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Abstract

We introduce a new model of school choice with reserves in which a social planner is
constrained by a limited supply of reserve seats and tries to find an optimal matching ac-
cording to a social welfare function. We construct the optimal distribution of reserves via a
quartic-time dynamic programming algorithm. Due to the modular nature of the dynamic
program, the mechanism is strategy-proof for reserve-eligible students.
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1. Introduction

College admissions and school choice are often modeled as two-sided stable matching
problems, where students have preferences over schools and schools have priorities over
students.

Social planners sometimes wish to optimize the school choice matchings in line with
overarching social welfare objectives. Since welfare objectives are generally monotonic in
students’ preferences for their assignments, the deferred acceptance algorithm produces the
unique stable matching which maximizes any welfare function for fixed student preferences
and priority rules over stable matchings [1]. However, if social planners are allowed to adjust
the priorities at each seat, they can produce matchings with higher social welfare than the
matching from deferred acceptance. One typical modification is to designate some seats as
reserve, at which a targeted group of students has higher priority.

To avoid completely distorting away from priority-based assignment, usually some limit
on the number of reserve seats is respected. Prior work has achieved this by distributing
reserves to individual schools upfront—making a fixed number of seats at each school reserved
for the targeted group [2, 3, 4, 5]. However, in some situations we need only respect a total
limit on the number of reserve seats. We could in principle adjust reserves across schools
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flexibly if that would improve welfare; this would ensure that reserve seats are not wasted
at schools that targeted students do not wish to attend.

This paper designs a mechanism that distributes reserves across schools to maximize
social welfare. We consider a model in which students are ordered according to test scores.
There are two types of students: targeted students, who are eligible for reserve seats, and
non-targeted students, who are not. At reserve seats, all targeted students receive a certain
number of extra points. The social planner’s objective is to first distribute a bounded
number of reserves across schools and then assign students to schools so as to maximize a
lexicographic welfare function, whereby the social planner wishes to maximize the placements
of top-ranking targeted students. Crucially, unlike in prior work [6, 7, 8, 9], the distribution
of reserves to schools is endogenously determined alongside the assignment of students to
schools.

We use a polynomial-time dynamic programming approach to determine the optimal
distribution of reserves and the student-optimal stable assignment under those reserves. Our
mechanism, which we call dynamically programmed reserve allocation (DPRA), is strategy-
proof for targeted students but not strategy-proof for non-targeted students (even in the
case where test score boosts for reserve-eligible students are infinite); since there is a unique
welfare-maximizing stable matching under our lexicographic welfare model, this implies that
no stable and strategy-proof mechanism can maximize welfare.

Our analysis may help social planners balance the needs of targeted and non-targeted
students. The DPRA mechanism places reserves where targeted students need them, but
ensures that non-targeted students are not harmed too much by respecting a limit on the total
number of reserves. The strategy-proofness of DPRA for targeted students is normatively
appealing, as it removes strategic burden from the students that the social planner is trying
to help [10, 11].

From a practical perspective, our model of reserves captures a feature of the Chinese
college admissions system whereby certain students (like athletes, prodigies, and members of
minority groups) receive elevated priority at certain seats [12]. The elevated priority is given
in the form of a boost in score on the gaokao—the Chinese college entrance examination—
that is applicable at seats called independent enrollment seats. Currently, the distribution
of independent enrollment seats is fixed; our results suggest how the distribution can be
endogenously optimized within the student–school assignment process to optimize welfare.

The remainder of this paper is organized as follows. Section 2 gives an illustrative exam-
ple. Section 3 describes the model formally. Section 4 describes our mechanism. Section 5
concludes. Appendix A presents the proofs.

2. An Illustrative Example

In this section, we provide an example that illustrates how the distribution of reserve
seats across schools can affect the outcome of deferred acceptance. We also describe the
optimal reserve distributions.

Suppose that there are four students—s1, s2, s3, and s4—and four schools—c1, c2, c3,
and c4. Each school has a capacity to enroll one student. Students s1 and s2 are targeted
by the reserve policy and hence receive priority over students s3 and s4 at all reserve seats.
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If not allocated a reserve, all schools rank students according to the master priority
ordering

s3 �ci s4 �ci s1 �ci s2.

When a school is allocated a reserve, its priority ordering becomes

s1 �ci s2 �ci s3 �ci s4

—ranking the targeted students above the non-targeted students. The students’ preferences
are given by

s1 : c1 �s1 c2 �s1 c3 �s1 c4

s2 : c2 �s2 c1 �s2 c4 �s2 c3

s3 : c2 �s3 c1 �s3 c3 �s3 c4

s4 : c1 �s4 c2 �s4 c4 �s4 c3

We now illustrate some of the subtleties of how the allocation of reserves to schools can affect
the outcome of deferred acceptance.

• Scenario 1: No reserve is allocated. In this case, in the outcome of deferred acceptance,
student s1 is matched to c3, student s2 is matched to c4, student s3 is matched to c2
and student s4 is matched to c1.

