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Abstract

In this note, we demonstrate that the problem of “many-to-one matching with (strict)
preferences over colleagues” is actually more difficult than the classical many-to-one
matching problem, “matching without preferences over colleagues.” We give an ex-
plicit reduction of any problem of the latter type to a problem of the former type. This
construction leads to the first algorithm which finds all stable matchings in the setting
of “matching without preferences over colleagues,” for any set of preferences. Our
construction directly extends to generalized matching settings.
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1. Introduction

The literature on two-sided matching markets has grown substantially in recent
years following high-profile applications of matching in labor markets and school
choice programs.2 Most practical applications of matching mechanisms require sta-
ble matchings, matchings for which no set of agents (strictly) prefers to match among
itself than to be matched to its assigned set of partners. However, methods for finding
the set of all stable matchings have proven difficult to obtain, even in classical matching
settings.3
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1Baker Library 420C, Harvard Business School, Soldiers Field, Boston, MA 02163
2See Roth and Sotomayor (1990) for a survey of the pre-1990 theory of matching, and see Roth (2008)

for an updated account, as well as references for historical and recent applications of matching.
3Three notable exceptions are the algorithms of McVitie and Wilson (1971), Irving and Leather (1986),

and Martı́nez et al. (2004). The first two of these algorithms find all stable matchings in a one-to-one
matching market; the last algorithm finds all stable matchings in a classical many-to-many matching market
when agents’ preferences are substitutable.

Instead of seeking the complete set of stable matchings, much recent work has sought “compromises,”
stable matchings which fairly balance the concerns of both sides of the market. Teo and Sethuraman (1998),
Fleiner (2003), Sethuraman et al. (2006), Klaus and Klijn (2006), and Schwarz and Yenmez (2008) proved
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In this note, we give the first algorithm for finding the complete set of stable match-
ings in any (classical) many-to-one matching market.4 This algorithm follows from
a reduction of the classical matching problem to “matching with (strict) preferences
over colleagues,” a nonclassical matching problem which has recently been solved by
Echenique and Yenmez (2007).

1.1. Our Results

In their work, Echenique and Yenmez (2007) informally claimed the problem of
finding stable matchings in the setting of “matching with (strict) preferences over col-
leagues,” to be somehow more difficult than the problem of finding stable matchings in
the classical many-to-one matching setting.5

We demonstrate in Section 3 that this proposition is true: every classical many-to-
one matching problem may be solved in the setting of Echenique and Yenmez (2007).
This result is surprising because the addition of strict preferences over colleagues to a
classical matching problem amounts to breaking a large number of indifferences,6 and
such tie-breaking can affect the set of stable matchings.7 Our methods are constructive
and therefore give rise to an algorithm, discussed in Section 3.3, for finding all stable
many-to-one matchings in the classical setting. This construction is nontrivial–as we
discuss in Section 4, the relationship between the two matching settings is more subtle
than Echenique and Yenmez (2007) appear to have observed. All of our results extend
to generalized matching settings; in particular, they may be applied in the setting of
many-to-one matching with contracts.

1.2. Survey of the Related Literature

In their seminal paper on two-sided matching, Gale and Shapley (1962) construc-
tively demonstrated that stable matchings always exist in one-to-one and many-to-one
(respectively, “marriage” and “college admissions”) matching markets when agents
have strict, responsive preferences. However, their algorithm only finds extremal match-
ings, those matchings which are most preferred by agents on one side of the market.

Extremal matchings may not be reasonable outcomes for practical mechanism de-
sign. Moreover, preferences may not be responsive in practice, even in otherwise clas-
sical matching problems. For these problems and for more general matching settings
such as those of “matching with contracts” (Hatfield and Milgrom (2005)), the set

the existence of median stable matchings in a variety of settings; these matchings represent one natural
realization of the idea of a compromise matching.

4We allow general preferences. In particular, we do not require that participants in the market have
responsive preferences.

5Of course, these two problems coincide in the setting of one-to-one matching, since there no agent has
colleagues.

6In the original problem, each student s is indifferent between attending college c with colleague set S1

and attending college c with colleague set S2 6= S1. Since the framework of Echenique and Yenmez (2007)
requires strict preferences, student s must be assigned a strict preference over S1 and S2; thus, tie-breaking
is required.

