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Linear algebra is typically taught shortly after calculus. Thus, calculus-informed lin-
ear algebra problems offer an exceptional opportunity to illustrate interactions between
different branches of undergraduate mathematics.

For example, we consider the following problem which (as we shall see) has its roots in
calculus:

Problem. Find a 4×4, nonsingular, nonconstant matrix function N(x) which satisfies the
functional equation

N(2x)− (N(x))8 = 0.

At first glance, this problem appears to be quite difficult. Beyond the likely difficulty
of finding such a matrix N(x), it is not even immediately clear how one would prove that
a matrix N(x) is actually a solution without a great deal of matrix algebra. However, this
problem is not hard as it seems. In fact, it is one of a large class of problems which can be
solved via a surprising method based upon single-variable calculus.

In this JOURNAL, Khan [2] used nilpotent matrices and Taylor series to find matrix
functions satisfying the exponential functional equation, f(x + y) = f(x) · f(y). His
method is an example of a much more general theory of matric power series due to Weyr
[4], which can be used to find matrix functions satisfying a variety of functional equations.
(Rinehart [3] gives an excellent survey of Weyr’s approach. Higham [1, ch. 4] gives a more
comprehensive account, as well as further applications.)

We say that a set of real-valued functions {fi(x)}ni=1 ⊂ C∞(R) satisfies an analytic
functional equation E if there is an analytic function E such that

E(f1, . . . , fn)(x) = 0

identically for all x ∈ R. For example, the trigonometric functions f1 = sin(x) and
f2 = cos(x) satisfy the analytic functional equation

E(f1, f2) = f2
1 + f2

2 − 1 ≡ 0.

Now, for any set of real-valued functions {fi(x)}ni=1 ⊂ C∞(R) satisfying the analytic
functional equation E, we will find a set of associated matrix functions {Ai(x)}ni=1 satis-
fying the same functional equation E.

Approximating each fi by its Taylor expansion about the origin, we obtain

fi(x) = fi(0)x0 +
f

(1)
i (0)x

1!
+

f
(2)
i (0)x2

2!
+ · · ·+ f

(k)
i (0)xk

k!
+ · · · ,
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where f
(j)
i is the j-th derivative of the function fi. We let A be any nilpotent matrix with

index of nilpotence k and then take

Ai(x) := fi(Ax) = fi(0)I +
f

(1)
i (0)Ax

1!
+

f
(2)
i (0)A2x2

2!
+ · · ·

= fi(0)I +
f

(1)
i (0)Ax

1!
+

f
(2)
i (0)A2x2

2!
+ · · ·+ f

(k−1)
i (0)Ak−1xk−1

(k − 1)!
.

If the functions {fi(x)}ni=1 satisfy the analytic functional equation E, then the Taylor series
of the fi do as well, as E is continuous. Thus, the matrix functions {Ai(x)}ni=1 found from
the Taylor series of the fi must also satisfy the functionl equation E.

We begin with a simple example. For aesthetic reasons, we will work with the nilpotent
matrix

A =


0 0 12 0
0 0 0 12
6 6 0 0
−6 −6 0 0

 ,

obtained by conjugating the Jordan-form nilpotent matrix
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


by the matrix 

0 1 0 0
0 0 0 12
−72 −72 0 0
0 0 −864 −864

 .

We obtain from the Taylor series for f1 = sin(x) and f2 = cos(x) the matrices

A1(x) = f1(Ax) = Ax− A3x3

6
=


0 0 12x− 144x3 −144x3

0 0 144x3 144x3 + 12x
6x 6x 0 0
−6x −6x 0 0

 ,

A2(x) = f2(Ax) = I − A2x2

2
=


1− 36x2 −36x2 0 0
36x2 36x2 + 1 0 0
0 0 1− 36x2 −36x2

0 0 36x2 36x2 + 1

 .

We have immediately from this construction that A1(x) and A2(x) commute. More
interestingly, these matrix functions satisfy the trigonometric functional equations. We
therefore find the familiar identity

(A1(x))2 + (A2(x))2 = I.

Similarly, we obtain analogues of the “double-angle” formulas,

A1(2x) = 2A1(x)A2(x),

A2(2x) = (A2(x))2 − (A1(x))2 = 2(A2(x))2 − I.
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Although the matrices found via this method need not be nonsingular, in general, the
matrix A2(x) is, as A2(x) = I − A2x2

2 and A2x2

2 has trace 0. We can also invert A2(x)
and obtain an analogue of the secant-tangent trigonometric square identity:

(A−1
2 (x))2 = I + (A1(x)A−1

2 (x))2.

As a second example of our approach, let us solve the problem stated at the beginning of
this Capsule. We seek a 4× 4, nonconstant matrix function N(x) satisfying the functional
equation

N(2x)− (N(x))8 = 0.

As before, we consider the associated functional equation in nonconstant C∞(R) functions,

g(2x)− (g(x))8 = 0.

Now, this condition immediately implies that either g(0) = 0 or (g(0))7 = 1. In the former
case, g would vanish to some order k > 0 at the origin, and we would then have k = 8k
from the functional equation—impossible. Thus, g(0) is a seventh root of unity, and we
may require g(0) = 1 by considering the function g/g(0) if necessary.

Then, we write g(x) = 1 + gnxn + · · · for some minimal n > 0 and gn 6= 0. By the
functional equation, we must have

1 + 2ngnxn + · · · = g(2x) = (g(x))8 = (1 + gnxn + · · · )8 = 1 + 8gnxn + · · · .

Equating coefficients on both sides then gives that n = 3; we may also assume that g3 = 1
by replacing x by x/ 3

√
gn. If we now write g(x) = 1 + x3 + gmxm + · · · , for m > 3

minimal and gm 6= 0, we obtain from a further application of the functional equation that
m = 6. Thus, for some g6 6= 0,

g(x) = 1 + x3 + g6x
6 + · · · .

Since the matrix A chosen above has index of nilpotence 4 < 6, we have found sufficient
information to compute the matrix N(x) := g(Ax). Indeed, we have

N(x) = g(Ax) = I + A3x3 + g6A
6x6 + · · · = I + A3x3

=


1 0 864x3 864x3

0 1 −864x3 −864x3

0 0 1 0
0 0 0 1

 .

It is immediate from this construction that N(x) satisfies the desired functional equation.
Unwinding our technique, we obtain a general approach to problems which ask for

matrices satisfying analytic functional equations. Specifically, one can approach a problem
asking for matrices {Ai(x)}ni=1 satisfying an analytic equation

E(A1(x), . . . , An(x)) ≡ 0

by trying to solve the equation E for real-valued functions {fi(x)}ni=1. If any of these
solutions {fi(x)}ni=1 satisfy fi ∈ C∞(R) for all i, then it is possible to find matrix solutions
{Ai(x)}ni=1 of any dimension n by applying our method with an n× n nilpotent matrix.

This approach demonstrates a surprising connection between calculus and linear alge-
bra. It could also serve as an elementary introduction to the theory of functions of matrices.
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