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Abstract

We present an exposition of weighted theta functions, which are weighted generating

functions for the norms and distribution of lattice vectors. We derive a decomposition theorem for

the space of degree-d homogeneous polynomials in terms of spaces of harmonic polynomials and

then prove that the weighted theta functions of Type II lattices are examples of modular forms. Our

development of these results is structural, related to the infinite-dimensional representation theory

of the Lie algebra sl2. We give several applications of weighted theta functions: a condition on

the root systems of Type II lattices of rank 24; a proof that extremal Type II lattices yield spherical

t-designs; and configuration results for extremal Type II lattices of ranks 8, 24, 32, 40, 48, 56, 72,

80, 96, and 120, one of which has not appeared previously.

Then, we give a new structural development of harmonic weight enumerators—the coding-

theoretic analogs of weighted theta functions—in analogy with our approach to weighted theta

functions. We use the finite-dimensional representation theory of sl2 to derive a decomposition the-

orem for the space of degree-d discrete homogeneous polynomials in terms of the spaces of discrete

harmonic polynomials and then prove a generalized MacWilliams identity for harmonic weight enu-

merators. Next, we present several applications of harmonic weight enumerators analogous to those

given for weighted theta functions: an equivalent characterization of t-designs and the extremal

Type II code case of the Assmus–Mattson Theorem; a condition on the tetrad systems of Type II

codes of length 24; and configuration results for extremal Type II codes of lengths 8, 24, 32, 48,

56, 72, and 96. Nearly all of these applications are original to this thesis, and many explicitly use

components of our development of the harmonic weight enumerator theory.
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Chapter 0

Preface

This thesis is concerned with two mathematical theories: those of lattices and binary

linear codes. A lattice is a regularly spaced array of points in n-dimensional Euclidean space Rn

formed by taking all integer linear combinations of a collection of vectors, as in Figure 1. Lattices

are by definition infinite. Binary linear codes (or just codes, throughout the remainder of this

Preface) are finite analogs of lattices: a code is formed by taking all linear combinations of a set of

vectors in Fn2 , the finite space of length-n binary strings. That is, a code is a linear subspace of Fn2 .

Many lattices are well-known throughout mathematics. For example, the set Z2 of integer

points in the two-dimensional Euclidean plane, pictured in Figure 2, is a lattice generated by unit

vectors on the axes. This lattice appears early in mathematics education—on graph paper. Addi-

tionally, three-dimensional lattices have a variety of applications. They appear in the organizations

of solid compounds1 and yield optimal packings of spherical objects such as identically-sized or-

anges.2 Although less directly visible, codes also appear in common applications: most notably,

they underlie electronic communication channels.3

The theories of lattices and codes are deeply connected. Many concepts from these the-

ories are in direct correspondence, leading to a systematic analogy between the theories. Lattices

can be constructed from codes, and such constructions often map properties of codes into the cor-

responding properties of lattices. Additionally, the theories of lattices and codes exhibit surprising

1For example, the face-centered cubic lattice is a common crystal structure and hence appears in most chemistry
textbooks (see [CS99, p. 11] for further discussion).

2The optimality of a particular lattice packing among all possible packings in R3 is actually a recent result. This
problem stood open as the Kepler Conjecture until 2005, when Hales [Hal05] provided a proof (see also [HHM+09],
which presents some corrections to [Hal05]).

3Conway and Sloane [CS99, pp. 11–12] discuss these applications in detail and provide numerous references.

1
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u

v

Figure 1: A two-dimensional lattice formed by integer linear combinations of the vectors v and u.

Figure 2: The two-dimensional lattice Z2 of integer points in the Euclidean plane R2.
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connections to other branches of mathematics, especially number theory. To provide an example of

both types of connection, we now introduce the theta functions of lattices.

Each lattice L has an associated generating function θL(z), called the theta function of L,

defined by

θL(z) :=
∑
x∈L

eπiz〈x,x〉. (0.1)

Here, i denotes the principal complex square root of −1 and 〈x, x〉 :=
∑n

j=1 x
2
j is the norm of the

vector x = (x1 . . . , xn) ∈ L, representing the squared length of x. Thus, θL(z) can be interpreted

as encoding the lengths of the vectors of L. Indeed, rearrangement of (0.1) gives

θL(z) = 1 +
∑
k>0

ak(L)ekπiz,

where ak(L) is the number of vectors in L having norm k. For example, the theta function of the Z2

lattice is given by

ΘZ2(z) = 1 + 4e1πiz + 4q2πiz + 0q3πiz + 4q4πiz + 8q5πiz + 0q6πiz + · · · ; (0.2)

the coefficient of ekπiz in (0.2) encodes the number of ways of writing k as a sum of two squares of

integers.

By a mathematical miracle, the theta functions of certain lattices, called Type II lattices,

turn out to be examples of a class of functions, called modular forms, which are of particular interest

in number theory. Using results from the theory of modular forms, it is often possible to determine

the theta function of a lattice having prescribed properties. This approach is so effective that theta

functions may sometimes be used to classify lattices having certain properties, or to rule out ex-

istence of such lattices altogether.4 Likewise, each code C has an associated generating function

called a weight enumerator. These functions are similar to the theta functions of lattices, and the

weight enumerator of a code C typically leads directly to the theta series of lattices constructed

from C. Moreover, there is a class of codes called Type II codes which give rise to Type II lattices

and have weight enumerators which behave, in a sense, like finite analogs of modular forms.

The lattice–code analogy is beautiful and somewhat surprising, and is also of substantial

mathematical importance. Problems are typically posed or solved either for lattices or for codes;

appeal to the analogy then offers insight towards parallel problems. For example, an important 1969

theorem of Assmus and Mattson [AM69] showed that the elements of certain codes are examples of

4Examples of such results can be found in our exposition: Theorems 3.10 and Theorems 3.11 are results of the former
type and the first assertion of Theorem 3.6 is a result of the latter type.
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a class of combinatorial objects, called t-designs, which satisfy strict distribution constraints. This

result led Venkov [Ven84b] to seek and obtain an analogous theorem for lattices in 1984. In the proof

of his result, Venkov established new, lattice-specific techniques using a class of generalized theta

functions called weighted theta functions. In 1999, Bachoc [Bac99] brought these developments

full circle by adapting Venkov’s methods to the coding setting. She introduced coding-theoretic

analogs of weighted theta functions, called harmonic weight enumerators, and used them to give a

new proof of the Assmus–Mattson Theorem which originally inspired Venkov.

This thesis adds another layer to this story, giving a new development and interpretation of

Bachoc’s theory of harmonic weight enumerators, along with new applications. Our approaches and

results are inspired by the theory of lattices; they consequently fill several holes in the lattice–code

analogy.



Chapter 1

Introduction

1.1 Overview of the Thesis

After reviewing relevant terminology and notation in Chapter 2 and giving expository

presentations in Chapters 3 and 4, we fill several holes in the analogy between lattices and codes in

Chapters 5 and 6. Specifically, we make four original contributions, which we list here and explain

in further detail below.

1. First, in Chapter 5, we give new structural developments of the theories of discrete harmonic

polynomials and harmonic weight enumerators, in analogy with those for harmonic polyno-

mials and weighted theta functions.

2. Then, in Section 6.1, we use these developments to give a new proof of a characterization

of t-designs due to Delsarte [Del78] which is analogous to a well-known characterization of

spherical t-designs.

3. Next, in Section 6.2 we use harmonic weight enumerators in analogy with an argument of

Venkov [Ven80] to give a new, purely coding-theoretic proof of a condition of Koch [Koc87]

on the tetrad systems of length-24 Type II codes.1

4. Finally, in Section 6.3, we present new configuration results for extremal Type II codes anal-

ogous to those obtained for extremal Type II lattices by Venkov [Ven84a], Ozeki [Oze86a],

[Oze89], [Oze86b], and the author [Kom09].

1Although this result has already been presented in a paper of Elkies and the author [EK09a], we consider it a con-
tribution of the thesis work since the inspiration for the argument and the work on the paper arose as part of the thesis
research.

5



Chapter 1: Introduction 6

We use the lattice–code analogy heavily throughout the presentations of our new contributions, and

so the thesis is organized in order to exploit this analogy wherever possible.

1.2 Outline of the Thesis

We review the standard terminology and notations of lattices and codes in Sections 2.1

and 2.2 of Chapter 2, respectively. Then, we discuss aspects of the lattice–code analogy in Sec-

tion 2.3, providing an important construction of lattices from codes. Finally, we define t-designs

and their lattice analogs, spherical t-designs, in Section 2.4.

In Chapter 3, we give an exposition of the theory of weighted theta functions of lattices,

following an approach related to sl2 which we later apply to the theory of harmonic weight enu-

merators. In Section 3.1.3, we develop the classical theory of theta functions. We then present

the developments of harmonic polynomials and weighted theta functions in Sections 3.2 and 3.3,

respectively. In Section 3.4, we introduce the zonal spherical harmonic polynomials, a special class

of harmonic polynomials used in many of our applications of weighted theta functions.

We then give several applications of weighted theta functions in Chapter 4. We discuss

the classification of rank-24 Type II lattices in Section 4.1 and prove a condition of Venkov [Ven80]

on the possible root systems of such lattices. Next, in Section 4.2, we apply the theory developed in

Section 3.2 to show that, for any extremal Type II lattice L and m > 0, the set of norm-m vectors

of L is a spherical design whenever it is nonempty. Finally, we prove configuration results for

extremal Type II codes of ranks n = 8, 24, 32, 40, 48, 56, 72, 80, 96, 120 in Section 4.3. Although

most of the configuration results we present are already in the literature, half of these results are

original to the author and a collaborator.2 Our expository presentation of these results collects and

unifies the previous work. Additionally, we obtain a new configuration result of Elkies and the

author [EK09b] at the end of Section 4.3.

We present our new development of harmonic weight enumerators in Chapter 5, in anal-

ogy with the presentation of Chapter 3. As a warm-up, we review classical results from the theory of

weight enumerators in Section 5.1.2. We review the the finite-dimensional representation theory of

sl2 in Section 5.1.3, and then use this to develop the theory of discrete harmonic polynomials in Sec-

tion 5.2. We proceed with the development of harmonic weight enumerators in Section 5.3. Finally,

in Section 3.4, we develop the zonal harmonic polynomials, a useful class of discrete harmonic

2Specifically, the configuration results for Type II lattices of ranks n = 56, 72, 96 are original to the author [Kom09]
and those for ranks n = 80, 120 are original to the author and Abel [KA08].
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polynomials analogous to the zonal spherical harmonic polynomials of Section 3.4. Although many

of the key results proven in Chapter 5 have been obtained previously by either Delsarte [Del78]

or Bachoc [Bac99], our proofs of these results are novel and original to this thesis. While the ap-

proaches of Delsarte [Del78] and Bachoc [Bac99] are combinatorial, our methods are structural,

analogous to those used in the structural development of weighted theta functions for lattices.

Lastly, in Chapter 6, we obtain new applications of harmonic weight enumerators: coding-

theoretic analogs of the results of Chapter 4. In Section 6.1, we use the machinery developed in

Section 5.2 to give a new proof of a characterization of t-designs due to Delsarte [Del78]. This

characterization is analogous to the characterization of spherical t-designs obtained in Section 4.2

and consequently leads to coding-theoretic analogs of the result that extremal Type II lattices yield

spherical t-designs. We then use harmonic weight enumerators to give the first purely coding-

theortic proof of a condition of Koch [Koc87] on the tetrad systems of length-24 Type II codes

in Section 6.2. Our approach to Koch’s condition uses harmonic weight enumerators in a fashion

inspired by and analogous to the use of weighted theta functions in the proof of the Venkov [Ven80]

condition on rank-24 Type II lattices. Finally, we prove configuration results for extremal Type II

codes of lengths n = 8, 24, 32, 48, 56, 72, 96 in Section 6.3. These results are analogous to the

configuration results of Section 4.3, are entirely original to this thesis, and are the first configuration

results ever obtained for extremal Type II codes.



Chapter 2

Background and Conventions

In this chapter, we review relevant definitions and notations from the theories of lattices

and codes. We discuss and give examples of lattices and codes in Sections 2.1 and 2.2, respectively.

These sections are organized in analogy to each other, so as to highlight the similarities between

concepts from the two theories. We survey the analogy between lattices and codes in Section 2.3.

There, we also introduce Construction A, a fundamental construction of lattices from codes. Finally,

we introduce the notions of t-designs and spherical t-designs in Section 2.4.

2.1 Lattices

2.1.1 Basic Definitions and Examples

Throughout, R and C denote the real and complex numbers. Additionally, {ε(1), . . . , ε(n)}
denotes the standard basis of n-dimensional real space, Rn.1 We denote the space of smooth func-

tions from Rn → C by C∞(Rn), or just by C∞ when the dimension of the domain is clear from

context.

A rank-n lattice L is a free Z-module of rank n equipped with an inner product

〈·, ·〉 : L× L→ R

for which the bilinear extension to L ⊗ R is positive-definite and symmetric. A minimal spanning

subset of a latticeL is called a Z-basis (or just basis) ofL. We call 〈x, x〉 the norm of a vector x ∈ L.

1We use the somewhat nonstandard notation “·(·)” for bases, because we often have to discuss the coordinates of
vectors, which are denoted with subscripts.

8
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ε(3) − ε(2)

ε(2) − ε(1)

Figure 3: The planar hexagonal lattice, A2.

For two latticesL andL′ of ranks n and n′, the orthogonal direct sum ofL andL′, denoted

L⊕ L′, is a lattice of rank n+ n′. Additionally, we write

Lk := L⊕ · · · ⊕ L︸ ︷︷ ︸
k times

.

If two lattices L and L′ are isomorphic, then we write L ∼= L′. A lattice L is reducible if it can be

expressed in the form L ∼= L′ ⊕ L′′ for nonzero L′, L′′ ⊂ L, and is irreducible otherwise.

The simplest example of a lattice is the rank-1 lattice Z with basis {ε(1)} and inner product

induced by that of R (so that 〈ε(1), ε(1)〉 = 1). More generally, Zn is the set of integral points in Rn

with basis {ε(j)}nj=1 and inner product given by

〈ε(j), ε(k)〉 =

1 j = k,

0 j 6= k.

Another common lattice is A2—the planar hexagonal lattice, pictured above in Figure 3—which

is the rank-2 sublattice of Z3 generated by the basis {ε(2) − ε(1), ε(3) − ε(2)}. More generally, we

define the family of lattices {An}∞n=1 by

An :=
{

(x1, . . . , xn+1) ∈ Zn+1 : x1 + · · ·+ xn+1 = 0
}

;

An has rank n, with basis {ε(2) − ε(1), . . . , ε(n+1) − ε(n)}. Via a similar construction, we define a

family of lattices {Dn}∞n=3 by

Dn := {(x1, . . . , xn) ∈ Zn : x1 + · · ·+ xn ≡ 0 mod 2} .2

2We have explicitly excluded the choices n = 1, 2. To see why, we observe that taking either n = 1
or n = 2 in the definition of Dn produces a degenerate definition:

{
(x1) ∈ Z1 : x1 ≡ 0 mod 2

}
= 2Z and{

(x1, x2) ∈ Z2 : x1 + x2 ≡ 0 mod 2
}

= A1 ⊕A1.
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By construction, Dn is of rank n, with basis {ε(2)− ε(1), . . . , ε(n)− ε(n−1), ε(1) + ε(2)}. From this,

we see that D3
∼= A3 (although Dn 6= An for n > 3).3

One last example which will be of particular interest in our discussion is the rank-8 lattice

E8 with basis
{
ε(2) − ε(1), . . . , ε(7) − ε(6), 1

2

(
ε(1) + · · ·+ ε(8)

)}
. This lattice is the set of points

in Rn with integer or half-integer coordinates and with even integer coordinate sum. That is,

E8 =

{
(x1, . . . , x8) ∈ Z8 ∪

(
Z +

1
2

)8

: x1 + · · ·+ x8 ≡ 0 mod 2

}
,

where (Z + 1
2)n := {(x1, . . . , xn) ∈ Rn : (x1 + 1

2 , . . . , xn + 1
2) ∈ Zn}.4

A lattice L is said to be integral if 〈x, x′〉 ∈ Z for all x, x′ ∈ L; in this case, the map

L → Z/2Z defined by x 7→ 〈x, x〉 mod 2 is a homomorphism. An integral lattice L is called even

if this homomorphism just described is trivial. Equivalently, L is even if and only if all its vectors

have norms which are even integers, i.e. if 〈x, x〉 ∈ 2Z for all vectors x ∈ L. To check that either

of these conditions holds for a lattice L, it suffices to show that the condition holds for a basis of L.

If L is a lattice with basis {x(1), . . . , x(n)} and 〈x(j), x(k)〉 ∈ Z for all 1 ≤ j ≤ k ≤ n, then the

integrality of L follows easily from the bilinearity of the inner product 〈·, ·〉 on L. For any integral

lattice L and x, x′ ∈ L, if 〈x, x〉 ∈ 2Z and 〈x′, x′〉 ∈ 2Z, then

〈x+ x′, x+ x′〉 = 〈x, x〉+ 2〈x′, x〉+ 〈x′, x′〉 ∈ 2Z.

The dual lattice of a lattice L, denoted by L∗, is defined by

L∗ = {x′ ∈ L⊗ R : 〈x′, x〉 ∈ Z for all x ∈ L}.

From this definition, we see that an alternate condition necessary and sufficient for the integrality of

L is that L∗ ⊃ L. An integral lattice L with the property that L∗ = L is said to be self-dual.

Clearly, the lattice Zn is integral but not even. Furthermore, if Zn ⊗ R 3 x′ 6∈ Zn, then

the j-th coordinate x′j of x′ is nonintegral for some 1 ≤ j ≤ n. In this case, 〈x′, ε(j)〉 6∈ Z; it

follows that (Zn)∗ = Zn, hence Zn is self-dual. By examining the bases given above, we see that

the lattices An and Dn are even, as is E8. As we see next, An and Dn are not self-dual, but E8 is.

For any basis {x(1), . . . , x(n)} of a lattice L, the fundamental parallelotope is the region

P(L, {x(1), . . . , x(n)}) :=
{
λ1x

(1) + · · ·+ λnx
(n) : (λ1, . . . , λn) ∈ [0, 1]n

}
.

3Note that we have chosen our basis presentations of D3 and A3 so that the isomorphism D3
∼= A3 is immediately

apparent.

4Here, we have used the so-called even coordinate system for E8 (see [CS99, p. 120]). Throughout our discussion,
and particularly in our definitions of the lattices E7 and E6 below, we assume this coordinate system for E8.
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For the remainder of this section, we fix an identification of (L ⊗ R, 〈·, ·〉) with Rn.5 The Rn-

volume of the fundamental parallelotope of L (for any choice of basis) is equal to vol(Rn/L) and

is an invariant of L. For lattices L ⊂ L′, the index [L′ : L] is finite and

vol(Rn/L) = vol(Rn/L′) · [L′ : L]. (2.1)

Additionally, we have

vol(Rn/L) = vol(P(L, {x(1), . . . , x(n)})) = |det (M)| =
√

det(A),

where M := (x(j))1≤j≤n is the n × n matrix of L with j-th row equal to x(j) and the matrix

A := MMT = (〈x(j), x(k)〉)1≤j,k≤n is the inner product matrix (sometimes called the Gram

matrix) of L.

Writing {y(1), . . . , y(n)} for the basis of L∗ dual to {x(1), . . . , x(n)}, we observe that

y(j) =
∑n

k=1 bjky
(k), with B := (bjk)1≤j,k≤n = A−1. We then compute that

〈y(j), y(k)〉 =

〈
n∑
`=1

bj`y
(`), y(k)

〉
= bjk,

finding that B = (〈y(j), y(k)〉)1≤j,k≤n, as well. It then follows that

vol(Rn/L) =
√

det(A) =
1√

det(A−1)
=

1√
det(B)

=
1

vol(Rn/L∗)
. (2.2)

We call det(A) the discriminant of L, and write disc(L) := det(A). Clearly, disc(L) is an invariant

of L. A lattice L for which disc(L) = 1 is said to be unimodular. Taking L′ = L∗ in (2.1) and

applying (2.2), we see that disc(L) = [L∗ : L] if L∗ ⊃ L. In particular, an integral lattice is

self-dual if and only if it is unimodular.

It follows that L is self-dual if and only if the inner product matrix of L is integral with

unit determinant. This gives a second proof that Zn is self-dual. Additionally, we may demonstrate

by explicit determinant computation that E8 is self-dual and that the lattices An and Dn are not.

Indeed,

disc(An) = n+ 1, disc(Dn) = [Zn : Dn]2 = 4.

2.1.2 Root Lattices

We write Lk := {x ∈ L : 〈x, x〉 = k} for the set of norm-k vectors of L and denote by

Lm(L) the lattice generated by Lm. In this section, we consider in particular the set L2, called the

5Here, 〈·, ·〉 denotes the bilinear extension of the inner product on L.
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root system of L. We call L2(L) the root sublattice of L, and if L2(L) = L, then we say that L is a

root lattice. Such a lattice is necessarily even. Clearly, the lattices {An}∞n=1, {Dn}∞n=3, and E8 are

irreducible root lattices. In fact, there are only two more irreducible root lattices beyond these (see

[CS99, pp. 97–98] or [Ebe02, pp. 26–27]), the lattices E7 and E6 defined by

E7 := {(x1, . . . , x8) ∈ E8 : x1 + · · ·+ x8 = 0} ,

E6 := {(x1, . . . , x8) ∈ E8 : x1 + x8 = x2 + · · ·+ x7 = 0} ,

and of ranks 7 and 6, respectively.6 Furthermore, any root lattice decomposes uniquely into an

orthogonal direct sum of irreducible root lattices (see [Ebe02, p. 22]). For L a root lattice of rank n,

the number h(L) := 1
n |L2| is called the Coxeter number of L. The irreducible root lattices have

Coxeter numbers

h(An) = n+ 1, h(Dn) = 2(n− 1), h(E6) = 12, h(E7) = 18, h(E8) = 30. (2.3)

and it is well-known that if ẋ ∈ Rn and L is an irreducible root lattice, then∑
x∈L2

〈x, ẋ〉2 = 2 · h(L) · 〈ẋ, ẋ〉 (2.4)

(see [Ebe02, p. 30]).