7Abdulkadı̀roǧlu et al. (Forthcoming) discussed how tie-breaking creates “artificial stability constraints.”
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of stable matchings may be empty and may be unusually structured even when it is
nonempty.8 Thus, it is desirable to understand the complete set of stable matchings.

Departing from the prior work on many-to-one matching,9 Dutta and Massó (1997)
introduced “matching with (strict) preferences over colleagues,”10 a nonclassical many-
to-one matching model in which colleges are matched to students who have strict pref-
erences over both their assigned colleges and their student colleagues.11 They showed
that the set of core matchings in this problem is always nonempty when student pref-
erences are college-lexicographic, that is, when students care first about their colleges
and then about their colleagues within that college.12 Additionally, they showed that
the core is also nonempty in a large class of colleague-lexicographic problems with
couples. Revilla (2007) extended these results to the case of general preferences over
colleagues and introduced new conditions guaranteeing the existence of core match-
ings. In recent work, Pycia (2007) found a condition both sufficient and–in some
sense–necessary for the existence of stable matchings in the presence of both peer
effects and complementarities between agents.13

Recently, Echenique and Yenmez (2007) solved the Dutta and Massó (1997) “match-
ing with (strict) preferences over colleagues” model, obtaining an algorithm which
finds all stable matchings in this setting.14 This result was surprising, in part because
no algorithm for finding all stable matchings in the classical many-to-one matching
problem (with unrestricted preferences) was available. As we discuss in Section 3.3,
the Echenique and Yenmez (2007) algorithm plays a key role in our results. Specifi-
cally, our algorithm for finding all stable matchings in classical many-to-one matching
settings is obtained by combining our reduction (presented in Section 3) with the algo-
rithm of Echenique and Yenmez (2007).

2. Model, Notations, and Conventions

There is a set C of colleges and a set S of students. We consider two types of
college-student matching problems in this paper: matchings without and with strict

8Hatfield and Kojima (2007) have demonstrated that extremal matchings need not exist in a matching
market with contracts, even when the set of stable matchings is nonempty.

9Most work on many-to-one matching (e.g., Gale and Shapley (1962), Kelso and Crawford (1982), Roth
(1985), and Hatfield and Milgrom (2005)) assumes that agents on one side of the market only have prefer-
ences over agents (or sets of agents) on the opposite side of the market.

10We add the “strict” qualifier to the title “matching with preferences over colleagues” which has been used
in the literature, in order to emphasize the importance of strict preferences in the “matching with preferences
over colleagues” model.

11The colleagues of a student s are the students who are assigned to the same college as s.
12Dutta and Massó (1997), Revilla (2007), and Pycia (2007) actually used the language of “workers” and

“firms,” rather than that of “students” and “colleges.” However, our work is most closely related to that of
Echenique and Yenmez (2007), who phrased the many-to-one matching problem as a “college admissions”
problem. Thus, we use the college admissions language uniformly throughout.

13Dimitrov and Lazarova (2008) took this work a step further, viewing “matching with (strict) preferences
over colleagues” as a weakened model of coalition formation. They presented a generalized to a situation
in which coalition formation is allowed on both sides of the market and coalitions themselves can “match”
together.

14Kojima (2007) extended the method of Echenique and Yenmez (2007) to obtain an algorithm for finding
all stable one-to-one matchings in the presence of couple constraints.
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preferences over colleagues, respectively called classical and nonclassical matchings.15

In both types of matching problems, each college c ∈ C is assumed to have a strict,
transitive, and complete preference relation Pc over the set ℘(S) of subsets of S. In
classical matching problems, each student s ∈ S is assumed to have a strict, transitive,
and complete preference relation Ps over the set C ∪ {∅}; such a preference relation is
called a classical preference relation. By contrast, in nonclassical matching problems,
students s ∈ S have strict, transitive, and complete preference relations P̄s over the
sets (C×℘(S)s)∪{(∅, ∅)}, where ℘(S)s = {S′ ∈ ℘(S) : s ∈ S′}; these relations are
called nonclassical preference relations. For notational convenience, we write only the
individually rational component of a preference relation, so that if being unmatched
is preferable to being matched to some χ, then χ does not appear in the preference
relation.