• Scenario 2: School c1 is allocated a reserve. In the case, in the outcome of deferred
acceptance, student s1 is matched to c1, student s2 is matched to c3, student s3 is
matched to c2, and student s4 is matched to c4.

Compared with Scenario 1, allocating a reserve to c1 helps s1 to obtain a seat at c1 but
causes s2 to lose her seat at s4. Intuitively, allocating a reserve to c1 causes s4 to lose
her seat at c1, therefore causing her to seek a seat at c4. Because there is no reserve
at c4, student s4 has higher priority than s2 at c4.

• Scenario 3: School c2 is allocated a reserve. In the case, in the outcome of deferred
acceptance, student s1 is matched to c2, student s2 is matched to c3, student s3 is
matched to c1, and student s4 is matched to c4.

Compared with Scenario 1, s1 obtains a more desirable assignment and student s2
obtains a less desirable assignment. Compared with Scenario 2, all students are hurt.
Intuitively, moving the reserve from c1 to c2 hurts all students because s1 not getting
his first choice causes increased competition at all seats.

• Scenario 4: Schools c1 and c2 are allocated reserves. In this case, in the outcome of
deferred acceptance, student s1 is matched to c1, student s2 is matched to c2, student
s3 is matched to c3, and student s4 is matched to c4.

This allocation is weakly better than all of the above allocations for both s1 and s2,
since s1 and s2 both are protected by the reserve seats at c2 and c1.

Consider a social welfare objective that values placements of targeted students lexico-
graphically more than the placements of non-targeted students. With one reserve, it is
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optimal to allocate the reserve to c1, as in Scenario 2. With two reserves, it is optimal to
allocate the reserves to c1 and c2, as in Scenario 4. It is never optimal to allocate a single
reserve to school c2, as in Scenario 3, because all students would prefer for the reserve to be
moved to c1.

For a given number of available reserve seats, our algorithm endogenously determines
how best to allocate them—choosing Scenario 2 in the case of one reserve, and Scenario 4 in
the case of two.

3. Model

3.1. Matching with Reserves

There is a set S = {s1, s2, . . . , sn} of students and a set C = {c1, c2, . . . , cm} of schools.
For sake of simplicity, we assume that each school has unit capacity. Reserve-eligible students
are identified via a characteristic function T : S → {0, 1}: a student s is reserve-eligible if
T (s) = 1.

Each student si has a test score τ(si) ∈ R. Let Ax be the priority order where students
are ranked by test scores, with each reserve-eligible student receiving x bonus points. If
τ(s) + xT (s) > τ(s′) + xT (s), then s Ax s′. The priority ordering of school c is

�c =

{
A0 if there is no reserve at c

Axc if there is a reserve at c
, (1)

where xc ≥ 0 is the number of bonus points given to reserve-eligible students at reserve seats
from school c. We assume that test scores and the numbers of bonus points are such that
each school’s priority order is strict irrespective of whether the school is allocated a reserve.

Each student has a strict preference ordering over C. If student s prefers school c to
school c′, then we write c �s c

′. Define the preference profile as

(�si)si∈S =�S .

Define the priority profile as
(�ci)ci∈C =�C .

A matching M is a set of matched pairs of students and schools in which every student
and every school appears at most once. Let M [s] = c if (s, c) ∈M and M [s] = ∅ if no such
c exists. Also, let M [c] = s if (s, c) ∈ M and M [c] = ∅ if no such c exists. Furthermore,
define M [S ′] for a set of students S ′ as the set of schools that students in S ′ attend under
M . Define M [C ′] for a set of schools C ′ as the set of student that attend schools in C ′ under
M . Formally, we define M [S ′] and M [C ′] as

M [S ′] =
⋃
s∈S′
{M [s]} and M [C ′] =

⋃
c∈C′
{M [c]}.

An outcome is a tuple (M,L,R,�S′ , C
′) consisting of a matching M ; the preferences of

the students in the outcome �S′ , where S ′ ⊆ S is a set of students involved in the outcome;
a set C ′ ⊆ C of schools involved in the outcome; the set L ⊆ C of locations of the reserves;
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and the set R ⊆ S of reserve-eligible students. A blocking pair is a student s ∈ S ′ and
a school c ∈ C ′ such that s �c M [c] and c �s M [s], where �c was defined in (1)—i.e., a
student and a school who each prefer each other to their assignment. An outcome is stable
if it has no blocking pairs, and good if L ⊆M [R], meaning that reserve seats are only given
to reserve-eligible students.

A partial outcome is a tuple (M,R,�S′ , C
′) that includes all the components of an out-

come except for the location of the reserve seats. For a partial outcome O, let OM denote
the matching, let OR the set of reserve-eligible students, O�S′

the preference profile of the
involved students, and OC′ the set of involved schools. For a set of schools L0 ⊆ C, we define
L0 nO to be an outcome where the reserve seats are given by L0, but the other parameters
are all the same as O.

