. \)

- \(\Pi^s_{b'} : m_1 \succ M \succ m_2 \succ m_3 \succ \emptyset \)

Option 1:

- \(\Pi^s_{b'} : m_1 \succ m_2 \succ m_3 \succ M \succ \emptyset \)
- \(\Pi^s_{b'} : m_1 \succ M \succ m_2 \succ m_3 \succ \emptyset \)

Option 2:

- \(\Pi^s_{b'} : m_1 \succ M \succ m_2 \succ m_3 \succ \emptyset \)
- \(\Pi^s_{b'} : m_1 \succ m_2 \succ m_3 \succ M \succ \emptyset \)
Impact of Chicago Slot-Precedence Order (I)

Simulation confirms our intuition:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

- Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th>Current Mechanism:</th>
<th>Counterfactual:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^0: {4, 3, 2, 1}$</td>
<td>$S^4: 4 \succ {3, 2, 1}$</td>
</tr>
<tr>
<td>$S^4: 4 \succ {3, 2, 1}$</td>
<td>$S^3: 3 \succ {4, 2, 1}$</td>
</tr>
<tr>
<td>$S^3: 3 \succ {4, 2, 1}$</td>
<td>$S^2: 2 \succ {4, 3, 1}$</td>
</tr>
<tr>
<td>$S^2: 2 \succ {4, 3, 1}$</td>
<td>$S^1: 1 \succ {4, 3, 2}$</td>
</tr>
<tr>
<td>$S^1: 1 \succ {4, 3, 2}$</td>
<td>$S^0: {4, 3, 2, 1}$</td>
</tr>
</tbody>
</table>

Total changeover: 766 slots
≈ 18%
Simulation confirms our intuition:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

- Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th></th>
<th>Tier 4</th>
<th>Tier 3</th>
<th>Tier 2</th>
<th>Tier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105</td>
<td>71</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>114</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>87</td>
<td>78</td>
<td>86</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
<td>93</td>
<td>80</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>210</td>
<td>100</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>121</td>
<td>69</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>655</td>
<td>412</td>
<td>291</td>
<td>272</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>47</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>92</td>
<td>129</td>
<td>90</td>
<td>94</td>
</tr>
<tr>
<td>TOT</td>
<td>1561</td>
<td>1113</td>
<td>823</td>
<td>773</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tier 4</th>
<th>Tier 3</th>
<th>Tier 2</th>
<th>Tier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>−18</td>
<td>−8</td>
<td>−4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>24</td>
<td>−14</td>
<td>−10</td>
</tr>
<tr>
<td>3</td>
<td>−36</td>
<td>16</td>
<td>35</td>
<td>−15</td>
</tr>
<tr>
<td>4</td>
<td>−21</td>
<td>9</td>
<td>28</td>
<td>−16</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>−2</td>
<td>−9</td>
<td>−9</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>−15</td>
<td>−3</td>
<td>−7</td>
</tr>
<tr>
<td>7</td>
<td>29</td>
<td>37</td>
<td>−38</td>
<td>−28</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>7</td>
<td>−5</td>
<td>−5</td>
</tr>
<tr>
<td>9</td>
<td>−27</td>
<td>5</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>63</td>
<td>5</td>
<td>−91</td>
</tr>
</tbody>
</table>
Simulation confirms our intuition:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th>Counterfactual Mechanism (Open Slots Last)</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 4 Tier 3 Tier 2 Tier 1</td>
<td>Reserved</td>
</tr>
<tr>
<td>1 135 53 39 39</td>
<td>39</td>
</tr>
<tr>
<td>2 95 138 56 50</td>
<td>50</td>
</tr>
<tr>
<td>3 51 94 121 58</td>
<td>48</td>
</tr>
<tr>
<td>4 85 102 108 52</td>
<td>52</td>
</tr>
<tr>
<td>5 230 98 69 69</td>
<td>69</td>
</tr>
<tr>
<td>6 146 54 42 42</td>
<td>42</td>
</tr>
<tr>
<td>7 684 449 253 244</td>
<td>244</td>
</tr>
<tr>
<td>8 93 54 31 31</td>
<td>31</td>
</tr>
<tr>
<td>9 65 134 109 97</td>
<td>60</td>
</tr>
</tbody>
</table>

“Reserves” converted into “Quotas”
An Engineering Problem

What would an “unbiased” mechanism for the Chicago school choice program look like?
Simulation yields an (initially) surprising result:
Treating the Chicago school choice mechanism as (fully) strategy-proof, we can compute counterfactual assignments.

- Recall: 16,372 students; 4,270 elite high school slots.

<table>
<thead>
<tr>
<th></th>
<th>Counterfactual Mechanism (Open Slots Last)</th>
<th>Effect of Switching (to Unbiased Mechanism)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tier 4</td>
<td>Tier 3</td>
</tr>
<tr>
<td>1</td>
<td>135</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>138</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>230</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>146</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>684</td>
<td>449</td>
</tr>
<tr>
<td>8</td>
<td>93</td>
<td>54</td>
</tr>
<tr>
<td>9</td>
<td>65</td>
<td>134</td>
</tr>
<tr>
<td>TOT</td>
<td>1584</td>
<td>1176</td>
</tr>
</tbody>
</table>
Overview

Yesterday

- Balancing Fairness, Efficiency, and Incentives

Today

- Quota-Based Mechanisms
- Minority Reserves
- Slot-Specific Priorities
What is Market Design?

Application of economic principles and game theory to the design (or re-design) of market institutions.
Why do we care?

Balancing fairness, efficiency, and incentives can be *hard*.
How is market design related to inequality?

Effective design can reduce frictions and help ensure equal access to the benefits of the market.
Where is market design effective?

Many of our successes thus far have been in self-contained markets, with institution-driven market failures.
Who should practice market design?

Maybe you!
Who should practice market design?