2.1.3 Theta Series and Theta Functions

We associate to a lattice L the theta series ΘL defined by

ΘL(q) :=
∑
x∈L

q
1
2
〈x,x〉,

for 0 ≤ q < 1. By construction, ΘL is a generating function encoding the norms of the vectors

of L:

ΘL(q) = 1 +
∑
k>0

a2k(L)qk,

where a2k(L) := |L2k|. For example, we have

ΘZ2(q) = 1 + 4q1/2 + 4q + 0q3/2 + 4q2 + 8q5/2 + 0q3 + 0q7/2 +O(q4),

ΘA2(q) = 1 + 6q1/2 + 0q + 6q3/2 + 6q2 + 0q5/2 + 0q6 + 12q7/2 +O(q4).

6For details and constructions of these lattices, see [CS99, pp. 124–127] or [Ebe02, pp. 24–25].
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The first of these functions, ΘZ2(q), may be interpreted as the generating function where the coeffi-

cient of qk/2 is the number of representations of k as a sum of two integer squares.7 By construction,

theta series are multiplicative, i.e.

θL(z) · θL′(z) = θL⊕L′(z).

Indeed, we see that

ΘZ2(q) =

(
1 + 2

∞∑
k=1

qk
2/2

)2

= (ΘZ(q))2

We denote by H the upper half plane of complex numbers, H := {z ∈ C : Im(z) > 0}.
Often, we will take z ∈ H and q = e2πiz , considering the theta function of L defined by

θL(z) := ΘL

(
e2πiz

)
=
∑
x∈L

eπiz〈x,x〉.

We will discuss theta series and theta functions in more detail in Section 3.1.3. There,

we prove that theta functions of even unimodular lattices are examples of modular forms and give

several applications. In Sections 3.2 and 3.3, we introduce and discuss a powerful generalization

of theta functions called weighted theta functions. We give applications of these generalized theta

functions in Chapter 4.

2.1.4 Type II Lattices

If a self-dual lattice L is even, then it is said to be of Type II; it is said to be of Type I

otherwise. As we will demonstrate in Theorem 3.6 of Section 3.1.3, Type II lattices may exist only

in dimensions which are multiples of 8: if a rank-n lattice L is of Type II, then n = 8n′ for some

n′ > 0. Meanwhile, the existence of the Type II lattice E8 shows that, for each n′ > 0, there exists

at least one Type II lattices of rank 8n′. (To see this, it suffices to note that the lattice En
′

8 is of

Type II.)

We denote by min(L) the minimal nonzero norm (or just minimal norm) of vectors in L,

min(L) := min
x∈L
x6=0

〈x, x〉 > 0.8

7We remarked upon this fact in the Preface, while using slightly different notation.

8Lattices with large minimal norms are especially important for one of the key applications of lattices, as they give
rise to especially dense sphere packings.
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For lattices of large ranks, computing min(L) is computationally difficult to the point of intractabil-

ity. However, Mallows, Odlyzko, and Sloane [MOS75] (see also [CS99, p. 194]) showed the fol-

lowing upper bound using theta functions: when L is a Type II lattice of rank 8n′, the minimal norm

min(L) is bounded above by

2bn′/3c+ 2. (2.5)

A Type II lattice attaining this bound (2.5) is called extremal.

The Type II lattices of rank 8n′ have been fully classified for n′ ≤ 3. For ranks 8 and

16, Witt [Wit41] (see also [CS99, p. 48]) showed that there are respectively one and two Type II

lattices: E8 for rank 8 and E8 ⊕ E8 and a second lattice, called D+
16 and defined by

D+
16 := D16 ∪

{
(x1, . . . , x16) ∈

(
Z +

1
2

)16

:
(
x1 +

1
2
, . . . , x16 +

1
2

)
∈ D16

}
, 9

for rank 16; all three of these lattices are extremal.10 We will prove these classifications of Type II

lattices of ranks 8 and 16 in Section 3.1.3.

Niemeier [Nie73] classified the Type II lattices of rank 24, finding exactly 24 such lattices.

Only one of these lattices is extremal, the Type II lattice Λ24 of minimal norm 4 originally found by

Leech [Lee67]. Niemeier’s approach was greatly simplified by Venkov [Ven80], who constrained

the possible root systems of Type II lattices via the theory of weighted theta functions. We will

present this argument in Section 4.1.2, as an illustrative application of weighted theta functions and

to set the stage for an analogous result we obtain in Section 6.2.

Full classifications of the Type II lattices of ranks 8n′ for n′ > 3 are unknown and

appear to be out of reach. Indeed, the Minkowski–Siegel mass formula shows that there are at

least 80000000 such lattices of rank 32 (see [CS99, p. 50]). For sufficiently large n, extremal

Type II lattices cannot exist (see [CS99, p. 194]). Nonetheless, extremal Type II lattices of ranks

n = 8, 16, 24, 32, 40, 48, 56, 64, 80 are known (see [BN98] for rank n = 80, and [CS99, p. 194]

for the other ranks). It is unknown whether an extremal Type II lattice of rank n = 72 exists (see

[CS99, p. 194–195]).

9In general, for n ≥ 8, it is possible to define a lattice D+
n by

D+
n := Dn ∪

{
(x1, . . . , xn) ∈

(
Z +

1

2

)n

:

(
x1 +

1

2
, . . . , xn +

1

2

)
∈ Dn

}
.

With this definition, we have D+
8 = E8.

10Since these lattices are even and the right side of (2.5) equals 2 for n′ = 1, 2, the extremality of these lattices holds
a priori.
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2.2 Codes

2.2.1 Basic Definitions and Examples

Throughout, Fq denotes a finite field with q elements.11 By a q-ary code C of length n

(or just code of length n, when q is implicit), we mean a nonempty subset C of Fnq . A q-ary code of

length n is linear if it is a linear subspace of Fnq . Nearly all codes we consider will be linear, hence

we will often omit this descriptor in the sequel.

The elements of a code are called codewords. For any length-n code C ⊂ Fnq and two

codewords c, c′ ∈ C, we write c ∩ c′ := (c1c
′
1, . . . , cnc

′
n) for the intersection of c and c′. There is a

natural scalar product on codewords c, c′ ∈ C defined by (c, c′) :=
∑n

j=1 cjc
′
j ∈ Fq. The Hamming

weight wt(c) of a codeword c ∈ C is the number of nonzero coordinates of c, i.e.

wt(c) = |{j : cj 6= 0}|.

This norm gives rise to a natural metric, the Hamming distance between two codewords c, c′ ∈ C,

defined by wt(c− c′). The minimal nonzero Hamming distance dmin(C) of a code C is defined by

dmin(C) := min
c,c′∈C
c6=c′

wt(c− c′).

We say that a code is an [n, k, d] code if its length, dimension, and minimal nonzero Hamming

distance are n, k, and d, respectively.

As with lattices, we write C ⊕ C ′ for the length-(n + n′) orthogonal direct sum of two

codes C ⊆ Fnq and C ′ ⊆ Fn′q .12 As with lattices, we write

Ck := C ⊕ · · · ⊕ C︸ ︷︷ ︸
k times

.

A code C is reducible if it can be expressed in the form C = C ′ ⊕ C ′′ for C ′, C ′′ ⊂ C, and is

irreducible otherwise. For a q-ary code C, the dual code of C, denoted by C⊥, is defined by

C⊥ = {c′ ∈ Fnq : (c′, c) = 0 for all c ∈ C}.

11Unfortunately, the notation q is already well-established both for the variable of a power series and for the order of
a finite field. Since these two uses are endemic in the literature and rarely (if ever) come into direct contact, we abuse
notation slightly and employ both here.

Additionally, it is well-known that a field with q elements exists if and only if q is a prime power (see [Art91, p. 509–
513]). Thus, we implicitly assume that q is a prime power whenever q is a finite field order.

12Whenever we use this notation, the codes involved will be codes over the same field.
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We have that

dim(C) + dim(C⊥) = n. (2.6)

A code C is self-orthogonal if C⊥ ⊇ C, and is moreover self-dual if C⊥ = C. From (2.6),

we see that a self-orthogonal code necessarily has dim(C) ≤ n/2 and that a self-dual code has

dim(C) = n/2.

Both the full space Fnq and the trivial space {(0, . . . , 0)} ⊂ Fnq are linear codes of length n;

these codes are respectively called the full code and trivial code. These codes are duals of each other

and respectively have minimal nonzero Hamming distances 1 and∞.13

Most of our discussion focuses on binary codes of length n, that is 2-ary codes C ⊂ Fn2 .

Thus, henceforth by a code of length n (or just code, when n is clear or undetermined) we mean a

binary linear code of length n except where otherwise indicated.

We now introduce two particularly rich examples of binary codes which will appear of-

ten in our later discussion: the family of codes {d2n′}∞n′=2 and the Hamming code H . The code

d2n′ consists of all words c ∈ F2n′
2 of weight divisible by 4 such that c2j−1 = c2j for each

j = 1, 2, . . . , n′; for each n′, the code d2n′ is a [2n′, n′, 4] code. The Hamming code H is the

[7, 4, 3] code consisting of the 16 codewords in the columns of the matrix

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1


.14

For any binary code C of length n, we may construct a new binary code C̃ of length n+1

by adding a “parity check” bit at the end of each codeword:

C̃ = {(c1, . . . , cn+1) : (c1, . . . , cn) ∈ C and c1 + · · ·+ cn+1 ≡ 0 mod 2} .

The code C̃ constructed in this fashion is called the extended code ofC. For example, the codewords

13More simple examples of q-ary codes can be found in [CS99, p. 79] and [GZ08].

14This code has several equivalent characterizations. For example, the Hamming code may be interpreted as encoding
the space of affine-linear functions on F3

2.
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of the extended Hamming code e8 := H̃ are given by the columns of the matrix

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


.

A binary code C is said to be even if all its codewords have even weight, i.e. if 2 | wt(c)

for all c ∈ C. As for even lattices, to show that C is even it suffices to show for some basis

{c(1), . . . , c(n)} of C that 2 | wt(c(j)) for all j (1 ≤ j ≤ n), since

wt(c+ c′) = wt(c) + wt(c′)− 2wt
(
c ∩ c′

)
.

If additionally all of the codewords of C have weights divisible by 4, the code C is said to be doubly

even.

For a binary code C and c ∈ C, we have (c, c) ≡ wt(c) mod 2; it follows that any self-

dual code is even. It follows that the Hamming codeH is not self-dual15; we denote e7 := H⊥ 6= H .

The extended Hamming code e8, is self-dual however, and is also doubly even.

2.2.2 Tetrad Codes

For a code C, we denote Cw := {c ∈ C : wt(c) = w} and write Cw(C) for the linear

code generated by Cw. In analogy with the theory of root lattices, we consider the set C4, called

the tetrad system of C. We call C4(C) the tetrad subcode of C and say that C is a tetrad code if

C4(C) = C. The codes d2n′ (n′ ≥ 2), e7, and e8 are irreducible tetrad codes.

As was the case with root lattices, any tetrad code decomposes into an orthogonal direct

sum of irreducible tetrad codes (see [Koc87]). In analogy with the Coxeter number, the tetrad

number η(C) := 1
n |C4| is an important invariant of irreducible tetrad codes. Quick computation

shows that

η(d2k) = (k − 1)/4, η(e7) = 1, η(e8) = 7/4.

15To see this more easily, it suffices to note that the Hamming code H is of length 7, and so we cannot have

dim(H) = dim(H⊥) = 7/2.
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2.2.3 Weight Enumerators

Analogous to the theta functions of lattice theory, the Hamming weight enumerator (or

just weight enumerator) WC(x, y) of a length-n code C ⊂ Fnq , defined by

WC(x, y) :=
∑
c∈C

xn−wt(c)ywt(c),

is a generating function encoding the weights of the codewords of C. Unlike theta functions, which

are infinite series, weight enumerators are finite generating functions. Thus, for example, we may

obtain the number of codewords |C| = qdim(C) of C ⊂ Fnq by evaluating WC :

WC(1, 1) =
∑
c∈C

1n−wt(c)1wt(c) =
∑
c∈C

1 = |C|.

The weight enumerators of the full binary code of length n, the Hamming code, and the

extended Hamming code are respectively

WFn
2
(x, y) =

n∑
k=0

(
n

k

)
xn−kyk = (x+ y)n,

WH(x, y) = x7 + 7x4y3 + 7x3y4 + y7,

We8(x, y) = x8 + 14x4y4 + y8.

As we did for theta series, we defer most of our discussion of weight enumerators until

a later section, specifically Section 5.1.2. Most of Chapter 5 is dedicated to the development of

harmonic weight enumerators, a generalization of weight enumerators analogous to the weighted

theta functions of lattice theory.

2.2.4 Type II Codes

A self-dual binary code is said to be of Type II if it is doubly even, and of Type I otherwise.

As with Type II lattices, Type II codes must have lengths which are multiples of 8, and conversely

exist for all lengths which are multiples of 8.16

Mallows and Sloane [MS73] (see also [CS99, p. 194]) showed using weight enumerators

that when C ⊂ Fn2 is a Type II code of length 8n′, the minimal nonzero weight of codewords of C,

denoted min(C) := min c∈C
c 6=0

wt(c), is bounded above by

min(C) ≤ 4bn′/3c+ 4. (2.7)

16Indeed, the code en′
8 is a Type II code of length 8n′ for any n′ > 0.
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A Type II code is said to be extremal if it attains the bound (2.7).

The Type II codes of length 8n′ have been fully classified for n′ ≤ 4. All self-dual codes

of lengths n ≤ 20, both of Type I and of Type II, were classified by Pless [Ple72]; this classification

was extended to include lengths n = 22, 24 by Pless and Sloane [PS75], who cited unpublished

work of Conway for the Type II case. Conway and Pless [CP80] classified the Type II codes of

length 32 (see [CP92] for minor corrections of [CP80]). These classification results indicate that

there is a unique Type II code of length 8 (the extended Hamming code e8), two Type II codes of

length 16, nine of length 24, and eighty-five of length 32.

Complete classifications of the Type II codes of sufficiently large lengths are likely out

of reach. Rains and Sloane [RS98] used the mass formula of MacWilliams, Sloane, and Thomp-

son [MST72] to compute that there are at least 17493 Type II codes of length 40, then remarking that

“length 32 is probably a good place to stop [seeking complete classification results].” King [Kin01]

determined that at least 12579 of these Type II codes are extremal, suggesting that it may even be

unreasonable to ask for a classification of extremal Type II codes of length 40.

Extremal Type II codes of lengths

n = 8, 16, 24, 32, 40, 48, 56, 64, 80, 88, 104, 112, 136

are known (see [Pas81] for n = 64, [Har08] for n = 112, and [RS98, p. 273] for the other lengths).17

As with lattices in R72, the existence of an extremal Type II code in dimension 72 is a longstanding

open question (see [Slo73]).

2.3 The Relationship Between Lattices and Codes

As we have already suggested, the theories of lattices and codes are deeply related. The

analogy indicated by our discussion and terminology is persistent: concepts from coding and lattice

theory correspond directly, and constructions of lattices from codes often map corresponding prop-

erties onto each other. The following “dictionary” (Table 1) summarizes this correspondence and

gives the page references for each concept.

17The full classifications of extremal Type II codes of lengths n = 8, 16, 24, 32 are implicit from the results of Pless
[Ple72], Pless and Sloane [PS75], and Conway and Pless [CP80].
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Lattice Theory Coding Theory
lattice (p. 8) code (p. 15)

minimal norm (p. 13) minimal weight (p. 18)

self-dual (p. 10) self-dual (p. 16)
even (p. 10) doubly even (p. 17)

Type I (p. 13) Type I (p. 18)
Type II (p. 13) Type II (p. 18)

theta series (p. 12) weight enumerator (p. 18)
weighted theta function (p. 23) harmonic weight enumerator (p. 58)

root system (p. 12) tetrad system (p. 17)
h(·) (p. 12) η(·) (p. 17)

spherical t-design (p. 22) t-design (p. 21)

Table 1: The correspondence “dictionary.”

2.3.1 Construction A

We now introduce a simple construction of lattices from binary codes which preserves

corresponding properties. This construction, originally due to Leech and Sloane [LS71], relates

length-n binary codes C ⊂ Fn2 to certain lattices LC ⊂ Rn.

Construction A ([CS99, pp. 182–183]). For a code C ⊂ Fn2 , the lattice LC ⊂ Rn consists of all

x ∈ Rn such that 21/2x ∈ Zn and (21/2x) mod 2 ∈ C.

For example, we may compute directly that Le8 ∼= E8.18

Construction A in some sense “preserves” two important features of the input code C.

Specifically,

• the lattice LC⊥ is the dual L∗C of LC and

• if C is doubly even, then LC is even (see [Ebe02, pp. 12–13]).

The first of these conditions guarantees that the lattice LC associated to C is self-dual if and only

if C is self-dual. Taken together, these conditions imply that the Construction A lattice LC is of

18Ebeling [Ebe02, pp. 13–14] gives the details of this computation.
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Type II (resp. Type I) if and only if C is of Type II (resp. Type I). Furthermore, if C is an irreducible

tetrad code, then LC is an irreducible root lattice. Namely,

Ld2k
∼= D2k, Le7

∼= E7, Le8
∼= E8. (2.8)

2.4 Designs

2.4.1 t-designs

A t-(n,w, λ)-design is a collection D 6= ∅ of distinct w-element subsets of {1, . . . , n}
with the property that |{S′ ∈ D : S ⊆ S′}| = λ for every S ⊂ {1, . . . , n} with |S| = t. This

generalizes the notion of a Steiner system, which corresponds to this definition in the case λ = 1.

When n, w, and λ are undetermined or clear from context, we will omit the qualifier “(n,w, λ)”

and simply refer to a t-(n,w, λ)-design as a t-design.

Each S′ ∈ D may be represented by its indicator vector (c1, . . . , cn), in which cj = 1 if

and only if j ∈ S′. Thus, a t-(n,w, λ)-design D corresponds to a subset of the Hamming sphere of

weight w

ωw := {v ∈ Fn2 : wt(v) = w}.

That is, D is a nonlinear binary code of length n in which every codeword has weight w. We

will henceforth treat this representation of D as completely equivalent to the setwise representation

of D, using the relevant terminology interchangeably.

Often, t-designs arise as the sets of codewords of given weight within a binary code. For

example, the codewords of weight 4 in the extended Hamming code e8 form a 3-(8, 4, 1)-design.

More generally,19 we have the following theorem originally due to Assmus and Mattson [AM69].20

Theorem 2.1 (Assmus–Mattson Theorem ([AM69])). Let C be an [n, k, d] binary code and let d⊥

be the minimal Hamming distance of C⊥. If t ≤ d is such that |{w ≤ n− t : C⊥w 6= ∅}| ≤ d− t,
then the set of codewords of C (resp. C⊥) of fixed weight w such that d ≤ w ≤ n (resp. w such that

d⊥ ≤ w ≤ n− t) form a t-design.

Distinct proofs of Theorem 2.1 have appeared in [AM69], [Bac99], and [Tan09]. Addi-

tionally, Theorem 2.1 has several important corollaries. For example, we have the following result.

19The fact that the codewords of weight 4 in the extended Hamming code e8 form a 3-design follows from Theorem 2.1,
since e8 is an [8, 4, 4] binary code.

20This result is the “Assmus–Mattson Theorem” mentioned both in the Preface and in Chapter 1.
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Corollary 2.2 ([CS99, p. 196]). If C is an extremal Type II code of length n = 24n′, then Cw is a

5-design for each w ≥ min(C) such that Cw 6= ∅.

In Theorem 6.4 of Chapter 6, we prove Theorem 2.1 for the case in whichC is an extremal

Type II code, and hence also prove Corollary 2.2.

2.4.2 Spherical t-designs

A spherical t-design is a finite, nonempty subsetX of the (n−1)-dimensional unit sphere,

Ωn :=
{
x ∈ Rn : x2

1 + · · ·+ x2
n = 1

}
,

having the property that the integral of any polynomial P with degree at most t over Ωn equals the

average of P over X . Formally, this means that∫
Ωn

P dµ =
1
|X|

∑
x∈X

P (x), (2.9)

where here µ is the Lebesgue measure on the sphere, normalized so that
∫

Ωn
dµ = 1. If X is a

spherical t-design and we have (2.9) additionally for P of degree t+ 3 (but not necessarily for P of

degrees t+ 1 or t+ 2), then we say that X is a spherical (t+ 1
2)-design.21

We illustrate with Proposition 6.1 in Section 6.1 that there exists an alternative charac-

terization of t-designs directly analogous to (2.9). Thus, spherical t-designs correspond, in the

code-lattice dictionary, to t-designs.

As we described earlier in the introduction, results corresponding to cases of the Assmus–

Mattson Theorem have more recently been obtained for lattices. For example, we have the following

result of Venkov [Ven84b] which is a lattice analog of Corollary 2.2.

Proposition 2.3 ([Ven84b]). If L is an extremal Type II lattice of rank 24n′, then Lm is a spherical

11-design for any m > 0 such that Lm 6= ∅.

21This terminology is due to Venkov (see [Ven01]).
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Weighted Theta Functions

We now introduce the weighted theta series ΘL,P and associated weighted theta function

θL,P of a lattice L ⊂ Rn, defined by

ΘL,P (q) :=
∑
x∈L

P (x)q
1
2
〈x,x〉, θL,P (z) := ΘL,P (e2πiz). (3.1)

Here, P is a spherical harmonic polynomial on Rn; the formal definition and discussion of such

polynomials is given in Section 3.2. Weighted theta series and weighted theta functions generalize

theta series and theta functions respectively, encoding both the number and distribution of the norm-

k vectors of L, for each k > 0. Weighted theta functions of Type II lattices are examples of a well-

studied class of functions called modular forms, and throughout Chapter 4 we use classical results

about modular forms to study the weighted theta functions of Type II lattices.

We review the relevant results from the theory of modular forms in Sections 3.1.1 and 3.1.2.

As a warm-up for our discussion of weighted theta functions, we prove in Section 3.1.3 that the or-

dinary theta function θL of a Type II lattice L is a modular form. We then introduce spherical

harmonic polynomials in Section 3.2 and formally define and discuss weighted theta series in Sec-

tion 3.3. Finally, in Section 3.4, we define and characterize the zonal spherical harmonic polyno-

mials, particular spherical harmonic polynomials which are useful for the applications of weighted

theta functions we present in Chapter 4.