A partial outcome O is T -feasible if there exists a set of schools L0 with size at most T
such that L0 nO is a stable outcome—that is, if it is possible to allocate at most T reserves
to make O stable. For a set of preferences �S, a set of schools C, and a set of reserve-eligible
students R, the set of matchings corresponding to T -feasible partial outcomes is denoted by
MF (�S, C,R).

3.2. The Social Planner’s Problem

The social planner evaluates outcomes using a welfare function that aggregates students’
preferences using a social welfare metric. We restrict our attention solely to one specific
lexicographic welfare function, which requires defining a relative order I over students,
called precedence, corresponding to how much the social planner “cares” about a student.
Formally, the precedence order I is the ordering of students in which

• all targeted students precede all non-targeted students, and

• within each group, higher-scoring students precede lower-scoring ones.

Let Ii be the ith ranked element of I, and denote Prek = {I1,I2, . . . ,Ik}.

Definition 1. A I-lexicographic welfare function WI,�S
is a function from matchings to

real numbers such that WI,�S
(A) > WI,�S

(B) for matchings A and B if and only if there
exists an integer k ≥ 0 such that A[Ii] = B[Ii] for all i ≤ k and A[Ik+1] �Ik+1

B[Ik+1],
where preferences are given by �S.

To maximize welfare under WI, we maximize I1’s result (according to her reported
preferences), then I2’s result (according to her reported preferences), and so on. The social
planner’s objective is to maximize WI,�S

(OM) over all T -feasible partial outcomes. Note
that this is purely a function of the matching, and not of the locations of the reserve seats or
of reserve-eligible status. That is, the social planner has T reserves to distribute and seeks
to maximize its social welfare metric among stable matchings.

3.3. Mechanisms

A mechanism is a function f that takes as input a preference profile, the set of schools,
and the reserve eligible students and outputs a matching. A mechanism f is called T -feasible
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if f(�S, C, T ) is T -feasible for all choices of parameters. A mechanism f is strategy-proof for
student s if f makes truth-telling a dominant strategy for s—that is, if

f(�S, C, T )[s] �s f((�Sr{s},�′s), C, T )[s]

for all choices of parameters.

Definition 2. A T -feasible matching M is socially optimal if it has weakly higher welfare
than any other T -feasible matching M ′, that is,

WI,�S
(M) ≥ WI,�S

(M ′) for all M ′ ∈MG(�S, C, T )

Definition 3. A T -feasible mechanism f is socially optimal if it returns socially optimal
matchings.

Recall that among all matchings that are stable with respect to a given reserve distribu-
tion, there is a student-optimal matching that is weakly preferred by all students to any of the
others [1]. Since WI is monotonic in students’ preferences, any socially optimal mechanism
must return matchings that are student-optimal with respect to some reserve distribution
(where the reserve distribution may depend endogenously on students’ reported preferences).

The deferred acceptance mechanism [1] is an example of a mechanism. It proceeds as
follows.

• At step 1, every student applies to his or her first choice school. Each school rejects
all but its favorite student, who is temporarily held.

• At step i > 1, all students who have been rejected apply to their favorite school that
has not yet rejected them. Again, each school rejects all but its favorite student, whom
the school holds. (Note that it is possible for a school’s temporarily held student to be
rejected in a later round)

• When the students are all either matched to a school or have proposed to all schools
they prefer to the outside option, the process ends.

We let DA(L,R,�S′ , C
′) denote the matching returned by deferred acceptance in the sub-

market in which the set of students is S ′, the set of schools is C ′, reserves are set at the
schools in L, the set of reserve-eligible students is R, and students’ preferences are given by
�S′ .

The deferred acceptance mechanism is strategy-proof, stable, and student-optimal for a
fixed reserve distribution L [1, 13, 14]. Our contribution is to consider the case in which L
is determined endogenously from students reports and set to maximize a welfare criterion.

4. The Dynamic Programming Reserve-Allocation Mechanism (DPRA)

In this section, we present the dynamic programming reserve-allocation mechanism,
which solves the social planner’s problem. The general idea of the dynamic programming
method is to start with a market with no reserve-eligible students and successively make
targeted students reserve-eligible (in priority order), adjusting the matching as we do so.
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The intuition behind the algorithm is that making a targeted student reserve-eligible
will not affect the assignment of a targeted student of higher priority under A0, since the
“chain of elimination” formed by the promotion of the former student will not affect the
latter student. This mechanism finds the welfare-maximizing T -feasible matching, where
the welfare function is WI,�S

and the precedence order I=A∞. Our algorithm runs in
polynomial time.

If opt[i] is the welfare-maximizing T -feasible matching when just the students in Prei
are reserve-eligible, then we seek to find opt[b], where b is the number of targeted students.
Formally, finding opt[i] is just calculating

opt[i] = argmax
MF (�S ,C,Prei)

WI,�S

We do this by finding each of opt[i] where 0 ≤ i ≤ b sequentially. Transitioning from opt[i]
to opt[i+ 1] corresponds to making targeted student Ii+1 reserve-eligible.