The nonstrict part of a preference relation Pi is denoted by Ri. For a prefer-
ence relation Pc over elements of ℘(S), we define the s-restriction Pc|s of Pc to be
the preference relation on ℘(S)s induced by Pc. That is, if S1Pc · · ·PcSkPc∅, and
{j1, . . . , jk′} ⊂ {1, . . . , k} is the set of indices j for which s ∈ Sj , with j1 < · · · <
jk′ , then the preference relation Pc|s is given by Sj1 Pc|s · · · Pc|s Sjk′ .16

We say that a mapping µ supported on C ∪ S is a classical matching if

1. µ(c) ∈ ℘(S) for all c ∈ C,
2. µ(s) ∈ C ∪ {∅} for all s ∈ S, and
3. s ∈ µ(c) if and only if µ(s) = c.

Similarly, a mapping ν on C ∪ S is said to be a nonclassical matching if

1. ν(c) ∈ ℘(S) for all c ∈ C,
2. ν(s) ∈ (C × ℘(S)s) ∪ {(∅, ∅)} for all s ∈ S,
3. ν(s) = (c, ν(c)) whenever s ∈ ν(c), and
4. ν(c) = S′ whenever (c, S′) = ν(s) for some s ∈ S.

A classical preference profile (resp. nonclassical preference profile) is a collection
of preference relations {Pc}c∈C ∪{Ps}s∈S associated to a classical matching problem
(resp. a nonclassical matching problem). We treat a preference profile as a map from
S ∪ C to the appropriate set of preference relations.

For a classical matching µ and classical preference profile P , a triple (C ′, S′, µ′)
(with C ′ ⊂ C, S′ ⊂ S, and µ′ a classical matching) such that

1. C ′ ∪ S′ 6= ∅,
2. for all c ∈ C ′, µ′(c) ∈ ℘(S′),
3. for all s ∈ S′, µ′(s) ∈ C ′ ∪ {∅},
4. for all i ∈ C ′ ∪ S′, µ′(i)Riµ(i) (where Pi = P(i)), and

15Of course, there are multiple nonclassical many-to-one matching models. However, in this paper we
will only address one, the model of “matching with (strict) preferences over colleagues” introduced by Dutta
and Massó (1997) and studied by Echenique and Yenmez (2007).

16For a concrete example: if {s1, s2}Pc{s1}Pc{s2}Pc∅, then the preference relation Pc|s2 is given by
{s1, s2} Pc|s2 {s2}.
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5. for some i ∈ C ′ ∪ S′, µ′(i)Piµ(i) (where Pi = P(i)),

is called a P-blocking triple for µ. A classical matching µ is said to be stable with
respect to a classical preference profile P if there exists no P-blocking triple for µ.
Analogously, for a nonclassical matching ν and nonclassical preference profile P̄ , a
triple (C ′, S′, ν′) (with C ′ ⊂ C, S′ ⊂ S, and ν′ a nonclassical matching) is a P̄-
blocking triple for ν if

1. C ′ ∪ S′ 6= ∅,
2. for all c ∈ C ′, ν′(c) ∈ ℘(S′),
3. for all s ∈ S′, ν′(s) ∈ (C ′ × ℘(S′)s) ∪ {(∅, ∅)},
4. for all i ∈ C ′ ∪ S′, µ′(i)R̄iµ(i) (where P̄i = P̄(i)), and
5. for some i ∈ C ′ ∪ S′, µ′(i)P̄iµ(i) (where P̄i = P̄(i)).

A nonclassical matching ν is said to be stable with respect to a nonclassical preference
profile P̄ if there exists no P̄-blocking triple for ν.

3. Reducing Classical Matching to Nonclassical Matching

In this section, we show that, for any classical preference profile P , there is an
associated nonclassical preference profile P̄(P) such that the nonclassical matchings
stable with respect to P̄(P) exactly correspond to the classical matchings stable with
respect to P .

3.1. The Construction

We present an explicit construction of the nonclassical preference profile P̄(P).
In Section 3.1.1, we provide a simple demonstrative example of this construction.
We prove the correspondence between the nonclassical matchings stable with respect
to P̄(P) and the classical matchings stable with respect to P in Section 3.2 and then
revisit our example in Section 3.2.1. Then, in Section 3.3, we discuss how combining
our construction and the results of Echenique and Yenmez (2007) yields an algorithm
for finding all matchings stable with respect to P .