23
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3.1 Preliminaries

3.1.1 Modular Forms for PSL2(Z)

In this section, we introduce the classical theory of modular forms for PSL2(Z). This

material is predominantly standard, and its presentation here owes much to Ebeling [Ebe02] and

Serre [Ser73]. This section is essential, however, to establish conventions and for completeness.

Throughout this section, we will take q = e2πiz with z ∈ H.

Basic Definitions

There is a natural action of the special linear group

SL2(R) :=
{(

a b
c d

)
: a, b, c, d ∈ R; ad− bc = 1

}
onH, defined by fractional linear transformations:

z
γ7−→ az + b

cz + d
,

for all γ =
(
a b
c d

)
∈ SL2(R). From this definition, we see that Im(γz) = Im(z)/|cz + d|2. We

let SL2(Z) be the discrete subgroup of SL2(R) consisting of matrices with integer coefficients.

The action of the center {± ( 1 0
0 1 )} of SL2 on H is trivial, hence we define the modular group

PSL2(Z) := SL2(Z)/{± ( 1 0
0 1 )}.

A holomorphic function f : H → C is said to be a modular form of weight k for PSL2(Z)

(or just modular form of weight k, hereafter1) if

1. f
(
az+b
cz+d

)
= (cz + d)kf(z) for all z ∈ H and

(
a b
c d

)
∈ PSL2(Z) and

2. f is holomorphic at i∞, that is, f(z) has a power series expansion in q = e2πiz in a neigh-

borhood of the origin.

If f satisfies the first condition of this definition, then in particular f(z + 1) = f(z). It follows

that a modular form f has a power series expansion in q on the punctured disk of radius 1, hence

1This usage is somewhat nonstandard, since modular forms may be defined, more generally, for all subgroups of
PSL2(Z). However, in our discussion we are only concerned with modular forms for the full modular group PSL2(Z),
hence this abbreviated terminology is sufficient for our purposes and seems appropriate.
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the second defining condition is a natural extension of the first condition.2 A modular form which

vanishes at i∞ is called a cusp form.3

The modular group PSL2(Z) is generated by

σ :=
(

0 −1
1 0

)
and τ := ( 1 1

0 1 ) ,

which respectively correspond to the actions

z
σ7−→ −1

z
and z

τ7−→ z + 1

(see [Ebe02, pp. 41–43] or [Ser73, pp. 78–79]). Direct computation shows that

σ2 = (στ)3 = ( 1 0
0 1 ) . (3.2)

In light of these observations, we see that a holomorphic function f(z) =
∑∞

j=0 ajq
j is a modular

form of weight k if and only if

f

(
−1
z

)
= f(σz) = zkf(z). (3.3)

The Eisenstein Series

For k > 1, we define the unnormalized Eisenstein series of index 2k, denoted G2k, to be

the function G2k : H → C given by

G2k(z) :=
∑

(c,d)∈Zn\(0,0)

1
(cz + d)2k

.

These functions G2k are clearly periodic and satisfy the identity (3.3) for weight 2k. In fact, they

are also holomorphic onH ∪ {i∞}, giving the following proposition.

Proposition 3.1 ([Ebe02, p. 48]; [Ser73, p. 83]). For each k > 1, the unnormalized Eisenstein

series G2k of index 2k is a modular form of weight 2k.

Clever computation shows that

G2k(z) = 2ζ(2k) +
2(2πi)k

(k − 1)!

∞∑
j=1

σk−1(j)qj ,

2Serre [Ser73, p. 80] avoids the complications inherent in the definition we have presented by first defining weakly
modular functions for PSL2(Z). We have chosen not to follow Serre’s approach, however, as weakly modular functions
are rarely used in practice and—more pertinently—are not directly relevant to this thesis.

3Equivalently, a modular form is a cusp form if and only if the constant term of its power series vanishes.
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where ζ(s) :=
∑∞

j=1 1/js is the Riemann zeta function and σk−1(s) :=
∑

d|s d
k−1 (see [Ebe02,

p. 51] or [Ser73, p. 92]). It is well-known that

ζ(2k) = −(2πi)2k

2(2k!)
B2k,

where the Bernoulli numbers {B2k}∞k=1 are defined by the generating function

x

ex − 1
= 1− x

2
+
∞∑
k=1

(−1)k+1B2k
x2k

(2k)!

(see, for example, [Ebe02, p. 52] or [Ser73, p. 91]).4 Thus, we obtain the expression

G2k(z) = −(2πi)k

k!
B2k +

2(2πi)k

(k − 1)!

∞∑
j=1

σk−1(j)qj .

Normalizing G2k(z) to have constant term 1, we obtain the normalized Eisenstein series

of index 2k (or just Eisenstein series of index 2k)

E2k(z) :=
1

2ζ(2k)
G2k(z) = 1− 2k

B2k

∞∑
j=1

σk−1(j)qj .

From this formula, we may compute Eisenstein series explicitly. For example,

E4(z) = 1 + 240q + 2160q2 + 6720q3 +O(q4),

E6(z) = 1− 504q − 16632q2 − 122976q3 +O(q4).

Now, E3
4 − E2

6 is a modular form of weight 12; we see from these expressions that it has

constant term 0. It is therefore a nontrivial cusp form of weight 12. Computation shows that the

first nonzero coefficient of E3
4 − E2

6 is 1728; we will normalize further and write

∆ :=
1

1728
(E3

4 − E2
6) = q − 24q2 + 252q3 − 1472q4 + · · · .

The Spaces of Modular Forms

For each k ∈ Z, we letMk andM0
k be the C-vector spaces of weight-k modular forms

and cusp forms for PSL2(Z), respectively. Residue theorem computations give conditions which

allow us to completely characterize these spaces, as in the following theorems.

4Note that we may extend this definition to that of a sequence {Bk}∞k=0 defined by the generating function

x

ex − 1
=

∞∑
k=1

Bk
xk

k!
;

this extended definition implies that B2k+1 = 0 for k ≥ 1.
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Theorem 3.2 ([Ebe02, p. 59]; [Ser73, p. 88]). We have

1. dim(Mk) = dim(M0
k) = 0, for k odd, k < 0, and k = 2;

2. dim(M2k) = 1 and dim(M0
2k) = 0, for 4 ≤ 2k ≤ 10 and 2k = 14.

Additionally, multiplication by the form ∆ gives an isomorphismMk−12
∼−→M0

k.

Corollary 3.3 ([Ser73, pp. 88–89]). For k ≥ 0, we have

dim(Mk) =

bk/6c k ≡ 0 mod 6,

bk/6c+ 1 otherwise.

Theorem 3.4 ([Ebe02, p. 60]; [Ser73, p. 89]). The algebraM :=
⊕∞

k=0Mk is isomorphic to the

polynomial algebra C[E4,E6] of complex polynomials in the Eisenstein series E4 and E6.

These characterization results allow us to determine modular forms explicitly from infor-

mation about a few power series coefficients. For example, if f : H → C is a modular form with

constant term 1 and vanishing q1 coefficient, then

f ≡ E3
4 − 720∆ = 1 + 196560q2 + 16773120q3 +O(q4). (3.4)

We will return to this modular form in Section 3.1.3.

3.1.2 The Poisson Summation Formula

In this section, we give the necessary preliminaries for and a proof of the Poisson summa-

tion formula. This powerful formula relates the sums of a Schwartz function over a lattice L ⊂ Rn

to the sums of the function’s Fourier transform over L∗, the dual lattice of L.

We first recall that, for an absolutely integrable function f : Rn → C, the Fourier trans-

form f̂ of f is the function f̂ : Rn → C defined by

f̂(y) =
∫

Rn

f(x)e2πi〈x,y〉 dµ(x),

where µ(x) is the measure on Rn. We let S be the space of rapidly decreasing functions (or Schwartz

functions), those C∞ functions f : Rn → C such that, for all k and as 〈x, x〉 → ∞, f(x) and all

its partial derivatives decay as o(〈x, x〉k). The Fourier transform operator acts as an isomorphism

S → S; the equality ˆ̂
f(x) = f(−x) yields the inverse isomorphism.
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Theorem 3.5 (Poisson Summation Formula). Let L ⊂ Rn be a lattice and let f ∈ S. Then,∑
x∈L

f(x) =
1

vol(Rn/L)

∑
y∈L∗

f̂(y). (3.5)

The proof we follow is standard. Serre [Ser73, p. 107] gives a slightly more concise

approach based upon the same method, and Ebeling [Ebe02, pp. 44–45] proves Theorem 3.5 under

weaker conditions.5

Proof of Theorem 3.5. LetD be any fundamental domain for L and let F : Rn → C be the function

defined by F (z) :=
∑

x∈L f(x+ z). By construction, F (z) is continuous and L-periodic in z. The

function f therefore descends to a C∞ function on Rn/L with a Fourier expansion

F (z) =
∑
y∈L∗

F̂ (−y)e2πi〈y,z〉. (3.6)

Here, F̂ denotes the Fourier coefficient of F computed over Rn/L:

F̂ (y) =
1

vol(Rn/L)

∫
z∈Rn/L

F (z)e2πi〈z,y〉 dµ(z)

=
1

vol(Rn/L)

∫
z∈D

F (z)e2πi〈z,y〉 dµ(z)

=
1

vol(Rn/L)

∫
z∈D

∑
x∈L

(
f(x+ z)e2πi〈z,y〉

)
dµ(z)

=
1

vol(Rn/L)

∑
x∈L

∫
z∈(D−x)

(
f(z)e2πi〈z,y〉

)
dµ(z). (3.7)

Now, by the definition of D, we have Rn =
∐
x∈L(D − x). Thus, we obtain from (3.7) that

F̂ (y) =
1

vol(Rn/L)

∫
z∈Rn

f(z)e2πi〈z,y〉 dµ(z) = f̂(y). (3.8)

Substituting (3.8) into (3.6), we obtain

F (z) =
1

vol(Rn/L)

∑
y∈L∗

f̂(−y)e2πi〈y,z〉. (3.9)

Taking z = 0 in (3.9) then proves the desired result, since F (0) =
∑

x∈L f(x) and∑
y∈L∗

f̂(−y) =
∑
y∈L∗

f̂(y).

5Specifically, Ebeling [Ebe02, pp. 44–45] proves that (3.5) holds whenever L ⊂ Rn is a lattice and f : Rn → C is a
function such that
•
∫

Rn |f(x)| dµ(x) <∞,
•
∑

x∈L |f(x+ u)| converges uniformly for all u in a compact subset of Rn, and

•
∑

x∈L∗ f̂(y) converges absolutely.
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3.1.3 Theta Functions as Modular Forms

From the Poisson summation formula (3.5), we obtain that θL is a modular form whenever

L is a Type II lattice. En route to this result, we prove that every Type II lattice has rank divisible

by 8, a statement encountered in the introduction.

Theorem 3.6. Let L be a Type II lattice of rank n. Then, n ≡ 0 mod 8 and θL is a modular form

of weight n/2.

The proof of Theorem 3.6 will proceed quickly from the following lemmata.

Lemma 3.7. For any lattice L ⊂ Rn and positive t ∈ R, the theta series ΘL satisfies the identity

ΘL

(
e−2π/t

)
=

1
vol(Rn/L)

tn/2ΘL∗(e−2πt).

Proof. We let f(x) = e−π〈x,x〉/t ∈ S; we will show that

f̂(y) = t−n/2e−π〈x,x〉t. (3.10)

The lemma will then follow directly from Theorem 3.5 since ΘL

(
e−2π/t

)
=
∑

x∈L e
−π〈x,x〉/t.

Writing the integral defining f̂(y) with respect to the the standard orthogonal basis of Rn, we obtain

f̂(y) =
n∏
j=1

∫ ∞
−∞

e−πx
2
j/te2πixjyj dxj .

Thus, it suffices to prove (3.10) when n = 1; in this case, the claim is just the well-known integral∫ ∞
−∞

e−πx
2/te2πixy dx = e−πty

2
.

Lemma 3.8. For any lattice L ⊂ Rn, the theta function θL(z) =
∑

x∈L e
πiz〈x,x〉 converges abso-

lutely to a holomorphic function for all z ∈ H.

Proof. It suffices to show that θL(z) converges absolutely and uniformly for all z in every half-plane

H′ ⊆ H. To see this, we let M ∈ GLn(R) be the matrix of basis vectors of L, so that L = M · Zn.

Then, we set ε := min|x|=1〈Mx,Mx〉 > 0 so that 〈Mx,Mx〉 ≥ ε〈x, x〉 for all x ∈ Rn, and set

z0 := min{Im(z) : z ∈ H′}. The estimate

|θL(z)| =

∣∣∣∣∣∑
x∈L

eπiz〈x,x〉
∣∣∣∣∣ ≤∑

x∈L

∣∣∣eπiz〈x,x〉∣∣∣ =
∑
x∈Zn

∣∣∣eπiz〈Mx,Mx〉
∣∣∣

≤
∑
x∈Zn

e−πz0ε〈x,x〉 =

 ∞∑
j=−∞

e−πz0εj
2

n

<∞

then follows, proving the desired result.
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Lemma 3.9. For any self-dual lattice L ⊂ Rn and H 3 z 6= 0, the theta function θL satisfies the

identity

θL

(
−1
z

)
=
(z
i

)n/2
θL(z). (3.11)

Proof. By Lemma 3.8, both sides of (3.11) are holomorphic in z ∈ H. It therefore suffices to

prove (3.11) when R 3 t > 0 and z = it. Now, since L = L∗, we have vol(Rn/L) = 1. The

identity (3.11) follows directly from Lemma 3.7 because θL(it) =
∑

x∈L e
−πt〈x,x〉 = ΘL

(
e−2πt

)
and θL(−1/it) =

∑
x∈L e

−π〈x,x〉/t = ΘL

(
e−2π/t

)
.

The derivation of Lemma 3.9 just presented is predominantly a hybrid of the presentations

of Elkies [Elk09b] and Serre [Ser73, p. 107]. Our work in Section 3.3 will directly generalize this

approach. Ebeling [Ebe02, p. 47] gives a slightly different argument, which proves Lemma 3.9

without direct appeal to Lemma 3.7.6

We may now present the proof of Theorem 3.6.

Proof of Theorem 3.6. As in the proposition statement, letL ⊂ Rn be a Type II lattice of rank n. We

first prove that n ≡ 0 mod 8. Supposing otherwise, we may assume n ≡ 4 mod 8, by replacing L

with L ⊕ L or L ⊕ L ⊕ L ⊕ L as necessary. Then, recalling that vol(Rn/L) = 1 because L is

unimodular, we obtain from Lemma 3.9 that

θL(σz) = θL

(
−1
z

)
=
(z
i

)n/2
θL(z) = (−1)n/4(z)n/2θL(z) = −zn/2θL(z).

From this formula and the fact that θL(τz) = θL(z), we compute that

θL((τσ)z) = −zn/2θL(z).

It then follows that

θL
(
(τσ)3z

)
= −

(
1

1− z

)n/2(z − 1
z

)n/2
zn/2θL(z) = −(−1)n/2θL(z) = −θL(z).

But this is a contradiction, since we have from (3.2) that (τσ)3 = ( 1 0
0 1 ). Thus, we must have

n ≡ 0 mod 8.

6In fact, Ebeling [Ebe02, p. 47] omits the hypothesis that L is self-dual and proves the slightly stronger identity

θL

(
−1

z

)
=

1

vol(Rn/L)

(z
i

)n/2

θL∗(z).
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Now, since 8 | n, we may simplify the identity (3.11) to obtain

θL

(
−1
z

)
= zn/2θL(z). (3.12)

Combining (3.12) with Lemma 3.8 shows that θL is a modular form of weight n/2.

Applications to Classification of Low-rank Type II Lattices

Combining Theorems 3.2 and 3.6 , we can quickly determine the theta function θE8 of the

E8 lattice. By Theorem 3.6, θE8 is a modular form of weight 8/2 = 4. We know from Theorem 3.2

that the spaceM4 of such forms is one-dimensional, generated by the weight-4 form E4. Since θE8

has constant term 1, we must have

θE8(z) ≡ E4(z) = 1 + 240q + 2160q2 +O(q3), (3.13)

where q = e2πiz . We may read directly from (3.13) that a2(E8) = 240, that is, that E8 has exactly

240 roots. Moreover, any Type II lattice L of rank 8 must have theta function θL ≡ θE8 ; this gives

an immediate proof that E8 is the unique Type II lattice of rank 8.

Theorem 3.10. If L is a Type II lattice of rank 8, then L ∼= E8.

Proof. If L is a Type II lattice of rank 8, then a2(L) = 240 by the argument above. Since E8 is the

only root lattice of rank at most 8 with at least 240 roots, we must have L2(L) ∼= E8. Since E8 has

rank 8 and is self-dual, this implies that L ∼= E8.

Additionally, we may now fully classify the Type II lattices of rank 16.

Theorem 3.11. If L is a Type II lattice of rank 16, then either L ∼= E2
8 or L ∼= D+

16.

Proof. First, we obtain from Theorems 3.2 and 3.6 that θL ≡ (E4)2, hence a2(L) = 480. It then

follows from the classification of root systems that either L2(L) ∼= E2
8 or L2(L) ∼= D16. In the

former case, we have L ∼= E2
8 . In the latter case, we must have

D16 ⊂ L ⊂ D∗16,

hence either L ∼= Z16 or L ∼= D+
16. Since Z16 is not even, the result follows.

Now, if L is an extremal Type II lattice of rank 24, then θL is a modular form of weight 12

with constant term 1 and vanishing coefficient of q1 = e2πiz . In this case, we see that the theta

series of L must be the modular form of equation (3.4); L therefore has 196560 vectors of minimal

norm. Mallows, Odlyzko, and Sloane [MOS75] obtained their upper bound for the minimal norms

of Type II lattice vectors via more general application of this approach.
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3.2 The Space of Harmonic Polynomials

We now introduce spherical harmonic polynomials (or just harmonic polynomials), which

serve as the “weighting” factors P in the weighted theta series ΘL,P (q) =
∑

x∈L P (x)q〈x,x〉/2 and

weighted theta functions θL,P (z) = ΘL,P (e2πiz). We define these polynomials in Section 3.2.1

and discuss simple examples. We then prove a decomposition theorem for space of homogeneous

polynomials in Section 3.2.2. Although we will not use this decomposition result directly until

Section 4.2 of Chapter 4, it provides important intuition regarding the nature of harmonic polyno-

mials. In Section 3.2.3, we provide some remarks on the relationship between our development of

harmonic polynomials and the representation theory of sl2.

3.2.1 Basic Definitions and Examples

We denote by P the C-vector space of polynomials in n variables. We then let Pd ⊂P

denote the subspace of degree-d homogenous polynomials, so that

P =
∞⊕
d=0

Pd.

We adopt the convention that Pd = {0} for d < 0. The operator

∆ :=
n∑
j=1

∂2

∂x2
j

: C∞(Rn)→ C∞(Rn)

is called the Laplacian; it maps P to P and more specifically maps Pd to Pd−2. In this definition,

we have fixed an orthogonal coordinate system x1, . . . , xn of Rn. However, the operator ∆ is still

essentially canonical, as it commutes with transformations in the orthogonal group

On(R) :=
{
M ∈ GLn(R) : MTM = MMT = I

}
.

Now, we define the space of degree-d harmonic polynomials on Rn, denoted P0
d :

P0
d := ker (∆ : Pd →Pd−2) .

The direct sum

P0 :=
∞⊕
d=0

P0
d = ker (∆ : P →P)

is called the space of harmonic polynomials on Rn.
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Simple Examples

If P ∈ P0 is a constant function, then we have ∆P ≡ 0, hence P ∈ P0
0 . Conversely,

P0
0 ⊆P0, so we see that P0

0 = P0 and dim(P0
0 ) = dim(P0) = 1 for any n. Similarly, we see

that P0
1 = P1 and dim(P0

1 ) = dim(P1) = n. For any n and P =
∑n

j=1

∑n
k=j ajkxjxk ∈P2,

we have P ∈P0
2 if and only if

∑n
j=1 ajj = 0 because ∆P = 2

∑n
j=1 ajj .

3.2.2 Decomposition of Degree-d Homogenous Polynomials

We now introduce two additional operators on C∞(Rn) which restrict to operators on P:

E := x · ∇ =
n∑
j=1

xj
∂

∂xj
, F := 〈x, x〉 =

n∑
j=1

x2
j .

The following fact regarding the operator E dates back to Euler.

Fact 3.12. The space Pd of degree-d homogenous polynomials is the d-eigenspace of E|P . That

is, EP = d · P for any P ∈Pd.

The F operator is multiplication by the norm, which clearly restricts to an injection Pd → Pd+2.

From this and the definition of P0
d , we obtain the following fact.

Fact 3.13. We have P0
d = ker (F∆ : Pd →Pd). That is, the space Pd of degree-d harmonic

polynomials is the 0-eigenspace of F∆|Pd

The remainder of this section works towards a proof of the following result which de-

composes the spaces of degree-d homogenous polynomials in terms of the spaces of harmonic

polynomials. For k = 0, 1, . . . , bd/2c, we define Pk
d := FkP0

d−2k; this notation is consistent with

the notation P0
d for the space of degree-d harmonic polynomials.

With these definitions, we have the following decomposition theorem.

Proposition 3.14. 1. The map ∆ : Pd →Pd−2 is surjective.

2. We have the direct sum decomposition Pd =
⊕bd/2c

k=0 Pk
d = P0

d ⊕ FPd−1.

3. With λd(k) := k(4(d − k − 1) + 2n) and for each k = 0, 1, . . . , bd/2c, the space Pk
d is

the λd(k)-eigenspace of F∆|Pd
. Furthermore, {λd(k)}bd/2ck=0 is the full set of eigenvalues of

F∆|Pd
.

4. dim(P0
d) = dim(Pd)− dim(Pd−2) =

(
n+d−1

d

)
−
(
n+d−3

d

)
.
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In the sequel, we only directly apply the second part of Proposition 3.14. The remaining

components are presented for intuition regarding the spaces P0
d .

The proof of Proposition 3.14 will require several intermediate results. Our presentation

here is heavily based upon that of Elkies [Elk09b]. In particular, the lemmata we present appear

in [Elk09b].

Commutation Relations for ∆, E, and F

First, we prove a lemma which gives commutation relations for the operators ∆, E, and F.

Here, the commutator [A,B] of two operators A and B (on any vector space) is given by[
A,B

]
:= AB −BA.

From this definition, it is immediate that [A,B] = −[B,A].