4.1. Structural Observations

We make the following observation about the opt[i], which shows that making student
Ii+1 reserve-eligible does not affect the assignments of students in Prei.

Proposition 1. We have
opt[i][Ij] = opt[i+ 1][Ij]

for all j ≤ i.

Proposition 1 is proven by noting that the vacancy chain created by Ii+1’s promotion
cannot influence I1,I2, . . . ,Ii. Proposition 1 means that if we have found opt[i], it is
substantially easier to determine opt[i + 1]. To solve the reserve-distribution problem, we
just need to determine what the assignment of Ii+1 is when transitioning between opt[i] and
opt[i+ 1], which we do by checking by iterating through Ii+1’s preference list in descending
order, and then checking whether that matching can be stabilized with at most T reserve
seats; in the next section, we introduce a property that formalizes this idea.

4.2. The Minimum Feasible Number

Let the minimum feasible number of a partial outcome (M,R′,�S′ , C
′) where R′ ⊆ S ′

be the smallest integer k such that there exists a matching M ′ such that (M ′, R′,�S, C) is
k-feasible and M [s] = M ′[s] for all s ∈ S ′ and M [c] = M ′[c] for all c ∈ C ′. If no such integer
exists, let the minimum feasible number be ∞.

4.3. The Main Algorithm

Let there be a non-targeted students, b targeted students, and T total reserve slots over
m schools. We use dynamic programming as follows: Again, let opt[i] the lexicographically
optimal T -feasible matching in which exactly the students in Prei are reserve-eligible (there
are still at most T reserve seats). As there are b targeted students in the original problem,
the goal is to compute opt[b]. Our algorithm runs as follows. We will compute matchings
dp[0], dp[1], . . . , dp[b]. We will then show that dp[i] = opt[i], by proving that dp[b] maximizes
WI,�S

.
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• Step 0: Let dp[0] be the result of deferred acceptance in which we ignore the targeted
status of any student.

• Step i for 1 ≤ i ≤ b: Consider the matching

M ′ =
i−1⋃
j=1

{(Ij, dp[i− 1][Ij])}.

which represents the schools to which Prei−1 are matched to under dp[i− 1].

Let c∗ be Ii’s most-preferred school such that:

– dp[i− 1][Ij] �Ij
c∗ for all 1 ≤ j ≤ i− 1, and

– The minimum feasible number of (M ′ ∪ {(Ii, c
∗)},Prei,�Prei , {c∗} ∪M ′[Prei−1])

is at most T .

c∗ is the most preferred school that Ii can be matched to while keeping the minimum
feasible number at most T .

Let M c∗
i = M ′∪{(Ii, c

∗)}. Run deferred acceptance in the market consisting of S\Prei
and unmatched schools in C to obtain a matching M ′′. We set dp[i] = M c∗

i ∪M ′′.

We call the preceding algorithm Dynamic Programming with Reserve Allocation (DPRA).

Proposition 2. In the DPRA algorithm, dp[i] = opt[i], that is, dp[i] optimizes welfare when
only the students in Prei are reserve-eligible.

Corollary 1. Any T -feasible mechanism that optimizes welfare is outcome-equivalent to
DPRA.

The proof of Proposition 2 is via an inductive argument on i, because Proposition 1
means that we can reuse opt[i] when computing opt[i+ 1].

We now show that DPRA is strategy-proof for targeted students; this relieves targeted
students of the burden of having to strategize.

Proposition 3. The DPRA mechanism is strategy-proof for targeted students.

DPRA’s strategy-proofness arises from the fact that it essentially only queries for Ii’s
preferences when computing the matching dp[i].

Proposition 4. The DPRA mechanism is not strategy proof for non-targeted students, even
when xc ≡ ∞.

Even though the mechanism is not strategy-proof for non-targeted students, the strategy-
proofness for targeted students is normatively appealing, because it means that using DPRA
makes the assignment process strategically simple for the students who the policymakers are
trying to help. Moreover, there is no way to maximize welfare while requiring T -feasibility
and strategy-proofness for all students.

Combining Corollary 1 and Proposition 4, we have the following results.

Corollary 2. No T -feasible and strategy-proof mechanism can maximize WI,�S
for all pref-

erence profiles �S.
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Note that DPRA chooses the welfare-maximizing matching over all T -feasible matchings.
As one T -feasible matching is the result of deferred acceptance with no reserves, DPRA will
always yield a matching with weakly higher welfare.

4.4. Calculating the Minimum Feasible Number

The above analysis does not explain how to compute the minimum feasible number
effectively. Here, we explain an algorithm which computes the minimum feasible number in
polynomial time.