Construction 1. Let P be a classical preference profile. Define a nonclassical prefer-
ence profile P̄(P) by the following rules:

1. Set (P̄(P))(c) = P(c) for all c ∈ C.
2. For any s ∈ S, let Ps = P(s), and write this preference relation in the form
c1Ps · · ·PsckPs∅.17 Then, for each college cj (1 ≤ j ≤ k), set Pcj

= P(cj) and
write the preference relation Pcj

∣∣
s

as

Sj,1 Pcj

∣∣
s
· · · Pcj

∣∣
s
Sj,`j . (1)

17Here, k = k(s) is the number of colleges ci ∈ C acceptable to s. Without loss of generality, we have
assumed k ≥ 1, since if k = 0 then s does not need to be matched.
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Finally, define the preference relation P̄s = (P̄(P))(s) by

(c1, S1,1)P̄s · · · P̄s(c1, S1,`1)P̄s · · · P̄s(ck, Sk,1)P̄s · · · P̄s(ck, Sk,`k)P̄s(∅, ∅).18

(2)

Intuitively, this construction exactly aligns students’ preferences over colleagues
with colleges’ preferences over sets of students.

3.1.1. A Simple Example
To clarify Construction 1, we discuss a simple illustrative example. Suppose that

C = {c1, c2}, S = {s1, s2}, and write Pi = P(i) for i ∈ C ∪ S. Suppose further that
the preference relations Pi are given by

{s1, s2}Pc1{s1}Pc1{s2}Pc1∅, {s1}Pc2{s2}Pc2∅, c1Ps1c2Ps1∅, c2Ps2∅.

Then, if we write P̄i = (P̄(P))(i), Construction 1 gives that

{s1, s2}P̄c1{s1}P̄c1{s2}P̄c1∅, {s1}P̄c2{s2}P̄c2∅,
(c1, {s1, s2})P̄s1(c1, {s1})P̄s1(c2, {s1})P̄s1(∅, ∅), (c2, {s2})P̄s2(∅, ∅).

Following the intuition described in the previous section, we observe that, under the
preferences defined by P̄(P), a student s prefers a pair (c, S1) ∈ (C×℘(S)s)∪{(∅, ∅)}
to another pair (c, S2) ∈ (C×℘(S)s)∪{(∅, ∅)} if and only if c prefers S1 to S2. Thus,
student and college preferences over subsets of students are aligned.

3.2. The Matching Correspondence
In order to relate the stable matchings of the preference profiles P and P̄(P), we

will need a bit more terminology. We define the college projection projc((c′, S′)) of a
pair (c′, S′) ∈ C × ℘(S)s by projc((c′, S′)) = c′. For a nonclassical matching ν, we
define the classical matching µν associated to ν by

µν(c) = ν(c) (∀c ∈ C), µν(s) = projc(ν(s)) (∀s ∈ S).19

We may now state our main result.

Proposition 1. For a classical preference profile P , let P̄(P) be as defined in Con-
struction 1. A classical matching µ is stable with respect to P if and only if there is a
nonclassical matching ν stable with respect to P̄(P) such that µν ≡ µ.

Proof. For all i ∈ C ∪S, we write Pi = P(i) and P̄i = (P̄(P))(i). For the “if” direc-
tion, we consider some nonclassical matching ν stable with respect to the preference
profile P̄(P) and suppose for the sake of contradiction that µν is not stable with respect
to P . Then, there is some P-blocking triple (C ′, S′, µ′) for µν . Now, for any c ∈ C ′

18In this construction, the preference relation Ps defined by (2) is a well-defined nonclassical preference
relation for the student s. Indeed, s ∈ Sj,` for all 1 ≤ j ≤ k and 1 ≤ ` ≤ `i by the definition (1) and no
pair (cj , Sj,`) is repeated in (2) because the preference relations Pcj are well-defined.