Lemma 3.15. We have the commutation relations[
∆,F

]
= 4E + 2n,

[
E,∆

]
= −2∆,

[
E,F

]
= 2F. (3.14)

Proof. The relations (3.14) follow upon direct computation. Details of these computations are given

in [Elk09b].

The λd(k)-eigenspaces of F∆

Now, we examine the λd(k)-eigenspaces of F∆|Pd
, where

λd(k) = k(4(d− k − 1) + 2n)

is as defined in the third part of Proposition 3.14. The commutation relation for [∆,F] found in

Lemma 3.15 shows that

F∆FP = F
(
F∆ +

[
∆,F

])
P = F(F∆ + 4E + 2n)P = F(λ+ 4d+ 2n)P,

hence if P ∈Pd is in the λ-eigenspace of F∆ for some λ, then FP ∈Pd+2 is in the (λ+4d+2n)-

eigenspace of F∆|Pd+2
. It then follows that FkP is an eigenvector of F∆|Pd+2k

with eigenvalue

λ+
k−1∑
j=0

(4(d+ 2j) + 2n) = λ+ k (4(d+ k − 1) + 2n) . (3.15)

Taking λ = 0 and d 7→ (d− 2k) in (3.15) shows that any P ∈P0
d−2k is a λd(k)-eigenvector of the

operator F∆|Pd
.



Chapter 3: Weighted Theta Functions 35

Lemma 3.16. For a fixed d ≥ 0 and any k and k′ with 0 ≤ k < k′ ≤ d/2, we have λd(k) < λd(k′).

Proof. The result is immediate by induction, since

λd(k)− λd(k − 1) = 2n+ 4(d− 2k) ≥ 2n ≥ 0

for k ≤ d/2.

Proof of the Decomposition

With these preliminaries complete, we may now prove Proposition 3.14.

Proof of Proposition 3.14. Since Pk
d is contained in the λd(k)-eigenspace of F∆ and λd(k) 6=

λd(k′) for k 6= k′ by Lemma 3.16, the sum
⊕bd/2c

k=0 Pk
d is direct. To see that this sum actually

equals Pd ⊇
⊕bd/2c

k=0 Pk
d , we compare dimensions.

We have dim(Pk
d ) = dim(P0

d−2k) because F is injective. Since

P0
d−2k = ker

(
∆ : Pd−2k →Pd−2(k+1)

)
,

we obtain

dim(P0
d−2k) ≥ dim(Pd−2k)− dim(Pd−2(k+1)). (3.16)

We then compute

dim(Pd) ≥ dim

bd/2c⊕
k=0

Pk
d

 =
bd/2c∑
k=0

dim(Pk
d ) =

bd/2c∑
k=0

dim(P0
d−2k)

≥
bd/2c∑
k=0

(
dim(Pd−2k)− dim(Pd−2(k+1))

)
= dim(Pd). (3.17)

Thus, we must have equality in (3.16) for all k, hence ∆|Pd−2k
is surjective for all k. This proves

the first and fourth parts of the proposition, and the decomposition

Pd =
bd/2c⊕
k=0

Pk
d (3.18)

also follows from (3.17).7 To see the remainder of the second part of the proposition, we simply note

that Pk
d = FPk−1

d−2 for each k > 0 and compare the decompositions (3.18) of Pd and Pd−2. Since

the spaces Pk
d are λd(k)-eigenspaces of F∆|Pd

, the decomposition (3.18) diagonalizes F∆|Pd
; the

third part of the proposition then follows.

7Specifically, equality in (3.17) implies that dim(Pd) = dim(
⊕bd/2c

k=0 Pk
d ).
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3.2.3 The Connection with sl2

The development of the harmonic weight enumerator theory we present in Sections 5.2

and 5.3 relies heavily upon connections between the spaces of the discrete harmonic polynomials

and the finite-dimensional representation theory of sl2, the complex Lie algebra generated by

X = ( 0 1
0 0 ) , H =

(
1 0
0 −1

)
, Y = ( 0 0

1 0 ) .

The discussion in this section may be interpreted in terms of the inifinite-dimensional represen-

tation theory of sl2. Specifically, the commutation relations obtained in Lemma 3.15 imply an

isomorphism of Lie algebras between sl2 and the span of
{

∆,E + n
2 ,F
}

:

X←→ 1
2

∆, H←→ −
(

E +
n

2

)
, Y ←→ −2F. (3.19)

An analogous isomorphism is key to our discussion in Section 5.2.

3.3 The Functional Equation for Weighted Theta Functions

In this section, we derive the following functional equation for the weighted theta se-

ries ΘL,P (q) of a lattice L ⊂ Rn.

Theorem 3.17. For any lattice L ⊂ Rn, real t > 0, and P ∈ P0
d , the weighted theta series ΘL,P

satisfies the functional equation

ΘL,P

(
e−2πt

)
=

1
vol(Rn/L)

i−dt
n
2

+dΘL∗,P

(
e−2π/t

)
.8

This result fully generalizes Lemma 3.7 to the case of weighted theta functions.9 Our

path to Theorem 3.17 will follow that of Elkies [Elk09b]. This approach will also guide our devel-

opment of the harmonic weight enumerator theory in Section 5.3. Iwaniec [Iwa97, pp. 167–168]

gives another approach to Theorem 3.17, via a different development of the theory of harmonic

polynomials.

The key application of Theorem 3.17 in our discussion is the following corollary which

we prove in Section 3.3.2.

Theorem 3.18. For L a Type II lattice of rank n and P ∈P0
d , the weighted theta function θL,P is

a modular form of weight n2 + d. Furthermore, θL,P is a cusp form if d > 0.

8Here and hereafter, t
n
2 +d denotes the (n+ 2d)-th power of the principal square root of t.

9Lemma 3.7 follows from Theorem 3.17 upon taking P ∈P0
0 = P0.
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This result may be derived in a (mostly) elementary but less structural fashion by explicit computa-

tion. Ebeling [Ebe02, pp. 87–99] presents this approach, in which an analog of Theorem 3.17 arises

as an intermediate step.

3.3.1 Derivation of the Functional Equation

We now develop the machinery required in the proof of Theorem 3.17.

Conjugation of ∆, E, and F by the Fourier transform

First, we derive conjugation relations which relate the Fourier transform f̂ of a function

f ∈ S with the Fourier transforms of ∆f , Ef , and Ff .

Lemma 3.19. For any j (1 ≤ j ≤ n), the Fourier transforms of ∂f/∂xj and xjf are respectively

−2πiyj f̂ and (2πi)−1∂f̂/∂yj . (Here, {xj} and {yj} are respectively the coordinate systems of the

domain and range of the Fourier transform.)

Proof. The first claim follows immediately upon integration by parts. The second follows upon

differentiating the integral defining f̂ :

∂

∂yj
f̂(y) =

∂

∂yj

∫
Rn

f(x)e2πi〈x,y〉 dµ(x) = 2πixjf(x).

Lemma 3.20. Let f ∈ S. The Fourier transforms of ∆f , (2E + n)f , and Ff are respectively

−(2π)2Ff̂ , −(2E + n)f̂ , and −(2π)−2∆f̂ .

Proof. The result follows from iterative applications of Lemma 3.19, used to compute the Fourier

transforms of ∂2f/∂x2
j , xj∂f/∂xj , and x2

jf . For example, Lemma 3.19 gives that the Fourier

transform of
∂2f

∂x2
j

=
∂ ∂f
∂xj

∂xj

is equal to (−2πiyj)2f̂ ; we obtain the claimed relation for the Fourier transform of ∆f from the

sum
∑n

j=1(2πi)2y2
j f̂ = (2πi)2Ff̂ . The claimed relation for (2E +n)f follows from the expression

(2E + n) =
n∑
j=1

(
xj

∂

∂xj
+

∂

∂xj
◦ xj

)
.
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Multiplication by Gaussians

We introduce the family of operators {Gt}t∈C defined by

Gt : C∞(Rn)→ C∞(Rn), g
Gt7−→ e−πt〈x,x〉 · g.

For each t ∈ C, the operator Gt is multiplication by the Gaussian e−πt〈x,x〉. Clearly, we have

GtGt′ = Gt+t′ , hence these operators form a group parameterized by t ∈ C with G−1
t = G−t.

We now show two disjoint results which will both be crucial in the proof of Theorem 3.17.

The first shows that if f ∈ GtP , then f̂ ∈ G1/tP . The second gives relations for the conjugation

of ∆, E, and F by Gt.

Lemma 3.21. Let t ∈ C with Re(t) > 0 and suppose that P ∈ Pd. Then, the Fourier transform

of GtP is equal to G1/tP̂ for some P̂ =
∑d

d′=0 P̂d′ with P̂d′ ∈ Pd′ for each d′ (0 ≤ d′ ≤ d) and

P̂d = idt−(n
2

+d)P .

Proof. The proof proceeds by induction upon d, with equation (3.10) serving as the base case. We

suppose that we have shown the result for P ∈Pd and proceed to show the claim for P ∈Pd+1.

Since the Fourier transform is linear and Pd+1 = (x1Pd) + · · ·+ (xnPd), it suffices to

show the result for each xjP (1 ≤ j ≤ n) with P ∈ Pd. Now, by Lemma 3.19, we may compute

that the Fourier transform of GtxjP = xjGtP is

1
2πi

∂

∂yj

(
G1/tP̂

)
= G1/t

(
1

2πi

(
∂P̂

∂yj
− 2π

t
yjP̂

))
. (3.20)

Now, P̂ ∈Pd and has leading term P̂d = idt−(n
2

+d)P , by the inductive hypothesis. It follows that

the term
1

2πi

(
∂P̂

∂yj
− 2π

t
yjP̂

)

of (3.20) is of degree d+1 with leading term−P̂d/it = iP̂d/t = id+1t−(n
2

+d+2)yjP ; this completes

the induction.

Lemma 3.22. We have the relations

Gt∆G−t = ∆ + πt(4E + 2n) + (2πt)2F, GtEG−t = E + 2πtF, GtFG−t = F. (3.21)

Proof. We note that Gtxj = xjGt, hence the operators Gt clearly commute with F. Additionally,

Gt(∂/∂xj)G−t = 2πtxj , from which the conjugation relation for E follows quickly. The commu-

tation relation for ∆ follows similarly, by a longer computation.
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Corollary 3.23. The operators ∆, E, and F act on GtP . The subspace GtP0
d is the intersection of

ker
(
∆ + πt(4E + 2n) + (2πt)2F

)
with the d-eigenspace of E + 2πtF in GtP0

d .

Proof of the Functional Equation

We have developed all the ingredients required in the proof of Theorem 3.17. As a final

intermediate step, we prove an expression for the Fourier transform of the product of the Gaussian

e−π〈x,x〉 and a harmonic polynomial.

Proposition 3.24. Fix t > 0 and P ∈P0
d and let f = GtP . Then, the Fourier transform f̂ of f is

given by

idt−(n
2

+d)G1/tP. (3.22)

Proof. By Corollary 3.23, we have that

(
∆ + πt(4E + 2n) + (2πt)2F

)
f = 0, (E + 2πtF) f = d · f. (3.23)

Applying Lemma 3.20 to the Fourier transforms of the expressions in (3.23), we obtain

(
−2(π)2F− πt (4E + 2n)− t2∆

)
f̂ = 0, −

(
E + n+

t

2π
∆

)
f̂ = d · f̂ . (3.24)

By Lemma 3.21, we have f̂ = G1/tP̂ for some P̂ ∈P . From (3.24), we then compute that

G1/t(d · P̂ ) = d · f̂ =
(

E +
2π
t

F

)
f̂ =

(
E +

2π
t

F

)
G1/tP̂ = G1/tEP̂ , (3.25)

where the last equality is a consequence of Lemma 3.22. But (3.25) implies that P̂ is in the d-

eigenspace of E; that is, P̂ ∈Pd. Lemma 3.21 then gives that P̂ = idt−(n
2

+d)P as desired.

Finally, we note that Theorem 3.17 follows almost immediately from Proposition 3.24.

Proof of Theorem 3.17. The result follows directly upon application of the Poisson summation for-

mula (Theorem 3.5) to GtP , using the expression (3.22) for the Fourier transform of GtP obtained

in Proposition 3.24.

3.3.2 Weighted Theta Functions as Modular Forms

Now, just as in the proof of Theorem 3.6, we will quickly obtain the fact that θL,P is a

modular form whenever L ⊂ Rn is Type II and P ∈ P0
d . Indeed, this fact follows quickly from

Theorem 3.17 upon proving that θL,P is holomorphic onH.
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Lemma 3.25. For any lattice L ⊂ Rn and P ∈ P0
d , the theta function θL,P (z) converges to a

holomorphic function for all z ∈ H.

Proof. As in the proof of Lemma 3.8, it suffices to show that θL,P (z) converges absolutely and

uniformly for all z in some half-plane H′ ⊆ H. This follows from essentially the same argument

used to prove Lemma 3.8 once we note that∑
x∈Zn

P (x)e−πz0ε〈x,x〉 <∞.

Lemma 3.26. For any self-dual lattice L ⊂ Rn, harmonic polynomial P ∈ P0
d , and nonzero

z ∈ H, the weighted theta function θL,P satisfies the identity

θL

(
−1
z

)
= i−d

(z
i

)n
2

+d
θL(z). (3.26)

Proof. We follow an argument analogous to that for Lemma 3.9. We know that both sides of

(3.26) are holomorphic in z ∈ H, by Lemma 3.25. We therefore need only prove (3.26) when

t > 0 is real and z = it. We have vol(Rn/L) = 1 since L = L∗. Then, the identity (3.26)

follows from Theorem 3.17 because we have θL,P (it) =
∑

x∈L P (x)e−πt〈x,x〉 = ΘL,P

(
e−2πt

)
and θL,P (−1/it) =

∑
x∈L P (x)e−π〈x,x〉/t = ΘL,P

(
e−2π/t

)
.

Theorem 3.18 now follows immediately from Lemma 3.26.

Proof of Theorem 3.18. From Lemma 3.26, we have the identity

θL

(
−1
z

)
= (−1)

n
4 z

n
2

+dθL(z). (3.27)

Since L is of Type II, we have n ≡ 0 mod 8 by Theorem 3.6. The fact that θL,P is a modular form

of weight n2 + d then follows immediately from (3.27) and Lemma 3.25. Now, the constant term of

θL,P (z) is
∑

x∈L0
P (x)e−πiz〈x,x〉 =

∑
x∈L0

P (x) = P (0); this expression vanishes when d > 0.

Thus, we see that θL,P is a cusp form when d > 0.

3.4 Zonal Spherical Harmonic Polynomials

In this section, we introduce a special class of harmonic polynomials, called the zonal

spherical harmonic polynomials, which will be useful for the applications we present in Chapter 4.

These polynomials are invariant under orthogonal transformations fixing a given vector ẋ ∈ Rn.
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Consequently, the zonal spherical harmonic polynomials admit an expression in terms of the Gegen-

bauer polynomials of parameter n
2 − 1, a well-known class {Gd}∞d=0 of degree-indexed orthogonal

polynomials which satisfy the following differential equation:

(1− z2)G′′d(z)− (n− 1)zG′d(z) + d(n− 2 + d)Gd(z) = 0.10 (3.28)

3.4.1 Preliminaries

We fix some ẋ ∈ Rn throughout. We denote the space of degree-d homogeneous polyno-

mials invariant under orthogonal transformations fixing ẋ by ZPd ⊂ Pd, and define the space of

degree-d zonal spherical harmonic polynomials ZP0
d by

ZP0
d := ZPd ∩P0

d .

Finally, we define the space ZP0 of zonal spherical harmonic polynomials by

ZP0 :=
∞⋃
d=0

ZP0
d .

First, we observe the following lemma.

Lemma 3.27. If f : Rn → C is invariant under orthogonal transformations fixing ẋ ∈ Rn, then

f(x) can be expressed as a function of 〈x, x〉 and 〈x, ẋ〉.

Proof. Without loss of generality, we may assume that ẋ = ε(n), whence we translate the invariance

condition into invariance under On−1. Now, for any x, x′ ∈ Rn−1 with 〈x, x〉 = 〈x′, x′〉, there is a

transformation in On−1 taking x 7→ x′. We therefore see that we must have f(x) = f(x′) for any

x, x′ ∈ Rn with xn = x′n and

〈(x1, . . . , xn−1), (x1, . . . , xn−1)〉 = 〈(x′1, . . . , x′n−1), (x′1, . . . , x
′
n−1)〉.

It then follows that we may express f(x) in terms of 〈x, x〉 and 〈x, ẋ〉, since

〈x, ẋ〉 = 〈x, ε(n)〉 = xn.

As the zonal spherical harmonic polynomials are homogeneous polynomial functions, the following

corollary is immediate from Lemma 3.27.

Corollary 3.28. If P ∈ ZP0, then P is a homogeneous polynomial in 〈x, x〉 and 〈x, ẋ〉.

10See [Vil68, pp. 457–468] for facts regarding the polynomials Gd, including the power series expression for Gd(z)
(see [Vil68, p. 458]) and for a development of the differential equation (3.28) (see [Vil68, p. 459]).
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3.4.2 Determination of the Zonal Spherical Harmonic Polynomials

Now, we determine the zonal spherical harmonic polynomials explicitly, in terms of the

Gegenbauer polynomials. For this characterization, we let Ġd(·, ·) denote the homogeneous poly-

nomial such that Ġd(t, 1) = Gd(t).

Proposition 3.29. If P ∈ ZP0
d , then d ∈ 2Z and P = b · Pd;ẋ for some constant b, where Pd;ẋ is

the zonal spherical harmonic polynomial defined by

Pd;ẋ(x) = Ġd

(
〈x, ẋ〉, (〈x, x〉〈ẋ, ẋ〉)1/2

)
.

Proof. By Corollary 3.28, we must have d ∈ 2Z and we may write an arbitrary P ∈ ZP0
d in the

form

P =
d/2∑
k=0

bd−2k · 〈x, x〉k〈x, ẋ〉d−2k, (3.29)

for constants {bd−2k}
d/2
k=0. Without loss of generality, we may assume that ẋ = ε(n), so that (3.29)

simplifies to

P =
d/2∑
k=0

bd−2k · 〈x, x〉kxd−2k
n . (3.30)

To show the proposition, it suffices to show that the ratios between consecutive coeffi-

cients of P are the same as those between consecutive coefficients of the even-degree powers of t

in Gd(t).11 We now demonstrate this fact via explicit computation.

First, we use (3.30) to compute ∆P , which must vanish since P ∈ ZP0
d ⊂P0

d :

0 = ∆P =
d/2∑
k=0

bd−2k ·
(

(2k(2(k − 1) + n+ 2(d− 2k))) 〈x, x〉k−1xd−2k
n

+ (d− 2k)(d− 2k − 1)〈x, x〉kxd−2(k+1)
n

)
. (3.31)

Upon comparing the coefficients of 〈x, x〉k−1xd−2k
n in (3.31), we observe that

bd−2k

bd−2(k−1)
= − 2k(2d− 2k + n− 2)

(d− 2k + 1)(d− 2k + 2)
. (3.32)

11This suffices because the coefficients of odd-degree powers of t in the Gegenbauer polynomials of even degree vanish
(see [Vil68, p. 458]).
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Now, if we express the even-degree part of Gd in the form
∑d/2

k=0 b
′
d−2k · zd−2k, then the

differential equation (3.28) implies that

0 = (1− z2)
d/2∑
k=0

b′d−2k · (d− 2k)(d− 2k − 1)zd−2k−2

+ (n− 1)z
d/2∑
k=0

b′d−2k · (d− 2k)zd−2k−1 + d(n− 2 + d)
d/2∑
k=0

b′d−2k · zd−2k. (3.33)

Equating coefficients of zd−2k in (3.33) shows that

b′d−2k

b′d−2(k−1)

=
(d− 2k)(d− 2k − 1) + (n− 1)(d− 2k)− d(n− 2 + d)

(d− 2(k − 1))(d− 2(k − 1)− 1)

= − 2k(2d− 2k + n− 2)
(d− 2k + 1)(d− 2k + 2)

. (3.34)

As (3.32) and (3.34) agree, we have shown the result.
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Configurations of Type II Lattices

In this chapter, we apply the powerful weighted theta function machinery developed in

Chapter 3. Many of the applications we present are configuration results, characterizing the possible

configurations of short vectors of Type II lattices of certain ranks.1 These results are derived via

the theory of modular forms, hence we may discuss and obtain configuration results for extremal

Type II lattices in dimensions where it is not yet known whether such lattices exist.

Weighted theta function methods suffice to give a full classification of the Type II lattices

of ranks at most 24. Following classical approaches, we discuss the classifications of these lattices

in Section 4.1.

As we mentioned in Section 2.1.4, a full classification of Type II lattices of ranks at

least 32 appears to be out of reach. Nonetheless, we may use weighted theta functions to ob-

tain configuration results for such lattices. In Section 4.3, we derive configuration results for ex-

tremal Type II lattices of ranks n = 8, 24, 32, 40, 48, 56, 72, 80, 96, 120. The results for n = 8, 24

are well-known2; those for n = 32 are originally due to Ozeki [Oze86a] and Venkov [Ven84a];

those for n = 40, 48 are due to Ozeki [Oze89] and [Oze86b], respectively; those for dimensions

n = 56, 72, 96 are original to the author [Kom09]; and those for n = 80, 120 are original to the

author and Abel [KA08]. We prove all of these configuration results in Section 4.3, using a unified

method drawn from the approaches of [Kom09] and [KA08]. This method somewhat simplifies

1Our use of the term “configuration” for such results follows the previous literature: [Ven80], [Oze86a], and [Oze86b].

2As Theorems 3.10 and 4.2 indicate, there are unique extremal Type II lattices of ranks n = 8, 24. The configuration
results for such lattices can therefore implicitly be obtained from the lattices themselves. As we show at the end of
Section 4.3.2, these configuration results may also be derived via weighted theta function methods. This approach yields
the configuration results independently of the classification results in these dimensions. This is a useful exercise, since
configuration results of the sort we prove can be to show classification results.
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the arguments of [Oze86a], [Ven84a], [Oze89], and [Oze86b]. Then, we prove a new configuration

result of Elkies and the author [EK09b] for extremal Type II lattices of ranks n = 40, 80.

In Chapter 6, we present coding-theoretic results analogous to the results of this chapter

for extremal Type II lattices of ranks n = 8, 24, 32, 48, 56, 72, 96. Our approaches to these coding-

theoretic results exploit several analogies with the methods of this chapter.