Consider the following algorithm, denoted the Blocking Pairs Algorithm (BPA), that is
polynomial time and computes the minimum feasible number. BPA takes as input a partial
outcome O = (M,R,�S′ , C

′) where R ⊆ S ′ and calculates the minimum feasible number.
Consider the matching

M ′ = M ∪ DA(∅,∅,�S\S′ , C \ C ′).

Call this the auxiliary matching. Now, if the outcome (M ′,M ′[R], R,�S, C) is stable,
BPA returns the number of schools in M ′[R] that are blocked by students in S \ R in the
outcome (M ′,∅, R,�S, C). Otherwise, BPA returns ∞.

Note that BPA runs in O(mn) time. Intuitively, if there exists a set of reserves that will
stabilize the matching, and we place reserve seats at the schools that are blocked in C ′, the
matching will become stable.

It now suffices to show that BPA computes the minimum feasible number correctly.

Proposition 5. BPA computes the minimum feasible number of every partial outcome (M,R,�S′

, C ′) with R ⊆ S ′.

Proposition 6. The DPRA algorithm has polynomial runtime O(bm2n).

5. Conclusion

This paper considered how a social planner can distribute reserves among schools to
maximize a lexicographic social welfare objective WI,�S

. When the social welfare objective
is lexicographic in targeted students’ preferences, we provide a mechanism based on dynamic
programming to distribute reserves and find a welfare-maximizing stable matching. Our
mechanism is strategy-proof for targeted students, ensuring that optimizing the distribution
of reserves does not create complex strategic incentives for targeted students.

It would be interesting to analyze more general social welfare objectives to better under-
stand how schools schools systems should distribute reserves. It would also be interesting to
consider endogenous reserve distribution in matching with contracts settings, for example to
incorporate financial aid packages into our model.
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Appendix A. Proofs

Appendix A.1. Preliminaries: Classes of Matchings

We say that a partial outcome O = (M,R,�S′ , C
′) is T -attainable if there exists a reserve

distribution L0 with size at most T such that DA(L0, R,�S′ , C
′) = M. By construction,

every T -attainable outcome is T -feasible. Due to the optimality of deferred acceptance
among all stable mechanisms, every welfare-maximizing, T -feasible partial outcome must be
T -attainable.

We say that a partial outcome O = (M,R, S ′, C ′) is good T -feasible if there exists a reserve
distribution L0 with size at most T such that L0nO is a stable and good outcome—that is, if
it is possible to allocate at most T reserves to schools that enroll reserve-eligible students to
obtain stability. Analogously, we say that a partial outcome O is good T -attainable if there
exists a reserve distribution L0 with size at most T such that DA(L0, R,�S′ ,�C′) = M , and
furthermore the outcome L0 nO is stable and good.

Define the set of matchings present in at least one T -feasible (resp. T -attainable, good
T -feasible, good T -attainable) partial outcome to beMF (�S′ , C

′, R) (resp.MA(�S′ , C
′, R),

MG
F (�S′ , C

′, R), MG
A(�S′ , C

′, R)), where the set of students is S ′, the set of schools is C ′,
and the reserve-eligible students are exactly those in R.

Appendix A.2. Key Lemmata

Many of the proofs of the propositions depend on lemmata given here. The first lemma
here allows us to interpret maximizing welfare as finding the optimal matching from many
different sets; this allows us to have more flexibility when approaching other problems.

Lemma 1. For all stable outcomes O = (M,L,R,�S, C), the outcome

O′ = (M,L ∩M [R], R,�S, C)

obtained from O by removing reserve seats from every school not assigned a reserve-eligible
student is stable.

Proof. Indeed, assume for sake of deriving a contradiction that (s, c) is a blocking pair in O′

but not in O; As s’s preferences are unchanged, it must be the case that M [c] has higher
priority than s under reserve allocation L, but s has higher priority than M [c] under reserve
allocation L′. Hence, the priority order of c must be different under reserve allocation L′

than under reserve allocation L. It follows that c ∈ (L \ L′) ∪ (L′ \ L). As L′ = L ∩M [R],
we must have that c ∈ L \M [R].

Hence M [c] is not reserve-eligible, because c ∈ L \ M [R]. Therefore, if s had higher
priority than M [c] under reserve allocation L′ (in which there’s no reserve at c) s would have
higher priority than M [c] under reserve allocation L (in which there is a reserve at c)—a
contradiction.

12



Lemma 2. For all R ⊆ S, we have that

argmax
MF (�S ,C,R)

WI,�S
= argmax
MA(�S ,C,R)

WI,�S
= argmax
MG

F (�S ,C,R)

WI,�S
= argmax
MG

A(�S ,C,R)

WI,�S
.

Proof. Consider the following function on outcomes. Take

f(M,L,R,�S, C) = (DA(L ∩M [R], R,�S, C), L ∩M [R], R,�S, C)

which essentially takes out reserves which are given to non-reserve eligible students and runs
deferred acceptance.

