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Abstract. We prove that any parallel chip-firing game on a graph G with at
least 4|E(G)| − |V (G)| chips stabilizes, i.e. such a game has eventual period
of length 1. Furthermore, we obtain a polynomial bound on the number of
rounds before stabilization. This result is a counterpoint to previous results
which showed that the eventual periods of parallel chip-firing games with few
chips need not even be polynomially bounded.
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1. Introduction

We let G be a finite, undirected, connected graph and denote the vertex and edge
sets of G by V (G) and E(G), respectively. For a vertex v ∈ V (G), we denote the
degree of v by deg(v).

In a chip-firing game on G, some number of chips are distributed among the
|V (G)| vertices of G. Then, in each of a sequence of rounds t = 1, 2, . . ., a vertex
v ∈ V with more than deg(v) chips is selected and fired—one chip from v is moved
to each of v’s neighbors. The parallel chip-firing game on G is defined similarly:
chips are distributed among the |V (G)| vertices of G, and in each of a sequence of
rounds t = 1, 2, . . ., all vertices v ∈ V with more than deg(v) chips are fired.

The chip-firing game was first introduced by Spencer [7] for infinite graphs;
Björner, Lovász, and Shor [3] extended the game’s definition to general finite
graphs. Terminating chip-firing games on undirected graphs have been studied
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extensively and are surprisingly well-behaved. For example, the length of a termi-
nating chip-firing game on a graph G is bounded by a polynomial in the character-
istics of G (see [8]). Chip-firing games also have important applications; notably,
they are related to Tutte polynomials (see [6]) and the critical groups of graphs
(see [1]).

Bitar and Goles [2] introduced the parallel chip-firing game, observing that
such a game must necessarily converge towards a periodic sequence of chip config-
urations. They furthermore proved that any parallel chip-firing game on a finite,
undirected, connected, acyclic graph has eventual period of length at most 2.
Disproving two previous conjectures to the contrary, Kiwi et al. [4] later showed
that the periods of parallel chip-firing games need not be polynomially bounded.
Specifically, Kiwi et al. [4] constructed a parallel chip-firing game on an n-node,
connected, undirected graph having eventual period of length exp(Ω(

√
n log n)).

In this note, we show the following counterpoint to the result of Kiwi et al. [4].

Theorem 1. If G is a finite, undirected, connected graph, then any parallel chip-
firing game on G with at least 4|E(G)| − |V (G)| chips has eventual period of
length 1.

We show additionally that when the conditions of Theorem 1 hold, the game on G
converges to its period-1 chip configuration in a number of rounds bounded above
by a polynomial in the characteristics of G.

Our approach draws from the literature on chip-firing, using in particular a
key result from Tardos’s [8] proof that terminating chip-firing games conclude in
polynomial time.

2. The Setting

We denote by ϕt(v) the total number times a vertex v ∈ V (G) has fired by the
end of round t. For consistency, we throughout denote by c the total number of
chips in a parallel chip-firing game on G.

We say that a vertex has stabilized in some round if, after that round, the
number of chips on that vertex will not change throughout the remainder of the
game. Thus, a parallel chip-firing game on G has eventual period 1 if and only if
all vertices of G stabilize. Abusing terminology slightly, we therefore say that a
parallel chip-firing game on G stabilizes if its eventual period is 1.

We say that a vertex v ∈ V (G) is abundant if it holds at least 2 deg(v) chips.
Any vertex v ∈ V (G) with k ≥ deg(v) chips at the beginning of a round passes
deg(v) chips to its neighbors and can, at most, receive one chip from each of its
deg(v) neighbors. Thus, such a vertex cannot end the round with more than k
chips. In particular, the set of abundant vertices of G can only shrink over the
course of a parallel chip-firing game on G.
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3. Main Theorem

We now prove the following stabilization theorem.

Theorem 2. Let G be a finite, undirected, connected graph with diameter d. In any
parallel chip-firing game on G with

c ≥ 4|E(G)| − |V (G)|

chips, every vertex v ∈ V (G) will stabilize within |V (G)| · d · c rounds.

This result implies Theorem 1 of the introduction. Additionally, Theorem 2
encapsulates the c ≥ 3n cases of the result of the first author [5] for parallel chip-
firing games on n-cycles. Our methods are inspired by those of Tardos [8]; they
are essentially independent of the arguments used in [5].

We use the following lemma, which is a special case of Lemma 5 of Tardos [8].