4.1 Type II Lattices of Rank 24

In this section, we state and discuss the classification of rank-24 Type II lattices. Although

we do not fully prove this result, we do derive a condition on the root systems of such lattices. Using

this condition, we give proofs of the classifications of Type II lattices of ranks 8 and 16 alternate to

those presented in Section 3.1.3.

4.1.1 Preliminaries

Much of the discussion in this section will use the following lemma.

Lemma 4.1. Let L be a Type II lattice of rank n = 8, 16, 24. Then,

1. for all ẋ ∈ Rn, we have
∑

x∈L2
〈x, ẋ〉2 = 1

n · 2 · a2(L) · 〈ẋ, ẋ〉,

2. either L2 = ∅ or L2 spans L⊗ R, and

3. all irreducible components of L2(L) have Coxeter number equal to a2(L)/n.

Proof. First, we fix some ẋ ∈ L⊗ R and recall the explicit form of the polynomial P2;ẋ:

P2;ẋ(x) = 〈x, ẋ〉2 − 〈x, x〉〈ẋ, ẋ〉
n

. (4.1)

By Theorem 3.18, θL,P2;ẋ is a cusp form of weight (n + 4)/2. By comparing power series coeffi-

cients, it follows from Theorem 3.2 that∑
x∈L2

(
〈x, ẋ〉2 − 〈x, x〉〈ẋ, ẋ〉

n

)
=
∑
x∈L2

P2;ẋ(x) = 0.

We then find that

∑
x∈L2

〈x, ẋ〉2 =
1
n

∑
x∈L2

〈x, x〉

 〈ẋ, ẋ〉 =
1
n
· 2 · a2(L) · 〈ẋ, ẋ〉; (4.2)

this proves the first part of the lemma.
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Now, if there were some ẋ ∈ L ⊗ R not in the span of L2, then the left side of (4.2)

would vanish. In this case, however, we would need a2(L) = 0; the second part of the lemma

then follows. The third part of the lemma follows from (2.4) and (4.2), upon taking ẋ to lie in an

irreducible component of L2(L).

We also recall the Coxeter numbers of the irreducible root lattices, which we first stated

in (2.3):

h(An) = n+ 1, h(Dn) = 2(n− 1), h(E6) = 12, h(E7) = 18, h(E8) = 30.

4.1.2 Niemeier’s Classification and Venkov’s Root System Condition

Niemeier [Nie73] fully classified the Type II lattices of rank 24, showing in particular that

these lattices are characterized by their root systems. Specifically, he proved the following theorem.

Theorem 4.2 ([Nie73]). There are precisely 24 Type II lattices L of rank 24, up to isomorphism.

Each of these lattices L is uniquely determined by its root sublattice L2(L).

Venkov [Ven80] rederived Theorem 4.2 via a more natural argument. Although we will

not reproduce the complete proof of Theorem 4.2 here, we will prove the following intermediate

result obtained by Venkov [Ven80].3

Proposition 4.3 ([Ven80]). If L is a Type II lattice of rank 24, then L2(L) is one of the following

twenty-four lattices:

∅, A24
1 , A12

2 , A8
3, A6

4, A4
6, A3

8, A2
12, A24,

D6
4, D4

6, D3
8, D2

12, D24, E4
6 , E3

8 ,

A4
5 ⊕D4, A2

7 ⊕D2
5, A2

9 ⊕D6, A15 ⊕D9,

A11 ⊕D7 ⊕ E6, A17 ⊕ E7, D10 ⊕ E2
7 , D16 ⊕ E8.

Proof. The result follows immediately from the n = 24 case of Lemma 4.1. If L2 6= ∅ then L2(L)

takes the form L2(L) =
⊕24

j=1A
αj

j +
⊕24

k=4D
βk
k +

⊕8
`=6E

γ`
` . From the second part of Lemma 4.1,

we have that L2 spans L⊗ R, hence

24∑
j=1

jαj +
24∑
k=4

kβk +
8∑
`=6

`γ` = 24.

3The proof that each of the possible candidates for L2(L) listed in Proposition 4.3 corresponds to a unique Type II
lattice is an exercise in coding theory rather far afield of our discussion. Details of this argument can be found in
Venkov [Ven80].



Chapter 4: Configurations of Type II Lattices 47

Combining this equation with the condition that all irreducible components of L2(L) have the same

Coxeter number (the third part of Lemma 4.1), we quickly determine that the only possibilities for

L2(L) are those listed in the proposition statement.4

Remarks

If C is a Type II code of length 24, then the lattice LC obtained from applying Construc-

tion A to C is a Type II lattice of rank 24. It therefore follows from Proposition 4.3 that, for any

such C, the tetrad subcode C4(C) of C is equal to one of the following nine tetrad codes:

∅, d6
4, d4

6, d3
8, d2

12, d24, e2
7 ⊕ d10, e3

8, e8 ⊕ d16.

Using the theory of harmonic weight enumerators developed in Chapter 5, we give a direct proof of

this fact in Section 6.2.

Theorem 4.2 also implies more efficient proofs of Theorems 3.10 and 3.11.

Alternate Proofs of Theorems 3.10 and 3.11. Suppose that L is a Type II lattice of rank 8. Then,

the lattice L⊕E8 ⊕E8 is Type II of rank 24. By Proposition 4.3, L2(L⊕E8) ∼= E3
8 . But then, we

must have L = E8; this proves Theorem 3.10.

Similarly, suppose that L is a Type II lattice of rank 16. Then, the lattice L⊕E8 is Type II

of rank 24. By Proposition 4.3, L2(L⊕E8) is either E3
8 orD16⊕E8, and by Theorem 4.2 we know

that L ⊕ E8 is determined uniquely by L2(L ⊕ E8). This, combined with the fact that the lattices

E2
8 and D+

16 are distinct Type II lattices of rank 16, proves Theorem 3.11.

4.2 Extremal Type II Lattices and Spherical t-Designs

We now present an important application of weighted theta functions which is relevant to

our discussion in Section 4.3.

Theorem 4.4 ([Ven01]). If L is an extremal Type II lattice of rank n, then Lm is a spherical(
(2t(n) + 1) + 1

2

)
-design for any m > 0 such that Lm 6= ∅, where

t(n) :=


5 n ≡ 0 mod 24,

3 n ≡ 8 mod 24,

1 n ≡ 16 mod 24.

(4.3)

4This computation reduces to solving a system of linear equations in the αj , βk, and γ`. Explicit details are given
in [Ven80].
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Proposition 2.3, stated in Section 2.4.2, is a special case of this result. Our proof of

Theorem 4.4 follows the argument of Venkov [Ven01]. The key to this approach is a proposition

derived from the decomposition of Pd obtained in Proposition 3.14.

Proposition 4.5. For a lattice L and m > 0 such that Lm 6= ∅, the set of vectors Lm is a spherical

t-design if and only if ∑
x∈Lm

P (x) = 0

for all P ∈
⋃t
d=1 P0

d .

Proof. The reverse direction is immediate, hence we must demonstrate only the forward direction.

We must show that
∑

x∈Lm
P (x) = am(L)

∫
Ωn
P dµ for any P ∈

⋃t
d=0 Pd. But this is immediate

from the hypothesis, since the second part of Proposition 3.14 shows that we may express any

P ∈
⋃t
d=1 Pd as a sum of polynomials in the spaces Pk

d (0 ≤ k ≤ bd/2c).

The proof of Theorem 4.4 follows naturally from Proposition 4.5.

Proof of Theorem 4.4. We fix a d ∈ {1, . . . , 2t(n) + 1}∪{2t(n) + 4} and consider some P ∈P0
d .

Since L is of Type II, we know from Theorem 3.18 that

θL,P ∈M0
n
2

+d.

Furthermore, since L is extremal, the coefficients of q1, . . . , q
min(L)

2
−1 in θL,P must vanish. It then

follows that

θL,P = ∆
min(L)

2
−1 · f

for some f ∈Mn
2

+d−12b n
24c. However, by Theorem 3.2, we have

dim
(
Mn

2
+d−12b n

24c
)

= 0,

hence f ≡ 0. We then obtain

∞∑
m=0

 ∑
x∈L2m

P (x)

 qm = θL,P ≡ 0.

By Proposition 4.5, this proves the theorem.
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Remarks

In Section 4.3, we use the parameter t(n) slightly more generally: to record the degrees

for which we can determine information regarding the weighted theta functions θL,Pd;x0
.5 One result

in this vein is immediate from the proof of Theorem 4.4.

Corollary 4.6. If L is an extremal Type II lattice of rank n, then we have θL,Pd;x0
≡ 0 for any

d ∈ {2, . . . , 2t(n)} ∪ {2t(n) + 4}.

4.3 Configurations of Extremal Type II Lattices

4.3.1 Preliminaries

We recall the notation Lm(L) for the lattice generated by Lm. We adopt the slightly abu-

sive notation of Ozeki [Oze89], writing Lm1+···+mk
:=
⋃k
j=1 Lmj and denoting by Lm1+···+mk

(L)

the lattice generated by Lm1+···+mk
.6

For a lattice L ⊂ Rn and a vector ẋ ∈ L⊗ R and j ∈ Z, we write

Nj(L; ẋ) :=
∣∣{x ∈ Lmin(L) : 〈x, ẋ〉 = j}

∣∣ .
Via the involution x↔ −x of Lmin(L), we see that N−j(L; ẋ) = Nj(L; ẋ) for any ẋ and j.

In the next sections, we examine the following question for several choices of n = 8n′.7

Question. LetL be an extremal Type II lattice of rank n. What is the minimal value ofm∗ ≥ min(L)

such that

L = Lmin(L)+···+m∗(L)? (4.4)

We let L be an extremal Type II lattice of rank n and let

m0 := min(L) = 2bn/24c+ 2

be the minimal norm of vectors in L.8 For n = 32, 48, 56, 72, 96, we show in Section 4.3.2 that the

minimal value of m∗ in (4.4) is as small as possible—in these cases, m∗ = m0. To prove a result of

5We also use this parameter in Chapter 6, since it indexes the values of t for which extremal Type II codes of length n
yield t-designs.

6When this notation is potentially confusing, we will use parentheses to indicate norms. For example, we write
Lm1+m2 = Lm1 ∪ Lm2 , while L(m1+m2) denotes the set of norm-(m1 +m2) vectors of L.

7Since we are concerned with Type II lattices, it clearly only makes sense to consider n of this form.

8Recall the expression for the minimal norm of an extremal Type II lattice, given in equation (2.5).



Chapter 4: Configurations of Type II Lattices 50

this form, it suffices to show that every class [x] ∈ L/(Lm0(L)) is represented by a vector ẋ ∈ [x]

with norm 〈ẋ, ẋ〉 ≤ m0.9 Thus, we consider the equivalence classes of L modulo Lm0(L).

Seeking a contradiction, we suppose that there is an equivalence class [ẋ] ∈ L/(Lm0(L))

with minimal-norm representative ẋ of integral norm 〈ẋ, ẋ〉 = s > m0. In the remainder of this

section, we develop a system of linear equations in the variables Nj(L; ẋ).

Lemma 4.7. For all x ∈ Lm0 , we have the inequality

|〈x, ẋ〉| ≤ m0

2
.

Proof. This is immediate, because if 〈±x, ẋ〉 > m0/2, then [ẋ] contains a vector x∓ ẋ of norm

〈x∓ ẋ, x∓ ẋ〉 = 〈x, x〉 ∓ 2〈x, ẋ〉+ 〈ẋ, ẋ〉 < 〈ẋ, ẋ〉,

contradicting the minimality of ẋ in [ẋ].

Lemma 4.8. We have that

am0(L) = N0(L; ẋ) + 2
m0/2∑
j=1

Nj(L; ẋ). (4.5)

Proof. This is immediate, since Lemma 4.7 implies that the right side of (4.5) is equal to the number

of vectors in Lm0 .

Lemma 4.9. We have the equations

2
m0/2∑
j=1

j2k ·Nj(L; ẋ) = am0(L)
1 · 3 · · · (2k − 1)

n · (n+ 2) · · · (n+ 2k − 2)
mk

0〈ẋ, ẋ〉k, (4.6)

for k ∈ {1, . . . , t(n)}.

Proof. It follows from Corollary 4.6 that∑
x∈Lm0

〈x, ẋ〉2k = am0(L)
1 · 3 · · · (2k − 1)

n · (n+ 2) · · · (n+ 2k − 2)
mk

0〈ẋ, ẋ〉k, (4.7)

for k ∈ {1, . . . , t(n)}.10 Additionally, by Lemma 4.7, we have

∑
x∈L(m0+2)

〈x, ẋ〉2k = 2
m0/2∑
j=1

j2k ·Nj(L; ẋ), (4.8)

for all k > 0. Combining (4.7) with (4.8), we obtain the equations (4.6).

9It suffices to show the existence of a representative ẋ ∈ [x] with 〈ẋ, ẋ〉 = m0 for each [x] ∈ L/(Lm0(L)). Since L
is extremal, aL(m) = 0 for 0 < m < m0, hence we need only show that every class [x] ∈ L/(Lm0(L)) is represented
by a vector ẋ ∈ [x] with 〈ẋ, ẋ〉 ≤ m0.

10The details of this computation can be found in [Ven01].
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Remarks

We note that the result of Lemma 4.7 holds for all minimal representatives ẋ of classes

[ẋ] ∈ (Lm0(L)∗)/(Lm0(L)), hence the conclusions of Lemmata 4.8 and 4.9 hold for these ẋ as

well. We will use these observations in Section 4.3.3.

4.3.2 Extremal Type II Lattices of Ranks 32, 48, and 72

We now answer the easiest cases of the question introduced above: ranks n = 32, 48, 72.

Theorem 4.10. If L is an extremal Type II lattice of rank n = 32, 48, 72, then

L = Lm0(L).

Theorem 4.10 is an amalgam of configuration results from several sources. The rank 32

case was obtained concurrently by Ozeki [Oze86a] and Venkov [Ven84a], and the rank 48 case was

first obtained by Ozeki [Oze86b]. The rank 72 case is original to the author [Kom09]. All three

cases of Theorem 4.10 were originally proven using weighted theta functions, albeit via slightly

different methods. Here, we give a unified argument for all three cases following the approach of

[Kom09] which slightly simplifies the approaches of [Oze86a], [Ven84a], and [Oze86b].

Proof of Theorem 4.10. For the sake of contradiction, we suppose that there exists an equivalence

class [ẋ] ∈ L/(Lm0(L)) with minimal-norm representative ẋ of norm 〈ẋ, ẋ〉 = s for some s > m0.

Combining Lemma 4.8 with the t(n) equations of Lemma 4.9 gives a system of t(n) + 1 equations

in the
m0

2
+ 1 < t(n) + 1

variables Nj(L; ẋ) (0 ≤ j ≤ m0/2). For n = 32, 48, 72, the determinants of the (extended)

(m0
2 + 2)× (m0

2 + 2) matrices for these inhomogeneous systems11 are respectively

283351s
(
5s2 − 45s+ 102

)
, (4.9)

213365271s
(
35s3 − 630s2 + 3822s− 7800

)
, (4.10)

222395472s
(
42s4 − 1400s3 + 17745s2 − 101270s+ 219336

)
. (4.11)

Since each system is overdetermined, these determinants must vanish. However, the equations

(4.9)–(4.11) have no integer solutions s > 0. It then follows that there is no equivalence class

11When there are more than m0
2

+ 2 equations, we omit the equations obtained from the zonal spherical harmonic
polynomials of the largest degrees.
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[ẋ] ∈ L/(Lm0(L)) with minimal-norm representative ẋ of norm 〈ẋ, ẋ〉 = s > m0, so we have the

desired result.

Remarks

The methods used to prove Theorem 4.10 also show

L2(E8) = E8, L4(Λ24) = Λ24.

In these cases, the determinants

24s(3s− 5), 34560s
(
15s2 − 105s+ 182

)
are obtained. As neither of these determinants has integral roots s > 0, we conclude the following

theorem.

Theorem 4.11. If L is an extremal Type II lattice of rank n = 8, 24 then L = Lm0(L).

However, the analogous result does not hold for extremal Type II lattices of rank 16.

Indeed, the lattice D+
16 is not generated by its minimal vectors; D+

16/L2(D+
16) has equivalence

classes with minimal-norm representatives of norm 4. In this case, the (extended) matrix of the

system of equations obtained from Lemmata 4.8 and 4.9 has determinant

−1774080(s− 4)(s− 1)s.

As expected, this determinant vanishes at s = 4.

4.3.3 Extremal Type II Lattices of Ranks 56 and 96

With a little more effort, we can prove a result of the author [Kom09] analogous to Theo-

rem 4.10 for extremal Type II lattices of ranks n = 56, 96.

Theorem 4.12. If L is an extremal Type II lattice of rank n = 56, 96, then

L = Lm0(L).

Before we can prove this result, we need the following lemma which extends the second

conclusion of Lemma 4.1 to all extremal Type II lattices.

Lemma 4.13. For L an extremal Type II lattice of rank n, let m > 0 be such that Lm is nonempty.

Then, Lm spans L⊗ R.
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Proof. We fix some ẋ ∈ L⊗ R. By Corollary 4.6, we have∑
x∈Lm

P2;ẋ(x) = 0. (4.12)

Upon substituting the explicit form (4.1) of P2;ẋ into (4.12), we find

∑
x∈Lm

〈x, ẋ〉2 =
1
n

( ∑
x∈Lm

〈x, x〉

)
〈ẋ, ẋ〉 =

1
n
·m · am(L) · 〈ẋ, ẋ〉. (4.13)

Now, if there were some ẋ ∈ L ⊗ R not in the span of Lm, then the left side of (4.13) would

vanish, implying am(L) = 0. By hypothesis, however, we have required am(L) > 0; the lemma

follows.

Proof of Theorem 4.12. We suppose that Lm0(L) 6= L and consider Lm0(L)∗. We cannot have

Lm0(L)∗ = Lm0(L), since in that case Lm0(L) would be an extremal Type II lattice of rank n by

Lemma 4.13. (Since L is itself of rank n, this would imply that Lm0(L) = L.)

Thus, there is some equivalence class [ẋ] ∈ (Lm0(L)∗)/(Lm0(L)) with minimal-norm

representative ẋ of rational norm 〈ẋ, ẋ〉 = s > 0. As remarked above, the equations (4.5) and (4.7)

are satisfied. Combining these t(n) + 1 equations with the condition

θL,P2t(n)+4;ẋ
≡ 0

of Corollary 4.6 gives a system of t(n) + 2 equations in the

m0

2
+ 1 < t(n) + 2

variables Nj(L; ẋ) (0 ≤ j ≤ m0/2). For n = 56, 96, the determinants of the (extended) matrices

for these inhomogeneous systems are respectively

−2233105372111171291311(s− 8)s
(
9s3 − 168s2 + 1008s− 1856

)
, (4.14)

−24231551075111131171191291471531591(s− 12)sR96(s), (4.15)

whereR96(s) = 25s5−1275s4 +26112s3−267444s2 +1362720s−2741760. These determinants

must vanish, but all the rational solutions of equations (4.14) and (4.15) are even. We therefore see

that any x ∈ [ẋ] has norm

〈x, x〉 = 〈ẋ, ẋ〉+ 2〈ẋ, x1〉+ 〈x1, x1〉 ∈ 2Z,

where x = ẋ+ x1 and x1 ∈ Lm0(L). It then follows that Lm0(L)∗ is even; in particular, Lm0(L)∗

is integral.
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But then, disc(Lm0(L)∗) ∈ Z. Additionally, since [L : Lm0(L)] is a finite positive integer

and L is unimodular, we have

disc(Lm0(L)) = [L : Lm0(L)]2 disc(L) = [L : Lm0(L)]2 ∈ Z.

But then we have both [L : Lm0(L)]2 ∈ Z and [L : Lm0(L)]−2 ∈ Z, hence [L : Lm0(L)] = 1. This

proves that L = Lm0(L), showing the theorem.

4.3.4 Extremal Type II Lattices of Ranks 40, 80, and 120

We prove a weakened analog of Theorem 4.10 for Type II lattices of ranks n = 40, 80, 120.

As we discuss in the remarks below, the n = 40 case of Theorem 4.14 is sharp, while the n = 120

case can be improved.

Theorem 4.14. If L is an extremal Type II lattice of rank n = 40, 80, 120, then

L = Lm0+(m0+2)(L).

That is, L is generated by its vectors of norms m0 and m0 + 2.

This result is presented as it appears in work by the author and Abel [KA08]. The n = 40

case is originally due to Ozeki [Oze89], while the rank n = 80, 120 cases are original to the author

and Abel [KA08].

Before proving Theorem 4.14, we introduce one additional notation. For ẋ ∈ L⊗ R and

j ∈ Z, we write

Mj(L; ẋ) := |{x ∈ Lm0+2 : 〈ẋ, x〉 = j}| .

As for Nj(L; ẋ), we have M−j(L; ẋ) = Mj(L; ẋ) for any ẋ and j.

Proof of Theorem 4.14. We now consider the equivalence classes of L/(Lm0+(m0+2)(L)). To show

the result, it suffices to show that no class [ẋ] ∈ L/(Lm0+(m0+2)(L)) has a minimal representative

ẋ with 〈ẋ, ẋ〉 = s > m0 + 2. Seeking a contradiction, we suppose that some class [ẋ] with such a

minimal representative ẋ exists.

It follows from Lemma 4.7 that Nj(L; ẋ) = 0 for j ≥ m0
2 + 1. An argument identical to

the proof of Lemma 4.7 shows the inequality

|〈x, ẋ〉| ≤ m0

2
+ 1,
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for all x ∈ L(m0+2); this yields Mj(L; ẋ) = 0 for j ≥ m0
2 + 2. Thus, proceeding in analogy to the

argument for Theorem 4.10, we seek a system of linear equations in the(m0

2
+ 1
)

+
(m0

2
+ 2
)

= m0 + 3

variables N0(L; ẋ), . . . , Nm0/2(L; ẋ),M0(L; ẋ), . . . ,M(m0/2)+1(L; ẋ). Corollary 4.6 gives rise to

t(n) + 1 = m0/2 such equations in the Nj(L; ẋ), and to another t(n) + 1 = m0/2 such equations

in the Mj(L; ẋ). Additionally, as in Lemma 4.8, we know that

am0(L) = N0(L; ẋ) + 2
m0/2∑
j=1

Nj(L; ẋ),

am0+2(L) = M0(L; ẋ) + 2
m0/2+1∑
j=1

Mj(L; ẋ).