Claim 1. For all stable outcomes O = (M,L,R,�S, C), we have that

WI,�S
(f(O)M) ≥ WI,�S

(M)

Proof. Consider the reserve allocation L′ = L ∩M [R]. Let

O′ = (M,L′, R,�S, C).

We now observe that O′ is stable by Lemma 1. Note that

f(O) = (DA(L′, R,�S, C), L′, R,�S, C)

is also stable, as the outcome of deferred acceptance. Therefore, each student receives a
weakly better assignment in f(O)M to O′M by optimality of deferred acceptance. Since, the
welfare function is monotonic in student’s preferences, we may conclude.

The following claim is a consequence of Claim 1.

Claim 2. For all outcomes O = (M,L,R,�S, C) with M = argmaxMF (�S ,C,R)WI,�S
, we

have that f(O)M = M .

Proof. Observe first that f(O)M ∈ MF (�S, C,R), since deferred acceptance is stable and
|L ∩M [R]| ≤ |L| ≤ T .

Now, by Claim 1 we have that

WI,�S
(f(O)M) ≥ WI,�S

(M)

But since f(O)M ∈MF (�S, C,R), as OM = argmaxMF (�S ,C,R)WI,�S
, we also have

WI,�S
(f(O)M) ≤ WI,�S

(M).

and we may conclude.

Let M = argmaxMF (�S ,C,R)WI,�S
. Consider a stable outcome O′ = (M,L′, R,�S, C).

Claim 2 guarantees that f(O)M = M . Let O = f(O′) = (M,L,R,�S, C). As L ⊆ M [R]
and M = DA(L,R,�S, C) by construction, the matching M is good attainable. Hence, we

13



must have that

max
MF (�S ,C,R)

WI,�S
≤ max
MA(�S ,C,R)

WI,�S
, max
MG

F (�S ,C,R)
WI,�S

, max
MG

A(�S ,C,R)
WI,�S

.

As MF (�S, C,R) ⊇MA(�S, C,R),MG
F (�S, C,R),MG

A(�S, C,R), we have that

max
MF (�S ,C,R)

WI,�S
≥ max
MA(�S ,C,R)

WI,�S
, max
MG

F (�S ,C,R)
WI,�S

, max
MG

A(�S ,C,R)
WI,�S

.

Hence, we must have that

max
MF (�S ,C,R)

WI,�S
= max
MA(�S ,C,R)

WI,�S
= max
MG

F (�S ,C,R)
WI,�S

= max
MG

A(�S ,C,R)
WI,�S

.

As the function WI,�S
is injective on matchings, the lemma follows.

Definition 4. The k-restriction of a matching M is given by

M |k =
⋃

1≤i≤k,M [Ii] 6=∅

{(Ii,M [Ii])}

Define the set of k-restrictions of a set of matchings S to be S|k.

The following lemma allows us to formalize the notion of a student being irrelevant to
the final outcome.

Lemma 3 (Low-Priority Lemma). We have that

DA(L,Prek,�Sr{s0}, C)|k = DA(L,Prek,�S, C)|k

if Ik A0 s0.

Proof. The key step is to use order-independence of proposals in deferred acceptance [15].
Consider the two-stage process given below which computes DA(L,Prek,�S, C).

1. Have every student except for s0 propose in order until a stable matching is reached.

2. Have student s0 propose, and observe that one of two things can happen when he
proposes to a school.

(a) s0 is rejected, so he proposes again.
(b) s0 takes the place of the student in the seat, who proposes next.

The result of the first step is DA(L,Prek,�S\{s0}, C). Let the students who are displaced
over the course of the second step be, in order, s0, s1, . . . , sk. Therefore, for all 0 ≤ i ≤ k−1,
si must be preferred to si+1 at some school. To show the result, it suffices to show that none
of si can be reserve-eligible. To see this, assume for the sake of contradiction that st is a
student in this order who is reserve-eligible. Observe that s0 must be preferred to st at some
school, but then

st wx Ik A
x s0

for all nonnegative x and we may conclude.

14



We can easily extend this lemma as follows.

Corollary 3. For a set T , if for each s0 ∈ T , Ik A0 s0, then we have

DA(L,Prek,�SrT , C)|k = DA(L,Prek,�S, C)|k.

The following is a standard lemma, and was proven in [16].

Lemma 4 (Comparative Static, see [16]). For any s0, we have that

DA(L,R,�S\{s0}, C)[s1] �s1 DA(L,R,�S, C)[s1]

for s1 ∈ S \ {s0}.

Appendix A.3. Proof of Proposition 1

We show a lemma that lays the groundwork for the rest of the proof. The key idea is to
interpret opt[i] as a function that takes an optimal matching from a set of matchings, and
showing that one of these sets is a subset of the other.

Lemma 5. We have WI,�S
(opt[i+ 1]) ≥ WI,�S

(opt[i]).

