Problem. For any positive integer \(k > 1 \), show that the recurrence defined by \(T_1 = t \),

\[
T_{n+1} = \frac{T_n^k}{\exp(k^n/n^k)} \quad \text{for } n > 1,
\]

converges for any real, positive \(t < \exp(\zeta(k)) \), where \(\zeta(k) = \sum_{i=1}^{\infty} \frac{1}{i^k} \).

Student, Harvard University, Cambridge, MA, 02138
C/o 8520 Burning Tree Road, Bethesda, MD, 20817
E-mail address: kominers@fas.harvard.edu