To obtain two more equations in the Nj(L; ẋ) and Mj(L; ẋ), we observe that Theo-

rem 3.18 shows that

θL,P2t(n)+2;ẋ
∈M0

n
2

+t(n)+2, θL,P2t(n)+6;ẋ
∈M0

n
2

+t(n)+6.

Comparing power series coefficients, we then obtain

θL,Pt(n);ẋ
≡ c1∆2t(n)+2, θL,Pm0;ẋ ≡ c1E4∆2t(n)+2,

for constants c1 and c2. This then yields the equations∑
x∈L(m0+2)

P2t(n)+2;ẋ(x) = c1

∑
x∈Lm0

P2t(n)+2;ẋ(x)

∑
x∈L(m0+2)

P2t(n)+6;ẋ(x) = c2

∑
x∈Lm0

P2t(n)+6;ẋ(x).

In total, we have derived a system of m0 + 4 distinct linear equations in the m0 + 3

variables N0(L; ẋ), . . . , Nm0/2(L; ẋ),M0(L; ẋ), . . . ,M(m0/2)+1(L; ẋ). This system is overdeter-

mined, hence the determinants of the (extended) (m0 + 4) × (m0 + 4) matrices for these systems

must vanish. For n = 40, 80, 120, these determinants are respectively

255375874114131196233(s− 4)s(3s− 13)
(
5s2 − 55s+ 154

)
, (4.16)

21323275167101161310234418436473(s− 8)sR80(s), (4.17)

2235348526713117137176234311137159146111675713731(s− 12)sR120(s), (4.18)
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where R80(s) = 1346s5 − 60570s4 + 1101155s3 − 10101795s2 + 46723754s − 87084984, an

irreducible quintic, and R120(s) is the irreducible septic

19989882674056909935s7 − 1785762852215750620860s6

+69032158404890616606132s5 − 1496426482568975234448600s4

+19638371998531666902780544s3 − 155968350269096441930241024s2

+693822341019921345575940096s− 1333059554550161112446730240.

For each determinant (4.16)–(4.18), there are no integer solutions s > m0 + 2. It follows that there

can be no equivalence class [ẋ] ∈ L/(Lm0+(m0+2)(L)) with a minimal representative ẋ having

〈ẋ, ẋ〉 = s > m0 + 2.

Remarks

As remarked at the beginning of this section, the n = 40 case of Theorem 4.14 is sharp.

That is, there exist extremal Type II lattices of rank 40 which are not generated by their vectors of

minimal norm.12 However, Elkies and the author [EK09b] have recovered the following strength-

ening of Theorem 4.14 for extremal Type II lattices of ranks n = 40, 80.

Theorem 4.15 ([EK09b]). If L is an extremal Type II lattice of rank n = 40, 80 then

L = L(m0+2)(L).

Proof. By Theorem 4.14, it suffices to show that every vector in Lm0 is contained in L(m0+2)(L).

We therefore suppose that there is some ẋ ∈ Lm0 not in L(m0+2)(L), seeking a contradiction.

Now, for any x ∈ L(m0+2), we must have

|〈x, ẋ〉| ∈
{

0, 1, . . . ,
m0

2
− 1,

m0

2
+ 1
}
.

Indeed, if 〈ẋ,±x〉 > m0
2 + 1, then [ẋ] contains a vector x∓ ẋ of norm

〈x∓ ẋ, x∓ ẋ〉 = 〈x, x〉 ∓ 2〈x, ẋ〉+ 〈ẋ, ẋ〉 < 〈ẋ, ẋ〉 = m0,

contradicting the extremality of L. Furthermore, we cannot have 〈x, ẋ〉 = ±m0/2, or else we would

have x∓ ẋ ∈ L(m0+2) and then x = ±ẋ+ (x∓ ẋ) ∈ L(m0+2)(L).13

12Ozeki [Oze89] constructs such lattices.

13The fact that 〈x, ẋ〉 = ±m0/2 implies that x∓ ẋ ∈ L(m0+2) is a simple computation:

〈x∓ ẋ, x∓ ẋ〉 = 〈x, x〉 ∓ 2〈x, ẋ〉+ 〈ẋ, ẋ〉 = (m0 + 2)− 2
(m0

2

)
+m0 = m0 + 2.
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Corollary 4.6 shows that

θL,Pd;ẋ
∈M0

n
2

+d.

As in the proof of Theorem 4.14, this yields t(n) + 1 = m0/2 equations in the m0
2 + 1 variables

M0(L; ẋ), . . . ,M(m0/2)−1(L; ẋ),M(m0/2)+1(L; ẋ).

Additionally, we obtain the equation

am0+2(L) = M0(L; ẋ) + 2M(m0/2)+1(L; ẋ) + 2
m0/2−1∑
j=1

Mj(L; ẋ)

from the theta function of L. For n = 40, 80, these m0
2 + 1 equations are linearly independent; we

may therefore explicitly solve the system for the variables

M0(L; ẋ), . . . ,M(m0/2)−1(L; ẋ),M(m0/2)+1(L; ẋ).

When n = 40, 80, we compute

M(m0/2)+1(L; ẋ) = −246272,

M(m0/2)+1(L; ẋ) = −275208192,

respectively. This is impossible, however, because M(m0/2)+1(L; ẋ) ≥ 0 by definition.

Surprisingly, Elkies [Elk09a] has shown that Theorem 4.14 is not sharp for rank-120

extremal Type II lattices. Specifically, the conclusion of Theorem 4.10 holds in this case.

Theorem 4.16 ([Elk09a]). If L is an extremal Type II lattice of rank n = 120, then

L = Lm0(L) = L12(L).



Chapter 5

A New Development of Harmonic

Weight Enumerators

In analogy to the theory of weighted theta functions presented in Chapter 3, we now

introduce the harmonic weight enumerator, a weighted generating function which generalizes the

ordinary weight enumerator defined in Section 2.2.3. For a length-n binary linear code C ⊂ Fnq and

a discrete harmonic polynomial Q, the harmonic weight enumerator WC,Q(x, y) is defined by

WC,Q(x, y) :=
∑
c∈C

Q(c)xn−wt(c)ywt(c).

This function encodes the weights and distribution of the codewords of C, just as the weighted theta

functions of a lattice L encode the norms and distribution of the vectors of L.

Discrete harmonic polynomials were first introduced by Delsarte [Del78]. The harmonic

weight enumerators of binary codes were then introduced by Bachoc [Bac99], who also gave sev-

eral applications.1 Both Delsarte’s development of discrete harmonic polynomials and Bachoc’s

development of harmonic weight enumerators are predominantly combinatorial.

The central result of this chapter is a new, structural development of these theories. Our

development uses the finite-dimensional representation theory of sl2, in direct analogy with the

approach to weighted theta functions presented in Chapter 3.

As context, we derive the MacWilliams identity, a classical result regarding ordinary

weight enumerators, in Sections 5.1.1 and 5.1.2. We also state Gleason’s Theorem, an analog of

1Specifically, Bachoc [Bac99] used harmonic weight enumerators to give a proof of the Assmus–Mattson Theorem
(Theorem 2.1), to compute Jacobi polynomials, and to classify the extremal even formally self-dual codes of length 12.
Additionally, Bachoc [Bac01] developed an analogous theory for q-ary codes of length n.

58
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the characterization of the spaces of modular forms (Theorem 3.4) which applies to weight enu-

merators and generalizes to the harmonic weight enumerator setting. We review relevant facts from

the finite-dimensional representation theory of sl2 in Section 5.1.3. Then, in Sections 5.2 and 5.3,

we present our new development of the harmonic weight enumerator theory, describing the space

of discrete harmonic polynomials and deriving the key identities for harmonic weight enumerators.

Finally, in Section 5.4, we introduce the zonal harmonic polynomials, a discrete analog of the zonal

spherical harmonics of Section 3.4.

5.1 Preliminaries

5.1.1 The Discrete Poisson Summation Formula

We now prove the discrete Poisson summation formula, a discrete analog of the Poisson

summation formula (Theorem 3.5) proven in Section 3.1.2. Like its lattice analog, the discrete

Poisson summation formula relates the sums of a function to the sums of the function’s discrete

Fourier transform. Here, however, instead of considering the sums of the function and its Fourier

transform over a lattice L ⊂ Rn and its dual L∗, we consider the sums of the function and its

discrete Fourier transform over a binary linear code C ⊂ Fn2 and over C⊥, the dual code of C.2

Before proceeding, we recall that the discrete Fourier transform (or Hadamard trans-

form) f̂ of a function f on Fn2 is the function on Fn2 defined by

f̂(u) =
∑
v∈Fn

2

(−1)(u,v)f(v). (5.1)

Theorem 5.1 (Discrete Poisson Summation Formula). Let C ⊂ Fn2 be a binary linear code of

length n, and let f be a function from Fn2 into any ring. Then, we have∑
c∈C

f(c) =
1
|C⊥|

∑
c′∈C⊥

f̂(c′). (5.2)

Our proof of Theorem 5.1 follows the standard argument, which is the one presented

in [MS83, p. 127]. Theorem 5.1 may also be proven via an argument directly analogous to the proof

of the Poisson summation formula (Theorem 3.5) given in Section 3.1.2

2Throughout, we use the convention that general elements of Fn
2 are denoted v, u ∈ Fn

2 while words of a code C are
denoted c ∈ C. This differs from our convention for lattices, in which we denote by x both a general element of Rn

and of a lattice L. Additionally, in Section 5.1.3, we use the notation v to denote an element of an sl2-module. We have
maintained these seemingly clashing conventions, as they are standard within the literatures of codes, lattices, and sl2,
respectively, and do not appear together in the thesis except within this footnote.



Chapter 5: A New Development of Harmonic Weight Enumerators 60

Proof of Theorem 5.1. By expanding the right side of (5.2) and rearranging the order of summation,

we obtain ∑
c′∈C⊥

f̂(c′) =
∑
c′∈C⊥

∑
v∈Fn

2

(−1)(c′,v)f(v) =
∑
v∈Fn

2

f(v)
∑
c′∈C⊥

(−1)(c′,v). (5.3)

Now, whenever v ∈ C ⊂ Fn2 and c′ ∈ C⊥, we have (c′, v) = 0 by the definition of C⊥. It follows

that the inner sum in (5.3) equals |C⊥| whenever v ∈ C. Furthermore, when v 6∈ C, the inner sum

of (5.3) vanishes.3 The result then follows immediately.

5.1.2 The MacWilliams Identity and Gleason’s Theorem

In this section, we present two classical results from coding theory which are closely

related to the theory of lattices. The first of these results, the MacWilliams identity (Theorem 5.2,

below), is analogous to Lemma 3.7; it expresses the weight enumerator ofC⊥ in terms of the weight

enumerator of C. The second result (Theorem 5.3, below) is a famous theorem originally due to

Gleason [Gle71], which shows that the weight enumerators of Type II codes can be expressed in

terms of two particular weight enumerators. This is a coding-theoretic analog of the fact (Theo-

rem 3.4) that theta functions of Type II lattices may be expressed as polynomials in E4 and E6.

The MacWilliams identity is proven via discrete Poisson summation, and therefore its

proof serves as a warm-up for the argument we use to prove the generalized MacWilliams identity

for harmonic weight enumerators (Theorem 5.16) in Section 5.3. By contrast, the methods required

to prove Gleason’s theorem are essentially disjoint from our discussion. Therefore, and in keeping

with the expository approach of Chapter 3, we prove the MacWilliams identity here but do not prove

Gleason’s Theorem.4

Theorem 5.2 (MacWilliams Identity ([Mac63]; [CS99, p. 78]; [Ebe02, p. 74]; [MS83, p. 126])).

For any binary linear code C of length n, we have

WC(x, y) =
1
|C⊥|

WC⊥(x+ y, x− y).

3In this case, (c′, v) takes the values 0 and 1 equally often (see [MS83, p. 127]). (This statement is just an instance of
the well-known fact that the sum of a nontrivial character on a finite group vanishes.)

4This expository decision is analogous to our decision to prove Lemma 3.7 but not to prove Theorem 3.4 in Chapter 3.
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Proof. We let f be the function on Fn2 defined by f(v) = xn−wt(v)ywt(v) and compute that

f̂(u) =
∑
v∈Fn

2

(−1)(u,v)xn−wt(v)ywt(v) =
∑
v∈Fn

2

(−1)u1v1+···+unvn

n∏
j=1

x1−vjyvj

=
1∑

v1=0

· · ·
1∑

vn=0

n∏
j=1

(−1)ujvjx1−vjyvj

=
n∏
j=1

1∑
`=0

(−1)uj`x1−`y`. (5.4)

If uj = 0, then we have
∑1

`=0(−1)uj`x1−`y` = x+y; if uj = 1, then
∑1

`=0(−1)uj`x1−`y` = x−y.

We therefore have from (5.4) that

f̂(u) = (x+ y)n−wt(u)(x− y)wt(u);

the theorem then follows directly from Discrete Poisson Summation (Theorem 5.1).

Theorem 5.3 (Gleason’s Theorem ([Gle71]; [CS99, p. 186]; [Ebe02, p. 75])). For any Type II

code C, the weight enumerator WC(x, y) is a polynomial in

ϕ8 := We8(x, y) = x8 + 14x4y4 + y8 and ξ24 := x4y4(x4 − y4)4.

Remarks

Theorems 5.2 and 5.3 may be derived through an appeal to the theory of theta functions

of Type II lattices, via Construction A. Ebeling [Ebe02, pp. 72–75] presents one such approach.

Additionally, Ward [War00] gives an elegant elementary proof of Theorem 5.2 using differential

operators.

5.1.3 The Finite-dimensional Representation Theory of sl2

We now review results from the finite-dimensional representation theory of sl2 which

will be relevant to our discussion later in this chapter. Our presentation here follows that given by

Serre [Ser01, pp. 17–20].

Basic Definitions and Commutation Relations

The simple Lie algebra sl2 is the algebra of 2 × 2 complex matrices having trace 0. As

we indicated briefly in Section 3.2.3, this algebra is generated by the matrices

X = ( 0 1
0 0 ) , H =

(
1 0
0 −1

)
, Y = ( 0 0

1 0 ) ,
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and these generators satisfy commutation relations analogous to those obtained in Lemma 3.15.

Fact 5.4. We have the commutation relations

[X,Y] = H, [H,X] = 2X, [H,Y] = −2Y.

The Structure of Finite-dimensional sl2-modules

Now, we consider any finite-dimensional sl2-module V . Throughout this section, we

denote the λ-eigenspace of H in V by V λ. As the λ- and λ′-eigenvectors of any linear operator are

linearly independent for λ 6= λ′, we obtain the direct sum decomposition⊕
λ∈C

V λ ⊆ V.

Lemma 5.5. For any v ∈ V λ, we have Xv ∈ V λ+2 and Yv ∈ V λ−2.

Proof. We compute directly using Fact 5.4 that

HXv = XHv + [H,X] v = λXv + 2Xv = (λ+ 2)Xv.

Likewise, we obtain

HYv = YHv + [H,Y] v = λYv − 2Yv = (λ− 2)Yv.

We say that a nonzero element w ∈ V λ is primitive of weight λ if Xw = 0. We now show

that any nontrivial sl2-module V contains such an element.

Lemma 5.6. Suppose that dim(V ) > 0. Then, V contains a primitive element of some weight.

Proof. Since V is finite-dimensional, H has at least one eigenvalue λ. We fix some v ∈ V λ. Since

X is nilpotent, the sequence {Xjv}∞j=0 has a last nonzero element Xj∗v. Clearly, X(Xj∗v) = 0, by

construction. Furthermore, since v ∈ V λ, we have Xj∗v ∈ V λ+2j∗ by Lemma 5.5. Thus, Xj∗v ∈ V
is primitive (of weight λ+ 2j∗).

For an sl2-module V with primitive element w ∈ V λ of weight λ, we set

w(j) :=
1
j!

Yjw

for j ≥ 0. We adopt the convention that w(−1) = 0. With these definitions, the w(j) (j ≥ −1) are

related by the operators H, Y and X. More specifically, we have the following result.
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Lemma 5.7. 1. Hw(j) = (λ− 2j)w(j),

2. Yw(j) = (j + 1)w(j+1), and

3. Xw(j) = (λ− j + 1)w(j−1).

Proof. The first identity is a consequence of the proof of Lemma 5.6, while the second identity is

immediate by definition.

To prove the third identity, we proceed by induction on j. The base case (j = 0) is

immediate; the inductive step follows from the identity

jXw(j) = XYw(j−1) = YXw(j−1) + [X,Y]w(j−1)

= (λ− j + 2)Yw(j−2) + Hw(j−1)

= (λ− 2j + 2 + (λ− j + 2)(j − 1))w(j−1)

= j(λ− j + 1)w(j−1),

upon dividing by j.

The first part of Lemma 5.7 shows that the w(j) (j ≥ 0) are nonzero eigenvectors of H

associated to distinct eigenvalues; the nonzero {w(j)}∞j=0 are therefore linearly independent, and

there is a j∗ > 0 such that w(j) = 0 for j > j∗. Then, Lemma 5.7 implies that w(j∗) is primitive of

weight λ − 2j∗. It then follows that the subspace W ⊂ V with basis {w(j)}j∗j=0 is stable under the

action of sl2.

Lemma 5.8. The subspace W ⊂ V is an irreducible sl2-module.

Proof. It is clear that W is an sl2-submodule of V . Now, if W ′ ⊂ W is nontrivial and stable

under the action of H, then w(j) ∈ W ′ for some j (0 ≤ j ≤ j∗). However, we must then have

w(j−1), . . . , w(0) ∈W ′, by the third part of Lemma 5.7. The second part of Lemma 5.7 then shows

that w(j+1), . . . , w(j∗) ∈W ′, as well. It follows that W ′ = W , hence W is irreducible.

We now fix an integer k ≥ 0 and let Vk be a (k + 1)-dimensional vector space with basis

{v(j)}kj=0. We may give Vk the structure of a sl2-module by defining the endomorphisms

Hv(j) = (k − 2j)v(j), Yv(j) = (j + 1)v(j+1), Xv(j) = (k − j + 1)v(j−1).

As Vk is generated by v(0) as an sl2-module, it follows from Lemma 5.8 that Vk is irreducible of

dimension dim(Vk) = k + 1. Our next result shows that Vk is the only irreducible sl2-module of

dimension k + 1, up to isomorphism.
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Proposition 5.9. If V ′ is an irreducible sl2-module of dimension k + 1, then V ′ ∼= Vk.

Proof. By Lemma 5.6, there is a primitive element v′ ∈ V ′. Now, the sl2-module generated by v′

must have dimension at most k + 1. Since V ′ is irreducible, this implies that V ′ is generated by v′.

But then we have an isomorphism V ′ ∼= Vk, via the formulae of Lemma 5.7.

Furthermore, we may decompose any finite-dimensional sl2-module as a direct sum of

the modules Vk.

Proposition 5.10. If V is a finite-dimensional sl2-module, then V is isomorphic to a direct sum of

the modules Vk.

Proof. This follows from Proposition 5.9 and the well-known fact that any finite-dimensional rep-

resentation of a semisimple Lie algebra is completely reducible.

5.2 The Space of Discrete Harmonic Polynomials

In this section, we present some useful results in the theory of discrete harmonic polyno-

mials. These polynomials were originally introduced by Delsarte [Del78], who gave a combinato-

rial development. Here, we give a new approach to these polynomials using the finite-dimensional

representation theory of sl2 discussed in Section 5.1.3.

5.2.1 Basic Definitions and Notation

A function g on F2 may be interpreted as a 2× 1 matrix g = ( g0g1 ), where gv is the value

assumed on input v ∈ F2. It is easily computed that the discrete Fourier transform ĝ of g is the

function

ĝ =
( g0+g1
g0−g1

)
=
(

1 1
1 −1

)
( g0g1 ) ;

the discrete Fourier transform is therefore encoded by the matrix T :=
(

1 1
1 −1

)
. There is a natural

action of sl2 on these functions g, defined by left-multiplication of matrices in sl2. Thus, we may

interpret the space of functions on F2 as a representation of sl2 isomorphic with V1.

More generally, a monomial function g on Fn2 must have total degree at most n,5 and so

may be interpreted as a pure tensor in V ⊗n1 ; such a function is denoted

g = ( g10g11 )⊗ · · · ⊗ ( gn0
gn1 )

5This is a consequence of the fact that, for any v ∈ Fn
2 , we have v2

j = vj for all j (1 ≤ j ≤ n).
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and assumes the value gjv1 · · · gjvn on v ∈ Fn2 . In this setting, the discrete Fourier transform

corresponds to the action of the operator

T̃ := T⊗n.

For example, the degree-n monomial g(v) = v1 · · · vn, which takes the value of the

product of the coordinates of the input v ∈ Fn2 , is the function

g = ( 0
1 )⊗ · · · ⊗ ( 0

1 ) .

The discrete Fourier transform ĝ of g is

ĝ = T̃g =
(

1
−1

)
⊗ · · · ⊗

(
1
−1

)
.6

Polynomials in the Variables (−1)vj (1 ≤ j ≤ n)

Instead of working with polynomials in the variables vj (1 ≤ j ≤ n), we work with the

discrete Fourier transforms (−1)vj (1 ≤ j ≤ n) of these variables.7 We denote by D the C-vector

space of polynomial functions Q in the variables

(−1)v1 , . . . , (−1)vn ,

where v ∈ Fn2 . We denote by Dd the subspace of D consisting of degree-d homogeneous polyno-

mials in the (−1)vj (1 ≤ j ≤ n) with each variable (−1)vj in each term appearing to degree 0 or 1.

We adopt the convention that Dd = {0} for d < 0.

The preceding discussion shows that anyQ ∈ D may be interpreted as an element of V ⊗n1 ,

and that the discrete Fourier transform Q̂ of Q is equal to T̃Q. The action of sl2 defined above gives

rise to the following action on D : if M ∈ sl2 and Q ∈ D , then the action of M on Q is given by(∑
( 1 0

0 1 )⊗ · · · ⊗M ⊗ · · · ⊗ ( 1 0
0 1 )

)
Q.