Claim 3. If M ∈MG
F (�S, C,Prei), then M ∈MG

F (�S, C,Prei+1)

Proof of Claim 3. To prove this, it suffices to show that if O1 = (M,Prei,�S, C) is a good
T -feasible partial outcome, then O2 = (M,Prei+1,�S, C) is also a good T -feasible partial
outcome. By the hypothesis, there exists a stable outcome (M,L,Prei,�S, C) with |L| ≤ T .
We claim that (M,L,Prei+1,�S, C) is also a stable outcome. Goodness follows directly,
since we have that L ⊆ M [Prei] ⊆ M [Prei+1]. T -feasibility also follows, since |L| ≤ T .
Stability follows by goodness; if (s, c) blocks O2, then c �s M [s] and s �c M [c]. If (s, c) is
not to block O1, then the preferences don’t change, so we must have M [c] �c s in O1. The
priority changing implies that c is a reserve seat, and that student s and M [c] change order
when Ii+1 becomes reserve-eligible. Therefore, we have that s is Ii+1, and M [c] cannot be
reserve-eligible. However, if M [c] isn’t reserve-eligible, then by goodness there is no reserve
seat at c, and we may conclude.

We now use this claim to prove the lemma.

Proof of Lemma 5. From Lemma 2,

opt[i] = argmax
MF (�S ,C,Prei)

WI,�S
= argmax
MG

F (�S ,C,Prei)

WI,�S

Now the result follows from Claim 3.

We can now prove Proposition 1.

Proof of Proposition 1. By definition, there exists a reserve distribution L0 with size at most
T such that (opt[i+ 1], L0,Prei+1,�S, C) is a stable outcome.
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Define M0 = DA(L0,Prei,�S, C). Note that

M0[Ik] = DA(L0,Prei,�S, C)[Ik]

= DA(L0,Prei,�S\{Ii+1}, C)[Ik]

= DA(L0,Prei+1,�S\{Ii+1}, C)[Ik]

�Ik
DA(L0,Prei+1,�S, C)[Ik]

= opt[i+ 1][Ik]

for 1 ≤ k ≤ i, where the second equality follows from Lemma 3 and the inequality follows
from Lemma 4.

By Lemma 5 and by the definition of opt[i],

WI,�S
(opt[i+ 1]) ≥ WI,�S

(opt[i]) ≥ WI,�S
(M0).

Assume for the sake of contradiction that for some j ≤ i, opt[i+ 1][Ij] 6= M0[Ij]. Take
the smallest such j, and observe that since M0[Ij] �Ij

opt[i + 1][Ij], WI,�S
(opt[i + 1]) ≤

WI,�S
(M0) which is contradiction. Thus, opt[i + 1][Ij] = M0[Ij] for j ≤ i. Assume for

the sake of contradiction that for some j ≤ i, opt[i + 1][Ij] 6= opt[i][Ij]. By lexicographic
comparisons, it must be true that opt[i+ 1][Ij] �Ij

opt[i][Ij]. But then,

M0[Ij] = opt[i+ 1][Ij] �Ij
opt[i][Ij],

which contradicts WI,�S
(opt[i]) ≥ WI,�S

(M0), so opt[i + 1][Ij] = opt[i][Ij] for j ≤ i and
we may conclude.

Appendix A.4. Proof of Proposition 2

It suffices to show that dp[i][Ij] = opt[i][Ij] for 1 ≤ j ≤ i, because the welfare-
maximizing stable matching for the rest of the students (whose precedence is lower than
all students in Prei) is a serial dictatorship indexed by test score, as none of the students
are reserve-eligible.

Suppose otherwise, and that for some i, dp[i] 6= opt[i]. Then there must be a minimal
j such that dp[j] 6= opt[j]. By minimality, dp[j − 1] = opt[j − 1]. By Proposition 1
and by construction, for 1 ≤ k ≤ j − 1, dp[j][Ik] = dp[j − 1][Ik] = opt[j − 1][Ik] =
opt[j][Ik]. Therefore, dp[j][Ij] 6= opt[j][Ij]. However, since dp[j] is T -feasible this implies
that opt[j][Ij] �Ij

dp[j][Ij], and thus that the minimum feasible number of (M ′ ∪ {(Ij

, opt[j][Ij])},Prej,�Prej ,�opt[j][Ij ]∪M ′[Prej−1]) is at most T , since the matching opt[j] is T -
feasible, which is contradiction.

Appendix A.5. Proof of Proposition 3

Now we show that DPRA is strategy-proof for targeted students. The intuitive reason
for this is that DPRA essentially only queries for the preferences of the student Ii when
computing dp[i].

Note that Ii’s assignment is fixed following step i. We claim that Ii’s preferences cannot
affect the assignments of Prei−1.
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Lemma 6. If k < i, then

argmax
MF (�Sr{Ii},C,Prek)|k

WI,�S
= argmax
MF (�S ,C,Prek)|k

WI,�S

Claim 4. Removing Ii preserves the set of T -attainable restricted k-matchings if k < i, that
is

MA(�Sr{Ii}, C,Prek)|k =MA(�S, C,Prek)|k.