Lemma 3. Let v, v′ ∈ V (G) be adjacent vertices of G. Then, |ϕt(v) − ϕt(v′)| ≤ c
for all t.

Additionally, we need an observation about the condition c ≥ 4|E(G)| − |V (G)|.

Lemma 4. For G a graph and c ≥ 4|E(G)| − |V (G)|, in any parallel chip-firing
game on G with c chips there is at least one vertex v∗ ∈ V (G) which fires every
round.

Proof. It suffices to find a vertex v∗ ∈ V (G) which fires every round t during which
some vertex v ∈ V (G) holds fewer than 2 deg(v)− 1 chips.

As observed above, it is not possible for a vertex v ∈ V (G) which is not
abundant at the beginning of round t to become abundant after round t. However,
the condition

c ≥ 4|E(G)| − |V (G)|
guarantees that whenever some v ∈ V (G) holds fewer than 2 deg(v) − 1 chips
there is also at least one abundant vertex v′ ∈ V (G). The existence of some vertex
v∗ ∈ V (G) which is abundant in every round when some vertex v ∈ V (G) has fewer
than 2 deg(v)− 1 chips then follows immediately, and we have the lemma. �

We may now proceed with the proof of our main result.

Proof of Theorem 2. By Lemma 4, there is some vertex v∗ ∈ V (G) which fires
every round. Denoting the rounds by t = 1, 2, . . ., we then have ϕt(v∗) = t for all
rounds t. By Lemma 3, we then know that

|ϕt(v∗)− ϕt(v)| ≤ d · c

for all t and v ∈ V (G). Since ϕt(v∗) is strictly increasing in t, no v ∈ V (G) may
fail to fire for more than d · c rounds. In the worst case, all but one of the vertices
fire in each round when some vertex does not fire; hence after |V (G)| · d · c rounds
all the vertices of G fire every round, and the game has stabilized. �
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4. Remarks

4.1. On the Exponential Period Lengths Observed by Kiwi et al. [4]
The results of Kiwi et al. [4] show that parallel chip-firing games with sufficiently
few chips can have eventual periods of exponential lengths. By contrast, our The-
orem 1 shows that the period-lengths of parallel chip-firing games with sufficiently
many chips are bounded by the constant 1.

The main class of examples provided by Kiwi et al. [4] uses graphs Gm with
exactly 3 (

∑m
i=1 pi) + 1 vertices, 3 (

∑m
i=1 pi) + m edges, and cm := 3 (

∑m
i=1 pi) + m

chips. (Here, m > 1 is fixed and {pi}∞i=1 is the ordered set of primes.) There is a
substantial gap between cm and

c̄m := 4

(
3

m∑
i=1

pi + m

)
−

(
3

m∑
i=1

pi + 1

)
= 9

m∑
i=1

pi + 4m− 1,

the number of chips required for a parallel chip-firing game on Gm to be guaranteed
to stabilize. The behavior of parallel chip-firing games on Gm with c̄m > c > cm

chips has not been studied; it would be interesting to know when a polynomially
bounded period length can be guaranteed. In particular, it seems surprising that
the period-length bound proceeds from exponential to constant pursuant to a
polynomial increase in the number of chips.

4.2. On Possible Improvements of our Bounds

Our Lemma 4 is, in some sense, dual to Lemma 4 of Tardos [8] which shows that
for any terminating chip-firing game on G there is a distinguished vertex v∗ ∈
V (G) which never fires. Such a result need not hold when c < 4|E(G)| − |V (G)|.
Indeed, the two-vertex graph G with vertex set V (G) = {v1, v2} and edge set
E(G) = {{v1, v2}} provides a simple counterexample. We have

4|E(G)| − |V (G)| − 1 = 4 · 1− 2− 1 = 1,

while no vertex fires in every round of a single-chip parallel chip-firing game on G.
Nonetheless, the first author [5] has shown that the conclusion of Theorem 1

holds when G is an n-cycle and c ≥ 3n−2 = 4|E(G)|−|V (G)|−2. Thus, the lower
bound on c used in Theorems 1 and 2 may be relaxed in special cases; it may be
possible to relax this bound more generally.

Additionally, the “worst case” scenario examined in the proof of Theorem 2
seems unlikely to occur often when the number of chips on G is large. Thus, it is
likely that the c-dependence of the stabilization-time bound in Theorem 2 can be
relaxed.
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