Here,
∑

( 1 0
0 1 )⊗ · · · ⊗M ⊗ · · · ⊗ ( 1 0

0 1 ) denotes the operator equal to

(M ⊗ · · · ⊗ ( 1 0
0 1 )) + · · ·+ (( 1 0

0 1 )⊗ · · · ⊗M ⊗ · · · ⊗ ( 1 0
0 1 )) + · · ·+ (( 1 0

0 1 )⊗ · · · ⊗M) ,

6Note that this aligns with the expression

ĝ(u) =
∑

v∈Fn
2

(−1)(u,v)g(v) = (−1)
∑n

j=1 uj ,

the more common definition (5.1) of the discrete Fourier transform given earlier.

7Delsarte [Del78] uses the vj basis, rather than the (−1)vj basis. We depart from Delsarte, however, because the use
of the (−1)vj basis greatly simplifies our development.



Chapter 5: A New Development of Harmonic Weight Enumerators 66

the sum of n tensors, the j-th of which acts as M on the j-th factor and as the identity matrix ( 1 0
0 1 )

on the other factors.

Conjugation of X, H, and Y by the Discrete Fourier Transform

We define the operators X′, H′, and Y′ to be the conjugates of X, Y, and H by the Fourier

transform:

X′ := T−1XT =
1
2

(H− X + Y) ,

H′ := T−1HT = X + Y,

Y′ := T−1YT =
1
2

(H + X− Y) .

Conjugation by the Fourier transform operator T induces an isomorphism of Lie algebras

X←→ X′, H←→ H′, Y ←→ Y′,

hence these operators X′,H′,Y′ satisfy the commutation relations of Fact 5.4.

Fact 5.11. We have the commutation relations

[
X′,Y′

]
= H′,

[
H′,X′

]
= 2X′,

[
H′,Y′

]
= −2Y′.

We write X̃′, H̃′, and Ỹ′ for operators

X̃′ :=
∑

( 1 0
0 1 )⊗ · · · ⊗ X′ ⊗ · · · ⊗ ( 1 0

0 1 ) = T̃−1
(∑

( 1 0
0 1 )⊗ · · · ⊗ X⊗ · · · ⊗ ( 1 0

0 1 )
)

T̃,

H̃′ :=
∑

( 1 0
0 1 )⊗ · · · ⊗ H′ ⊗ · · · ⊗ ( 1 0

0 1 ) = T̃−1
(∑

( 1 0
0 1 )⊗ · · · ⊗ H⊗ · · · ⊗ ( 1 0

0 1 )
)

T̃,

Ỹ′ :=
∑

( 1 0
0 1 )⊗ · · · ⊗ Y′ ⊗ · · · ⊗ ( 1 0

0 1 ) = T̃−1
(∑

( 1 0
0 1 )⊗ · · · ⊗ Y ⊗ · · · ⊗ ( 1 0

0 1 )
)

T̃,

which represent the actions of X′, H′ and Y′ on elements of V ⊗n1 .

We then have the following result immediately from the definition of H̃′.

Lemma 5.12. If d ≤ n/2 and Q ∈ Dd, then H̃′Q = (n− 2d)Q.

Proof. The result follows directly, because the 1-eigenspace of H′ is the span of {( 1
1 )} and the

(−1)-eigenspace of H′ is the span of
{(

1
−1

)}
.
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Commutation Relations for X̃′, H̃′, and Ỹ′

The commutation relations of Fact 5.11 extend to these operators, as well.

Fact 5.13. We have the commutation relations[
X̃′, Ỹ′

]
= H̃′,

[
H̃′, X̃′

]
= 2X̃′,

[
H̃′, Ỹ′

]
= −2Ỹ′.

These commutation relations induce an isomorphism between sl2 and the algebra generated by

{X̃′, H̃′, Ỹ′}.

Now, for Q ∈ Dd, we observe that (( 1 0
0 1 )⊗ · · · ⊗ X′ ⊗ · · · ⊗ ( 1 0

0 1 ))Q ∈ Dd−1, as we

have

X′
(

1
−1

)
= ( 1

1 ) and X′ ( 1
1 ) = ( 0

0 ) .

Thus, X̃′Q = (
∑

( 1 0
0 1 )⊗ · · · ⊗ X′ ⊗ · · · ⊗ ( 1 0

0 1 ))Q ∈ Dd−1. We define the space of degree-d

discrete harmonic polynomials to be the space

D0
d := ker

(
X̃′ : Dd → Dd−1

)
.

We then define the space of discrete harmonic polynomials, denoted D0, to be the direct sum

D0 :=
n⊕
d=0

D0
d = ker

(
X̃′ : D → D

)
.

5.2.2 Decomposition of Degree-d Discrete Homogeneous Polynomials

It is immediate from Fact 5.13 that the operator H̃′ maps D0 to itself, since if Q ∈ D0

then

X̃′H̃′Q =
(

H̃′X̃′ −
[
H̃′, X̃′

])
Q =

(
H̃′X̃′ − 2X̃′

)
Q = 0.

As the next lemma shows, we may refine this observation substantially further.

Lemma 5.14. If d ≤ n/2 and Q ∈ D0
d , then Q is primitive of weight n − 2d with respect to the

representation of sl2 induced by the action of X̃′, H̃′, and Ỹ′.

Proof. The result is a direct consequence of Lemma 5.12 because all Q ∈ D0 satisfy X̃′Q = 0.

For d ≤ n/2 and k = 0, 1, . . . , d, we define Dk
d := (Ỹ′)kD0

d−k.8 Combining Lemma 5.14

with the theory of sl2 developed in Section 5.1.3, we now obtain a decomposition result for Dd

similar to that obtained for Pd in Proposition 3.14.

8As is the case for our notation Pk
d , the notation Dk

d is consistent with the notation D0
d for the space of degree-d

discrete harmonic polynomials.
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Proposition 5.15. For any d ≤ n/2, we have the following results.

1. The map X̃′ : Dd → Dd−1 is surjective.

2. We have the direct sum decomposition Dd =
⊕d

k=0 Dk
d = D0

d ⊕ Ỹ′Dd−1.

3. For any Q ∈ Dd, the space spanned by
{

(Ỹ′)jQ
}n−2d

j=0
is an irreducible sl2-module isomor-

phic to the module Vn−2d.

4. dim(D0
d ) = dim(Dd)− dim(Dd−1) =

(
n
d

)
−
(
n
d−1

)
.

Proof. As any Q ∈ D0
d is primitive of weight n− 2d, the proposition follows immediately. Indeed,

the first and second parts follow from Lemma 5.7 and the third part follows directly from Lemma 5.8

and Proposition 5.10. Then, the fourth part follows from the first part.

As with Proposition 3.14, we use only parts of this decomposition result directly; the other

components of Proposition 3.14 provide contextual information regarding D0. Specifically, we use

the second and third parts of Proposition 3.14 in Section 6.1.

5.3 The Generalized MacWilliams Identity for Harmonic Weight Enu-

merators

We now derive a generalized MacWilliams identity for harmonic weight enumerators.

Theorem 5.16. For any binary linear code C ⊂ Fn2 and Q ∈ D0
d , the harmonic weight enumerator

WC,Q(x, y) =
∑

c∈C Q(c)xn−wt(c)ywt(c) satisfies the identity

WC,Q(x, y) =
(
− xy

x2 − y2

)d
· 2

n
2

+d

|C⊥|
·WC⊥,Q

(
x+ y√

2
,
x− y√

2

)
.

Theorem 5.16 was first proven by Bachoc [Bac99], via a purely combinatorial argument.

Here, we give a new proof of this result in analogy with the proof of Theorem 3.17 presented in

Section 3.3.

5.3.1 Derivation of the Identity

Multiplication by “Discrete Gaussians”

For Q ∈ D , the function Q(v)xn−wt(v)ywt(v) corresponds in the tensor representation to

the function ((
x 0
0 y

)⊗n)
Q.
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Therefore, in analogy with the Gaussian operators Gt defined in Section 3.3.1, we introduce the

operators

W :=
(
x 0
0 y

)
, W̃ := W⊗n,

V :=
(
x+y 0

0 x−y
)
, Ṽ := V⊗n.

The operator W̃ serves as a sort of “discrete Gaussian” for weight enumerators. Indeed, the weight

enumerator WC(x, y) of a length-n binary linear code is given by

WC(x, y) =
∑
c∈C

(
W̃ · ( 1

1 )⊗n
)

(c),

and the Fourier transform of W̃ · ( 1
1 )⊗n is equal to Ṽ · ( 1

1 )⊗n.

Lemma 5.17. If Q ∈ Dd, then we have

(
Ṽ−1T̃W̃

)
Q = Q̂,

where Q̂ =
∑d

d′=0 Q̂d′ with Q̂d′ ∈ Dd for each d′ (0 ≤ d′ ≤ d) and

Q̂d =
(
−2xy
x2 − y2

)d
Q. (5.5)

Proof. As in the proof of Lemma 3.21, we proceed by induction on d. The base case d = 0 is

immediate, so we suppose that the result holds for Q ∈ Dd and show the result for Q ∈ Dd+1.

The discrete Fourier transform operator is linear, hence it suffices to prove the result for

the polynomials of the form (−1)vj ·Q with Q ∈ Dd. Now, we compute the value of ṼT̃ times

(−1)vj ·Q(v) · xn−wt(v)ywt(v) = W̃ ·
(
( 1 0

0 1 )⊗ · · · ⊗
(

1 0
0 −1

)
⊗ · · · ⊗ ( 1 0

0 1 )
)
·Q

explicitly. We find that

Ṽ−1T̃
(

W̃
(
( 1 0

0 1 )⊗ · · · ⊗
(

1 0
0 −1

)
⊗ · · · ⊗ ( 1 0

0 1 )
)
Q
)

=
(
Ṽ−1T̃W̃

) (
( 1 0

0 1 )⊗ · · · ⊗
(

1 0
0 −1

)
⊗ · · · ⊗ ( 1 0

0 1 )
) (

Ṽ−1T̃W̃
)−1(

Ṽ−1T̃W̃
)
Q

=
(

( 1 0
0 1 )⊗ · · · ⊗

(
0 x−y

x+y
x+y
x−y

0

)
⊗ · · · ⊗ ( 1 0

0 1 )
)(

Ṽ−1T̃W̃
)
Q

=
(

( 1 0
0 1 )⊗ · · · ⊗

(
0 x−y

x+y
x+y
x−y

0

)
⊗ · · · ⊗ ( 1 0

0 1 )
)
Q̂, (5.6)

where the last equality in (5.6) follows on applying the inductive hypothesis to
(
Ṽ−1T̃W̃

)
Q.
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It is clear that the right side of (5.6) has maximal degree d+ 1, since Q̂ is of degree d and

( 1 0
0 1 )⊗ · · · ⊗

(
0 x−y

x+y
x+y
x−y

0

)
⊗ · · · ⊗ ( 1 0

0 1 )

is the identity on all but one coordinate. To finish the proof of the lemma, we compute the degree-

(d+ 1) term of (5.6). Now, since(
0 x−y

x+y
x+y
x−y

0

)
( 1

1 ) =
x2 + y2

x2 − y2
( 1

1 )− 2xy
x2 − y2

(
1
−1

)
,

the degree-(d+ 1) term of (5.6) must equal − 2xy
x2−y2 Q̂d.9 The desired expression (5.5) then follows

from the inductive hypothesis.

Lemma 5.18. If Q ∈ D0 and H̃′Q = λ ·Q, then

1.
(
Ṽ−1T̃W̃

)
X̃′
(
Ṽ−1T̃W̃

)−1
Q = 0 and

2.
(
Ṽ−1T̃W̃

)
H̃′
(
Ṽ−1T̃W̃

)−1
Q = λ ·Q.

Proof. Explicit computation gives(
Ṽ−1T̃W̃

)
X̃′
(
Ṽ−1T̃W̃

)−1 = −x
2 − y2

2xy
· X̃′, (5.7)

(
Ṽ−1T̃W̃

)
H̃′
(
Ṽ−1T̃W̃

)−1 = H̃′ +
x2 + y2

xy
· X̃′. (5.8)

The first and second results follow directly from (5.7) and (5.8), respectively, since

Q ∈ D0 = ker(X̃′).

Corollary 5.19. The operators X̃′ and H̃′ act on
(
Ṽ−1T̃W̃

)
D0. The subspace

(
Ṽ−1T̃W̃

)
D0
d is the

intersection of ker(X̃′) and the (n− 2d)-eigenspace of H̃′ + x2+y2

xy X̃′ in
(
Ṽ−1T̃W̃

)
D0
d .

Proof of the Generalized MacWilliams Identity

As a final intermediate step en route to Theorem 5.16, we prove an expression analogous

to Proposition 3.24 for the discrete Fourier transform of the product of the “discrete Gaussian” W̃

and a discrete harmonic polynomial Q ∈ D0
d .

Proposition 5.20. If Q ∈ D0
d , then

(
Ṽ−1T̃W̃

)
Q =

(
−2xy
x2 − y2

)d
Q. (5.9)

9Here, Q̂d is the degree-d term of Q̂, as in the lemma statement.
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Proof. From Corollary 5.19, we see that
(
Ṽ−1T̃W̃

)
Q is in the (n − 2d)-eigenspace of H̃′. This

means that
(
Ṽ−1T̃W̃

)
Q ∈ D0

d ; the result then follows immediately from Lemma 5.17.

Finally, we obtain the generalized MacWilliams identity by combining Proposition 5.20

with the discrete Poisson summation formula (Theorem 5.1).

Proof of Theorem 5.16. We obtain the discrete Fourier transform of W̃Q from Proposition 5.20:

T̃
(
W̃Q

)
=
(
−2xy
x2 − y2

)d
ṼQ =

(
−2xy
x2 − y2

)d
· 2n/2 ·

((
x+y√

2
0

0 x−y√
2

)⊗n)
·Q. (5.10)

The result follows directly from (5.10), upon application of Theorem 5.1.

Remarks

One interesting consequence of Theorem 5.16 is the fact thatWC,Q(x, y)/(xy)d is a poly-

nomial, for Q ∈ D0
d .

Corollary 5.21. For C a binary linear code and Q ∈ D0
d ,

WC,Q(x, y)
(xy)d

is a polynomial in the variables x, y.

Proof. We have from Theorem 5.16 that

WC,Q(x, y)
(xy)d

=
(
− 1
x2 − y2

)d
· 2

n
2

+d

|C⊥|
·WC⊥,Q

(
x+ y√

2
,
x− y√

2

)
. (5.11)

As WC,Q (x, y) is a polynomial in the variables x, y, the left side of (5.11) cannot have factors of

x2 − y2 in the denominator. We therefore must have that

(x2 − y2)d |WC⊥,Q

(
x+ y√

2
,
x− y√

2

)
.

The result then follows.

As we see at the end of Section 6.1, Corollary 5.21 also follows directly from the sl2

development of discrete harmonic polynomials.
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5.3.2 A Generalization of Gleason’s Theorem

In addition to the generalized MacWilliams identity, Bachoc [Bac99] obtained a gener-

alized “Gleason’s theorem” for harmonic weight enumerators. As we will use this result in Sec-

tion 6.1, we state it here. We omit the proof, however, as the method is disjoint from our discussion

and is not affected by our development of harmonic weight enumerators via sl2.

Theorem 5.22 ([Bac99]). Let C be a Type II code of length n and let Q ∈ D0
d . Then, the harmonic

weight enumerator WC,Q(x, y) is an element of the polynomial algebra C[ϕ8, ξ24, ψd], where

ψd :=



0 d ≡ 0 mod 4,

x3y3(x4 − y4)2(x8 − y8)(x8 − 34x4y4 + y8) d ≡ 1 mod 4,

x2y2(x4 − y4)2 d ≡ 2 mod 4,

xy(x8 − y8)(x8 − 34x4y4 + y8) d ≡ 3 mod 4.

5.4 Zonal Harmonic Polynomials

We now introduce the zonal harmonic polynomials, a class ZD0 of discrete harmonic

polynomials analogous to the zonal spherical harmonics discussed in Section 3.4. Specifically, we

fix some v̇ ∈ Fn2 and d with 0 ≤ d ≤ wt(v̇), and determine the space ZD0
d ⊂ D0

d of degree-d

discrete harmonic polynomials invariant under coordinate permutations fixing v̇.

5.4.1 Preliminaries

Throughout, we fix v̇ ∈ Fn2 . We denote by ZDd ⊂ Dd the space of degree-d discrete

homogeneous polynomials invariant under the group of coordinate permutations fixing v̇, and set

ZD0
d := ZDd∩D0

d . We say that a polynomial in ZD0
d is a zonal harmonic polynomial of degree d,

and we define the space ZD0 of zonal harmonic polynomials by

ZD0 :=
wt(v̇)⋃
d=0

ZD0
d .

Generators of ZDd

We now fix some d with 0 ≤ d ≤ wt(v̇) and let

C1;v̇ := {j : v̇j = 1}, C0;v̇ := {j : v̇j = 0}.
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Now, we denote by Qd,k;v̇(v) the degree-d discrete polynomial

Qd,k;v̇(v) :=
∑

{j1,...,jk}⊆C1;v̇
{jk+1,...,jd}⊆C0;v̇

(−1)(vj1
+···+vjk

)+(vjk+1
+···+vjd

)

=
∑

{j1,...,jk}⊆C1;v̇
{jk+1,...,jd}⊆C0;v̇

(−1)vj1 · · · (−1)vjk · (−1)vjk+1 · · · (−1)vjd ∈ Dd. (5.12)

This definition is valid for all d (0 ≤ d ≤ wt(v̇) since |C1;v̇| = wt(v̇) and |C0;v̇| = n− wt(v̇).

By construction, it is clear thatQd,k;v̇ ∈ ZDd. Conversely, we have the following lemma.

Lemma 5.23. The polynomials {Qd,k;v̇}
wt(v̇)
k=0 generate ZDd.

Proof. The result follows immediately from the requirement that any Q ∈ ZDd must be invari-

ant under all permutations simultaneously permuting some k (1 ≤ k ≤ wt(v̇)) of the nonzero

coordinates of v̇ and some d− k of the vanishing coordinates in v̇.

Additionally, we have a combinatorial formula for Qd,k;v̇(v).

Proposition 5.24. We have that

Qd,k;v̇(v) =

2

⌊
k+1
2

⌋∑
j=1

(wt(v ∩ v̇)

2j − 1

)(wt(v̇)− wt(v ∩ v̇)

k − (2j − 1)

)
−
(wt(v̇)

k

) ·
2

⌊
(d−k)+1

2

⌋∑
j=1

(wt(v)− wt(v ∩ v̇)

2j − 1

)((n− wt(v̇))− (wt(v)− wt(v ∩ v̇))

(d− k)− (2j − 1)

)
−
(n− wt(v̇)

d− k
) .

The proof of Proposition 5.24 is immediately obtained from evaluation of the expression (5.12)

for Qd,k;v̇.

The Action of X̃′ on Qd,k;v̇

Now, we determine the action of X̃′ on the polynomials {Qd,k;v̇}
wt(v̇)
k=0 .

Lemma 5.25. We have

X̃′Qd,k;v̇ = ((n− wt(v̇))− (d− k − 1))Qd−1,k;v̇ + (wt(v̇)− (k − 1))Qd−1,k−1;v̇.

Proof. First, we observe that

X̃′ ·
(
(−1)vj1

+···+vjd

)
=

d∑
`=1

(−1)vj0
+vj1

+···+vj`−1
+vj`+1

+···+vjd
+vjd+1 , (5.13)
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where we have used the convention that vj0 = 0 = vjd+1
.10 It then follows from (5.13) that

X̃′Qd,k;v̇ = bk ·Qd−1,k;v̇ + bk−1 ·Qd−1,k−1;v̇

for constants bk, bk−1 ∈ Z. To see that

bk−1 = wt(v̇)− (k − 1),

we simply observe that each monomial term in Qd−1,k;v̇ can arise from wt(v̇) − (k − 1) different

monomial terms in Qd,k;v̇. Likewise, we obtain that

bk = (n− wt(v̇))− (d− k − 1).

5.4.2 Determination of the Zonal Harmonic Polynomials

We now combine Lemmata 5.23 and 5.25 to characterize ZD0
d .

Proposition 5.26. If Q ∈ ZD0
d , then Q = b0 ·Qd;v̇ for some constant b0 ∈ C, where

Qd;v̇(v) :=
d∑

k=0

(−1)k
(
k−1∏
`=0

(n− wt(v̇))− (d− `− 1)
wt(v̇)− `

)
Qd,k;v̇(v).

Proof. We consider some Q ∈ ZD0
d = ZDd ∩ D0

d . By Lemma 5.23, there exist constants

{bk}
wt(v̇)
k=0 ⊂ C such that

Q =
wt(v̇)∑
k=0

bk ·Qd,k;v̇.

Since Q ∈ D0
d , we have that

0 = X̃′Q = X̃′

wt(v̇)∑
k=0

bk ·Qd,k;v̇

 =
wt(v̇)∑
k=0

bk · X̃′Qd,k;v̇

=
wt(v̇)∑
k=0

bk · (((n− wt(v̇))− (d− k − 1))Qd−1,k;v̇ + (wt(v̇)− (k − 1))Qd−1,k−1;v̇)

=
wt(v̇)∑
k=0

(bk ((n− wt(v̇))− (d− k − 1)) + bk+1 (wt(v̇)− (k)))Qd−1,k;v̇.

10To avoid having to adopt this convention, we could have used the slightly more standard notation∑d
`=1(−1)vj1+···+v̂j`

+···+vjd . However, we have eschewed this notation as it conflicts with our usage of ·̂ for the
discrete Fourier transform.
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(The penultimate inequality follows from Lemma 5.25.) By comparing coefficients, we then obtain

bk+1

bk
= −(n− wt(v̇))− (d− k − 1)

wt(v̇)− k

for each k (0 ≤ k ≤ wt(v̇)− 1); the result follows.

Corollary 5.27. For each d (0 ≤ d ≤ wt(v̇)), we have dim(ZD0
d ) = 1.



Chapter 6

Configurations of Type II Codes

We now give several applications of the theory of harmonic weight enumerators. The

results and methods we present are analogous to those given for lattices in Chapter 4. The arguments

for all but one of the results discussed in this chapter are original to Elkies and the author.

First, in Section 6.1, we present an alternative characterization of t-designs analogous to

characterization of spherical t-designs given in Proposition 4.5 of Section 4.2, using results derived

from our development of discrete harmonic polynomials. We then prove a result analogous to The-

orem 4.4 which includes the Assmus–Mattson Theorem (Theorem 2.1) for the case of an extremal

Type II code.