19It is clear that this definition actually defines a classical matching µν .
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and s ∈ µ′(c), we know that µ′(c)Rcµν(c) and µ′(s)Rsµν(s).20 By the construction
of P̄s, we then have

(c, µ′(c))R̄s(µν(s), µν(µν(s))), (3)

for any c ∈ C ′ and s ∈ µ′(c). Moreover, the relationship (3) is strict for at least one
s ∈ S′, since at least one of the relationships

{µ′(c)Rcµν(c)}c∈C′ or {µ′(s)Rsµν(s)}s∈S′

is strict. But then, it follows quickly that the triple (C ′, S′, ν′) with ν′ defined by

ν′(i) =


µ′(i) i ∈ C ′,
(µ′(i), µ′(µ′(i))) i ∈ S′,
ν(i) i ∈ (C ∪ S) \ (C ′ ∪ S′),

is a P̄(P)-blocking triple for ν, contradicting the stability of ν.
For the “only if” direction, it suffices to observe that the nonclassical matching ν

defined by

ν(i) =

{
µ(i) i ∈ C,
(µ(i), µ(µ(i))) i ∈ S,

is stable with respect to P̄(P). This follows directly from the stability of µ and the
construction of P̄(P), so we omit the details.

3.2.1. Revisiting the Simple Example
We now return to the example presented in Section 3.1.1 and observe that the

unique nonclassical matching ν stable with respect to P̄(P) is given by

ν(i) =


{s1} i = c1,

{s2} i = c2,

(c1, {s1}) i = s1,

(c2, {s2}) i = s2.

This nonclassical matching ν restricts to the unique classical matching µ stable with
respect to P:

µν(i) ≡ µ(i) =


{s1} i = c1,

{s2} i = c2,

c1 i = s1,

c2 i = s2.

20Here, we use the convention that ∅ ∈ C′ if the set C′ is empty.
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3.3. Finding All Stable (Classical) Matchings

Echenique and Yenmez (2007) presented an algorithm finding all nonclassical match-
ings stable with respect to a given nonclassical preference profile P̄ . Their approach
uses a fixed-point characterization of stability–machinery which is not yet known to
exist in the setting of classical many-to-one matching.21

Our Proposition 1 shows that, in theory, it is possible to find all classical matchings
stable with respect to a classical preference profile P by applying the algorithm of
Echenique and Yenmez (2007) to P̄(P). We must note, however, that such an operation
is likely to be computationally costly. Indeed, if |P̂| denotes the length of the longest
preference relation in a preference profile P̂ , then |P̄(P)| = O(|P|2) by construction.
The size of the input data when running the Echenique and Yenmez (2007) algorithm
on P̄(P) is therefore of the same order as the running time of the deferred acceptance
algorithm run on P .22

3.4. Extensions

Our Construction 1 is essentially independent of the domains of the input pref-
erence relations. Thus, it admits simple generalizations to more complex matching
settings. Most notably, an analogous construction may be used in the Hatfield and Mil-
grom (2005) setting of matching with contracts to reduce a classical “matching with
contracts” problem to a problem of “matching with contracts and preferences over col-
leagues’ contracts.”

4. Variants of Construction 1

Although Proposition 1 shows that the problem of finding stable nonclassical match-
ings is more difficult than the problem of finding classical matchings, this relationship
is rather subtle.23 As we mentioned in Section 1, the process of constructing a non-
classical preference profile P̄ ′(P) from a classical preference profile P entails a large
amount of tie-breaking; if not executed carefully, such tie-breaking can affect the set
of stable matchings.

4.1. An Illustrative Example

For an example of the effects of indiscriminate tie-breaking, we suppose that

C = {c}, S = {s1, s2},

21Such a characterization does exist in classical one-to-one matching settings; this result is originally due
to Adachi (2000) and also arises in the one-to-one matching specialization of the results of Echenique and
Yenmez (2007).

22Unfortunately, we are unable to provide full complexity analysis of this method for finding stable clas-
sical matchings, since Echenique and Yenmez (2007) did not completely analyze the running time of their
algorithm.

23Technically, Proposition 1 only shows that the problem of finding stable nonclassical matchings is
weakly more difficult than the problem of finding classical matchings. However, it is clear that there are
nonclassical matching problems which do not correspond to classical matching problems.
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and that the classical preference profile P is given by

{s1, s2}Pc{s1}Pc∅, cPs1∅, cPs2∅,

where Pi = P(i) for all i ∈ C ∪ S. In order to construct a nonclassical preference
profile from P which respects the ordering of preferencs in P ,24 we must break one
indifference: that of s1 between the options (c, {s1, s2}) and (c, {s1}).

Applying Construction 1 to P gives the following nonclassical preference profile
P̄(P):

{s1, s2}P̄c{s1}P̄c∅, (c, {s1, s2})P̄s1(c, {s1})P̄s1(∅, ∅), (c, {s1, s2})P̄s2(∅, ∅)

(where P̄i = (P̄(P))(i)). The unique matching ν stable with respect to P̄(P) is

ν(i) =

{
{s1, s2} i = c,

(c, {s1, s2}) i ∈ {s1, s2}.

If, instead, the indifference of s1 between (c, {s1, s2}) and (c, {s1}) is broken dif-
ferently, then a new nonclassical preference profile P̄ ′(P) is obtained:

{s1, s2}P̄ ′c{s1}P̄ ′c∅, (c, {s1})P̄ ′s1(c, {s1, s2})P̄ ′s1(∅, ∅), (c, {s1, s2})P̄ ′s2(∅, ∅)

(where P̄ ′i = (P̄ ′(P))(i)). There are two matchings stable with respect to P̄ ′(P): ν
and ν′, where

ν′(i) =


{s1} i = c,

(c, {s1}) i = s1,

(∅, ∅) i = s2.

While µν is the unique matching stable with respect to P , it is clear that µν′ 6≡ µν is
not stable with respect toP . Thus, we see that P̄(P) is the only nonclassical preference
profile which both respects the preference ordering of P and yields a bijective stable
matching correspondence.

4.2. Discussion
The example just presented demonstrates that a nonclassical preference profile

P̄ ′(P) 6≡ P̄(P) constructed from a classical preference profile P may not admit a
bijective stable matching correspondence.

Nonetheless, we may obtain the reverse implication of Proposition 1 under rela-
tively intuitive conditions which are weaker than the requirement of the full form of
Construction 1. This is formalized in the following proposition.

Proposition 2. Let P be a classical preference profile, and let P̄ ′(P) be a nonclassical
preference profile such that

24It is clear that the set of stable matchings may shrink if the ordering of preferences in P is not re-
spected. However, as we show in Proposition 2, the set of stable matchings may not shrink if the ordering of
preferences in P is respected.
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1. (P̄ ′(P))(c) = P(c) for all c ∈ C,
2. if cPs∅ and S′Pc∅ for some s ∈ S, c ∈ C, and S′ ∈ ℘(S)s, then (c, S′)P̄ ′s(∅, ∅),
3. if (c1, S1)R̄′s(c2, S2) for some s ∈ S, c1, c2 ∈ C, and S1, S2 ∈ ℘(S)s, then
c1Rsc2,

where Pi = P(i) and P̄ ′i = (P̄ ′(P))(i) for all i ∈ C ∪ S. Then, if µ is a matching
stable with respect to P , the matching ν defined by

ν(i) =

{
µ(i) i ∈ C,
(µ(i), µ(µ(i))) i ∈ S,

is stable with respect to P̄ ′(P).

The proof of Proposition 2 is immediate from the fact that the preference profile
P̄ ′(P) respects the preference orderings of P . Indeed, it follows quickly from the
conditions of the proposition statement that, if (C ′, S′, ν′) is a (P̄ ′(P))-blocking triple
for ν, then (C ′, S′, µν′) is a P-blocking triple for µ.

Although Proposition 2 recovers the reverse implication of Proposition 1 under
general conditions, the forward implication of Proposition 1 need not hold under these
conditions.25 We might hope for a general classification of the set of constructions al-
ternative to Construction 1 which admit bijective correspondence results akin to Propo-
sition 1. Unfortunately, such a classification appears to be out of reach. When restricted
to a particular classical preference profile P , this problem includes (as a subproblem)
the question of finding all permutations of the preference relations in P̄(P) which fix
the set of stable matchings26; this question is not well-understood, even within the
simpler setting of one-to-one matching.27
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preserve the male-optimality of the original male-optimal stable matching.

A presumably related, easier problem seeks sufficient conditions for a preference relation to induce a
unique stable matching. Both Eeckhout (2000) and Clark (2006) obtained such conditions in the context of
one-to-one matching, but the set of preference domains satisfying these conditions is quite small.
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