Next, in Section 6.2, we derive a condition of Koch [Koc87] on the tetrad systems of

Type II codes of length 24. Although this result is analogous to Proposition 4.3 of Section 4.1,

Koch’s original proof required a substantial appeal to the theory of lattices. Using harmonic weight

enumerators, we give a purely coding-theoretic proof of Koch’s condition in Section 6.2.2.1

Finally, we present configuration results for extremal Type II codes in Section 6.3. Like

the configuration results for lattices, these theorems characterize the degrees to which extremal

Type II codes of certain lengths are generated by their codewords of small weight. Specifically,

we show that extremal Type II codes of lengths n = 8, 24, 32, 48, 56, 72, 96 are generated by their

minimal-weight codewords. These results are original to this thesis, and are the first configuration

results to be obtained for extremal Type II codes. As in the lattice case, one strength of the harmonic

weight enumerator machinery is that it allows us to obtain such results for lengths (n = 72, 96)

where it is not yet known whether extremal Type II codes exist.

1This argument originally appeared in [EK09a], a paper of Elkies and the author.
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6.1 t-Designs and Extremal Type II Codes

6.1.1 An Equivalent Characterization of t-designs

We now introduce the following equivalent characterization of t-designs.

Proposition 6.1. A set D ⊆ ωw is a t-design if and only if∑
v∈D

Q(v) = 0

for all Q ∈
⋃t
d=1 D0

d .

Proposition 6.1 is equivalent to Theorem 7 of Delsarte [Del78]. Our development of D0

leads to a new proof of this result, which we present below. In Section 6.1.2, we apply Proposi-

tion 6.1 to prove a special case of the Assmus–Mattson Theorem (Theorem 2.1).

Throughout this section, we write χX for the characteristic function of the set X and

denote by H̃ the action of H on V ⊗n1 ,

H̃ :=
∑

( 1 0
0 1 )⊗ · · · ⊗ H⊗ · · · ⊗ ( 1 0

0 1 ) .

We begin with a lemma regarding projections of functions Q ∈ D to the Hamming sphere ωw.

Lemma 6.2. ForQ ∈ D , we haveQ|ωw = χωw
·Q = πn−2w(Q), where πn−2w(Q) is the projection

of Q to the n− 2w eigenspace of the action of H̃ on V ⊗n1 .

Proof. This is immediate because the 1- and (−1)-eigenspaces of H are respectively spanned by

{( 1
0 )} and {( 0

1 )}.

We now show Proposition 6.1.

Proof of Proposition 6.1. We denote by O the subset of V ⊗n1 consisting of tensor products of t

copies of ( 0
1 ) or ( 1

0 ) and n − t copies of ( 1
1 ). It is clear that O spans Pd for any d (0 ≤ d ≤ t).

Now, the set D is a t-design if and only if, for all R ∈ O ,

(χD, R) = (|D|, R),

where |D| is the constant function on ωw with value equal to the cardinality of D and (·, ·) is the

inner product. It therefore suffices to show that the set of restrictions {R|ωw : R ∈ O} is spanned by

t⋃
d=0

{Q|ωw : Q ∈ D0
d}.
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By the second part of Proposition 5.15, any R ∈ O may be written in the form

R =
t∑

j=0

(Ỹ′)jQj ,

with Qj ∈
⋃t−j
d=0 D0

d . By Lemma 6.2 and the hypothesis, it then only remains to demonstrate that

πn−2w((Ỹ′)jQj) and πn−2w(Qj) are related by a constant factor: for each j = 0, . . . , t, we have

πn−2w((Ỹ′)jQj) = b · πn−2w(Qj) (6.1)

for some constant b depending on both j and t.

Now, given any Q ∈ D0
d , we see by the third part of Proposition 5.15 that the polyno-

mials (Ỹ′)kQ (0 ≤ k ≤ n − 2d) span an irreducible representation of sl2 which is isomorphic

to Vn−2d. We may regard this representation as (n − 2d)-th homogeneous part of the polynomial

algebra C[u0, u1] with generators u0, u1 and with actions of X′,H′,Y′ respectively given by

u′0
∂

∂u′1
,

(
u′0

∂

∂u′0
− u′1

∂

∂u′1

)
, u′1

∂

∂u′0
,

where u′0 = u0 + u1 and u′1 = u0 − u1. With this identification, we may take Q = (u′0)n−2d, as

Q ∈ ker
(
X̃′ : D0

d → D0
d−1

)
.

We now show that πn−2w((Ỹ′)kQ) and πn−2w(Q) are related by a constant factor for any

k (0 ≤ k ≤ n− 2d); the desired expression (6.1) follows. We observe that H̃ acts as

u0
∂

∂u0
− u1

∂

∂u1
.

Therefore, πn−2w(Q) = πn−2w((u0 + u1)n−2d) is equal un−(d+w)
0 uw−d1 . To see this, note that

πn−2w((u0 +u1)n−2d) = ub00 u
b1
1 with b0 +b1 = n−2d and b0−b1 = n−2w. (The latter statement

follows from the definition of πn−2w(·).) Likewise,

πn−2w((Ỹ′)kQ) = πn−2w((Ỹ′)k(u0 + u1)n−2d)

is the un−(d+w)
0 uw−d1 component of (Ỹ′)k(u0 + u1)n−2d. Since this component is equal to

u
n−(d+w)
0 uw−d1 = πn−2w(Q)

up to a constant factor, we are done.
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Remarks

The constant relating πn−2w((Ỹ′)kQ) and πn−2w(Q) in the proof of Proposition 6.1 was

obtained directly from the identification of
{

(Ỹ′)kQ
}n−2d

k=0
with Vn−2d. Consequently, this constant

is independent of the choice of Q ∈ D0
d .

Proposition 6.1 leads to another equivalent characterization of t-designs which makes the

analogy between t-designs and spherical t-designs explicit. We have the following corollary, which

is equivalent to Theorem 6 of Delsarte [Del78].

Corollary 6.3. A set D ⊆ ωw is a t-design if and only if

1
|D|

∑
v∈D

Q(v) =
1
|ωw|

∑
v∈ωw

Q(v) (6.2)

for all Q ∈
⋃t
d=1 Dd.

Proof. As (6.2) is immediate when Q is constant, the result follows directly from Proposition 6.1

and the second part of Proposition 5.15.

Finally, we note that the proof of Proposition 6.1 shows that each Q ∈ D0
d is supported

on
⋃n−d
w=d ωw. This fact leads to an alternate proof of Corollary 5.21.

Alternate Proof of Corollary 5.21. As Q ∈ D0
d is supported on

⋃n−d
w=d ωw, we know that

WC,Q(x, y) =
n∑

w=0

(∑
c∈Cw

Q(c)

)
xn−wyw =

n−d∑
w=d

(∑
c∈Cw

Q(c)

)
xn−wyw.

The result then follows immediately.

6.1.2 The Extremal Type II Code Case of the Assmus–Mattson Theorem

To illustrate the power of Proposition 6.1, we now prove the extremal Type II code case

of the Assmus–Mattson Theorem for binary codes (Theorem 2.1).2

Theorem 6.4. If C is an extremal Type II code of length n and w > 0 is such that Cw 6= ∅, then Cw

is a t-design for any t ≤ t(n).

By Proposition 6.1, this theorem follows quickly from the following result, which is

slightly more general and is a coding-theoretic analog of Theorem 4.4.

2Corollary 2.2 of Section 2.4 is a special case of Theorem 6.4.
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Proposition 6.5. If C is an extremal Type II code of length n and w > 0, then for any choices of

d ∈ {1, . . . , t(n)} ∪ {t(n) + 2} and Q ∈ D0
d , we have∑

c∈Cw

Q(c) = 0.

Proposition 6.5 was originally proven by Calderbank and Delsarte [CD93]. Here, we

demonstrate how Proposition 6.5 follows quickly from Theorem 5.22. This approach is due to

Bachoc [Bac99] and is analogous to the proof of Theorem 4.4. Our exposition of this argument

expands slightly upon that of Bachoc [Bac99], which demonstrated only four cases of the result.

Proof of Proposition 6.5. We let d ∈ {1, . . . , t(n)} ∪ {t(n) + 2} and Q ∈ D0
d . Then, we con-

sider the harmonic weight enumerator WC,Q(x, y). By Theorems 5.16 and 5.22, we see that

WC,Q(x, y)/(xy)d has a factor of the form

ξ
min(C)−d−bd

4
24 · f,

where bd is equal to the valuation of y in ψd and f ∈ C[ϕ8, ξ24, ψd]. This factor arises because

the valuation of y in WC,Q(x, y) equals min(C) and we may write WC,Q(x, y)/(xy)d as a product

of ψd and an element of C[ϕ8, ξ24, ψd] if d 6≡ 0 mod 4, or simply as an element of C[ϕ8, ξ24] if

d ≡ 0 mod 4.

We see that if f is nonzero, then it has degree equal to

(n mod 24) + 4d− 24 (6.3)

if d ≡ 0 mod 2. Similarly, f has degree

(n mod 24) + 4d− 36 (6.4)

if d ≡ 1 mod 2. Since (6.3) and (6.4) are always negative for d ∈ {1, . . . , t(n)} ∪ {t(n) + 2}, we

must have f ≡ 0, hence
n∑

w=0

(∑
c∈Cw

Q(c)

)
xn−wyw = WC,Q(x, y) ≡ 0.

We also note the following special case of Proposition 6.1 which is relevant to our proofs

of configuration results in Section 6.3.

Corollary 6.6. If C is an extremal Type II code of length n and w > 0, then we have∑
c∈Cw

Qt;v̇(c) = 0

for any t ∈ {1, . . . , t(n)} ∪ {t(n) + 2}.
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Remarks

As Bachoc [Bac99] illustrates, it is possible to prove the full Assmus–Mattson Theorem

(Theorem 2.1) with a harmonic weight enumerator argument similar to that used in the proof of

Proposition 6.5. We have focused upon the case of an extremal Type II code because the full force

of Corollary 6.6 is required in Section 6.3.

6.2 Type II Codes of Length 24

6.2.1 Koch’s Tetrad System Condition

Through appeal to Venkov’s [Ven80] condition restricting the possible root systems of

Type II lattices of rank 24 (our Proposition 4.3), Koch [Koc87] obtained a condition on the tetrad

systems of Type II codes of length 24. Specifically, he showed the following result.

Proposition 6.7. If C is a Type II code of length 24, then C has one of the following nine tetrad

systems:

∅, 6d4, 4d6, 3d8, 2d12, d24, 2e7 + d10, 3e8, e8 + d16.

The following brief argument, which is that used by Koch [Koc87], illustrates how Propo-

sition 6.7 follows from results for lattices, specifically Proposition 4.3.

Proof of Proposition 6.7. For C Type II of length 24, the lattice LC obtained from Construction A

is Type II of rank 24. The result then follows immediately from Proposition 6.7, since we have

Ld2k
= D2k and Lek

= Ek, as we remarked in (2.8).

Proposition 6.7 is also a consequence of the classification of Type II codes of length 24

given by Pless and Sloane [PS75].3

6.2.2 A Purely Coding-theoretic Proof of Koch’s Condition

Here, we present a direct and purely coding-theoretic proof of Proposition 6.7 due to

Elkies and the author [EK09a] which uses the theory of harmonic weight enumerators. This argu-

ment is closely analogous to that of Venkov [Ven80] for the proof of Proposition 4.3, and so we

begin with a coding-theoretic analog of the rank-24 case of Lemma 4.1.

3This is unsurprising, however, as a complete classification of Type II codes of any length implicitly gives a classifi-
cation of the possible tetrad systems of those codes.
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Lemma 6.8. If C is a Type II code of length 24, then

• either C4 = ∅ or for each j (1 ≤ j ≤ 24) there exists c ∈ C4 such that cj = 1, and

• each irreducible component of C4(C) has tetrad number equal to |C4|/24.

For each j (1 ≤ j ≤ n), we denote byQ1,j,n the discrete harmonic polynomial defined by

Q1,j,n(v) := n · (−1)vj −
n∑
k=1

(−1)vk ∈ D0
1 .

Proof of Lemma 6.8. As in the proof of Proposition 6.5, we see that the harmonic weight enumera-

tor

WC,Q1,j,24(x, y) =
24∑
w=0

(∑
c∈Cw

Q1,j,24(c)

)
x24−wyw (6.5)

vanishes for each j (1 ≤ j ≤ 24). We then obtain∑
c∈C4

(24cj − 4) = 0 (6.6)

for each j (1 ≤ j ≤ 24), since the left side of (6.6) is the (x + y)20(x − y)4 coefficient of the

discrete Fourier transform of (6.5). Reorganizing (6.6) shows that

|{c ∈ C4 : cj = 1}| = |C4|/6. (6.7)

The first part of the lemma then follows. In the case that C4 6= ∅, we also obtain from (6.7) that

each irreducible component of C4(C) has tetrad number 1
4 |C4|/6 = |C4|/24.

Proposition 6.7 now follows directly from Lemma 6.8.

Alternate Proof of Proposition 6.7. As we mentioned in Section 2.2.2, there is at most one tetrad

system with tetrad number η for each η 6∈ {1, 7/4}, and for each η ∈ {1, 7/4} there are exactly two

tetrad systems with tetrad number η. Namely, d10 and e7 have tetrad numbers η(d10) = η(e7) = 1,

and d16 and e8 have tetrad numbers η(d16) = η(e8) = 7/4.

Now, Lemma 6.8 implies that if C4 6= ∅, then either C4 consists of µ copies of the tetrad

system d2k for some µ and k > 1 such that µ · 2k = 24, or it has one of the following two forms:

• δ10d10 + ε7e7, with ε7 > 0 and 10δ10 + 7ε7 = 24, or

• δ16d16 + ε8e8, with ε8 > 0 and 16δ16 + 8ε8 = 24.
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6.3 Configurations of Extremal Type II Codes

We now prove configuration results for extremal Type II codes. Specifically, we show that

if C is an extremal Type II code of length n = 8, 24, 32, 48, 56, 72, 96, then C is generated by its

minimal-weight codewords, i.e. C = Cmin(C)(C). Our approach uses the harmonic weight enumer-

ator machinery developed in Chapter 5, following the approach used for lattices in Section 4.3.

These results are the first ever coding-theoretic analogs of the results obtained for lattices

in Section 4.3.4 Furthermore, they are all original to this thesis.

6.3.1 Preliminaries

First, we present a few brief preliminaries. For any v̇ ∈ Fn2 , any length-n binary linear

code C, and any j (0 ≤ j ≤ n), we denote by Nj(C; v̇) the value

Nj(C; v̇) :=
∣∣{c ∈ Cmin(C)(C) : wt(c ∩ v̇) = j

}∣∣ .5
For c ∈ C⊥, we must have N2j′+1(C; c) = 0 for all j′ with 0 ≤ j′ ≤ bn/2c.

Throughout the remainder of this section,C denotes a length-n extremal Type II code, and

w0 := min(C) denotes the minimal weight of codewords in C. We now prove a coding-theoretic

analog of Lemma 4.7.

Lemma 6.9. For ċ a minimal-weight representative of the class [ċ] ∈ C/Cw0(C) and c ∈ Cw0 , we

have the inequality

wt(c ∩ ċ) ≤ w0

2
.

Proof. This follows quickly, because if wt(c ∩ ċ) > w0/2, then [ċ] contains a codeword c + ċ of

weight

wt(c+ ċ) = wt(c) + wt(ċ)− 2wt(c ∩ ċ) < wt(ċ).

This contradicts the minimality of ċ in [ċ].

4Our results are the first configuration results for lengths n in which the full sets of extremal Type II codes are not
known. Technically, however, the analogous facts have been known (if only implicitly) for extremal Type II codes of
lengths 8, 24, and 32, as the extremal Type II codes of these lengths have been fully classified. As in the lattice case and
as we discuss in the remarks below, our methods yield that the extremal Type II codes of these lengths are generated by
their minimal codewords without appeal to the classification results or to the explicit forms of these codes.

5This is slightly abusive notation, since we use the notation Nj(L; ẋ) to denote the analogous but slightly different
count for lattices. However, we are only concerned with codes in this chapter and it seems beneficial to use a familiar
notation.
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6.3.2 Extremal Type II Codes of Lengths 32, 48, and 72

As we found for lattices in Section 4.3.2, the easiest cases to examine are those when

n = 32, 48, 72. We therefore begin with the configuration result for these n, proving a coding-

theoretic analog of Theorem 4.10.

Theorem 6.10. If C is an extremal Type II code of length n = 32, 48, 72, then

C = Cw0(C).

Proof. We consider the equivalence classes of C/Cw0(C) and assume for the sake of contradiction

that there is some class [ċ] ∈ C/Cw0(C) with minimal-weight representative ċ with wt(ċ) = s >

w0.

As C is self-dual, we have N2j′+1(C; c) = 0 for all 0 ≤ j′ ≤ bn/2c. Additionally, by

Lemma 6.9, we must have N2j′(C; ċ) = 0 for j′ > w0/4. We now develop a system of equations

in the
w0

4
+ 1

variables N0(C; ċ), N2(C; ċ), . . . , Nw0/2(C; ċ).

Combining the t(n) + 1 equations of Proposition 6.1 with the equation

N0(C; ċ) +N2(C; ċ) + · · ·+Nw0/2(C; ċ) = |Cw0 | (6.8)

gives a system of

t(n) + 2 >
w0

4
+ 1

equations in the variables N2j′(C; ċ) (0 ≤ j′ ≤ w0/4).

For n = 32, 48, 72, the (extended) determinants of these inhomogeneous systems are

217315271291311

(
7s2 − 126s+ 584
(s− 2)(s− 1)2s2

)
, (6.9)

226355271112232431471

(
11s3 − 396s2 + 4906s− 20736

(s− 3)(s− 2)2(s− 1)3s3

)
, (6.10)

242355272112131173232672711

(
39s4 − 2600s3 + 67410s2 − 800440s+ 3650496

(s− 4)(s− 3)2(s− 2)3(s− 1)4s4

)
, (6.11)

respectively6; these determinants must vanish, as they are derived from overdetermined systems.

Since equations (6.9)–(6.11) have no integer roots s, we have reached a contradiction.

6These determinants were computed using the formula of Proposition 5.24. As in the proof of Theorem 4.10, we omit
the equations obtained from the zonal spherical harmonic polynomials of the largest degrees when there are more than
w0
4

+ 2 equations obtained by this method.



Chapter 6: Configurations of Type II Codes 85

Remarks

The approach used to prove Theorem 6.10 may also be applied to show that extremal

Type II codes of lengths n = 8, 24 are generated by their minimal-weight codewords. In these cases

the determinants

2688
(

3s− 10
(s− 1)s

)
, 28725903360

(
7s2 − 98s+ 344
(s− 2)(s− 1)2s2

)
are obtained; neither has integral roots s. We therefore observe the following result.

Theorem 6.11. If C is an extremal Type II code of length n = 8, 24, then C = Cw0(C).

As we found for lattices, there is no configuration result analogous to Theorems 6.10

and 6.11 for extremal Type II codes of length n = 16. Indeed, the extremal Type II code with

tetrad subcode d16 has codewords of weight 8 which cannot be obtained as linear combinations of

codewords of weight 4. As expected, performing the method used to prove Theorem 6.10 in this

case yields the determinant

−93184
(

s− 8
(s− 1)s

)
,

which vanishes for s = 8.

6.3.3 Extremal Type II Codes of Lengths 56 and 96

Now, we prove a result for extremal Type II codes of ranks n = 56, 96 analogous to

Theorem 6.10. The approach here is analogous to that of the proof of Theorem 4.12, hence we

begin with the following lemma analogous to Lemma 4.13.

Lemma 6.12. If C is an extremal Type II code of length n and w > 0 is such that Cw 6= ∅, then for

each j (1 ≤ j ≤ n) there exists c ∈ Cw such that cj = 1.

Proof. By Theorem 6.4, Cw is a 1-design. We then have from Corollary 6.3 that∑
c∈Cw

cj =
|Cw|
|ωw|

∑
v∈ωw

vj > 0.

The result follows immediately.

We now state and prove the configuration result for extremal Type II codes of ranks 56

and 96.
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Theorem 6.13. If C is an extremal Type II code of length n = 56, 96, then

C = Cw0(C).

Proof. Seeking a contradiction, we suppose that Cw0(C) 6= C and consider Cw0(C)⊥. We must

have Cw0(C)⊥ 6= Cw0(C), since otherwise we would have Cw0(C) = C by Lemma 6.12. Thus,

there is some equivalence class [ċ] ∈ (Cw0(C)⊥)/(Cw0(C)) with minimal-weight representative ċ

of weight wt(ċ) = s > 0.

Proposition 6.1 yields t(n) + 1 equations in the variables N2j′(C; ċ) (0 ≤ j′ ≤ w0/4).7

Combining this with the equation (6.8), we obtain a system of t(n) + 2 equations in the

w0

2
+ 1 < t(n) + 2

variables N2j′(C; ċ) (0 ≤ j′ ≤ w0/4). For n = 56, 96, these inhomogeneous systems have (ex-

tended) matrices with determinants

−227375373111132171531

(
(s− 16)

(
3s3 − 112s2 + 1368s− 5120

)
(s− 4)(s− 3)(s− 2)2(s− 1)3s3

)
, (6.12)

−259395472112132171191233291312431472892 · S96(s), (6.13)

where S96 is the rational function

S96(s) =

(
(s− 24)

(
68s5 − 6936s4 + 289901s3 − 6153306s2 + 65640728s− 277774080

)
(s− 6)(s− 5)(s− 4)2(s− 3)3(s− 2)4(s− 1)5s5

)
.

These determinants must vanish, but the only integral roots of (6.12) and (6.13) are multiples

of 4. Therefore, Cw0(C)⊥ is doubly even, and it follows that Cw0(C)⊥ is self-orthogonal. Then,

dim(Cw0(C)⊥) ≤ n/2 and so dim(Cw0(C)) ≥ n/2. We must therefore have Cw0(C) = C.

7As in the proof of Theorem 6.10, the variables Nj(C; ċ) vanish for j not of the form 2j′ with 0 ≤ j′ ≤ w0/4, as the
conclusion of Lemma 6.9 holds for [ċ] ∈ (Cw0(C)⊥)/(Cw0(C)).
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