Proof. Note that M ∈MA(�Sr{Ii}, C,Prek)|k if and only if there exists L ⊆ S with |L| ≤ T
and M = DA(L,Prek,�Sr{Ii}, C)|k. By Lemma 3, the second hypothesis holds if and only
if there exists L ⊆ S with |L| ≤ T and M = DA(L,Prek,�Sr{Ii}, C)|k—i.e., if and only if
M ∈MA(�S, C,Prek)|k. The claim follows.

Proof of Lemma 6. We have that

argmax
MF (�Sr{Ii},C,Prek)|k

WI,�S
= argmax
MA(�Sr{Ii},C,Prek)|k

WI,�S
= argmax
MA(�S ,C,Prek)|k

WI,�S
= argmax
MF (�S ,C,Prek)|k

WI,�S

where the first and third equalities follow from Lemma 2, and the second equality follows
from Claim 4.

Denoting �′S = (�′Ii
,�Sr{Ii}), assume for contradiction that(

argmax
MG

F (�′S ,C,Prei)

WI,�′S

)
[Ii] �Ii

(
argmax

MG
F (�S ,C,Prei)

WI,�S

)
[Ii]

From Lemma 6, we have that(
argmax

MG
F (�′S ,C,Prei)

WI,�′S

)∣∣∣∣∣
i−1

=

(
argmax

MG
F (�Sr{Ii},C,Prei)

WI,�S

)∣∣∣∣∣
i−1

=

(
argmax

MG
F (�S ,C,Prei)

WI,�S

)∣∣∣∣∣
i−1

Combined with the above, this implies that

max
MG

F (�′S ,C,Prei)
WI,�S

> max
MG

F (�S ,C,Prei)
WI,�S

.

Let the optimal matching in MG
F (�′S, C,Prei) be part of the following outcome:

O1 = (M,L,Prei,�′S, C)

where |L| ≤ T . By optimality, it must the case that

O′1 = (M,L,Prei,�S, C)

is not stable or not good. O′1 is clearly good, so it must not be stable. The only student
who can form blocking pairs is Ii, since priorities do not change and only preferences do.
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Assume that he forms blocking pairs with schools

cq1 �Ii
cq2 �Ii

. . . �Ii
cqk ,

so cqj �Ii
M [Ii] for all j. Observe that cq1 6∈ L, since s′ cannot be reserve-eligible by virtue

of being blocked by Ii and O′1 is good. Therefore, since the seat is not reserve, s′ has a
strictly lower test score than Ii.

Now denote S ′′ as the set of students with strictly lower test scores than Ii. Consider
the matching

M ′ = M |Sr(S′′∪{Ii}) ∪ {(Ii, cq1)}

where we replace Ii’s assignment with cq1 , and remove students with test scores lower than
Ii.

Claim 5. The outcome
(M ′, L,Prei,�SrS′′ , C)

is stable.

Proof of Claim 5. Assume that (s, c) forms a blocking pair in this outcome. Then we have
s �c M

′[c] and c �s M
′[s]. However, by stability of O1, we have that M [c] �c s or M [s] �s c.

The latter is impossible since by construction, all students prefer their old assignment to their
new one. Since all schools have an improvement in their assignments other than M [Ii], so
M [Ii] must be part of a blocking pair. However, now we have contradiction since for any
student s 6=Ii, s �cIi so we must have M [s] �s M [Ii]. But then we have M ′[s] �s M [Ii],
contradicting c �s M

′[s], and we are done.

Now consider DA(L,Prei,�SrS′′ , C), which will improve upon M ′. By Corollary 3, we
have that

DA(�SrS′′ , C, L,Prei)[Ij] = DA(L,Prei,�S, C)[Ij]

for j ≤ i.
Therefore,

DA(L,Prei,�S, C)[Ii] = DA(L,Prei,�SrS′′ , C)[Ii]

�Ii
cir

�Ii
M [Ii]

�Ii
opt[i][Ii]

and for all j < i,

DA(L,Prei,�S, C)[Ij] = DA(L,Prei,�SrS′′ , C)[Ij]

�Ij
M ′[Ij]

= M [Ij]

= opt[i][Ij]

The matching DA(L,Prei,�S, C) is T -feasible by construction. It must be true that
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WI,�S
(DA(L,Prei,�S, C)) ≤ WI,�S

(opt[i])

by definition as the first matching is T -feasible whereas the second matching optimizes over
all T -feasible matchings, but the above two inequalities contradict this, and we may conclude.

Appendix A.6. Proof of Proposition 4

It suffices to show the result with an example. Assume that there are three students,
three schools, two reserve-eligible students (s1 and s2) and one reserve seat. Let xc ≡ ∞.

• The common priority ordering over all schools is

s3 �ci s1 �ci s2.

• The preferences by students are

s1 : c1 �s1 c2 �s1 c3

s2 : c3 �s2 c1 �s2 c2

s3 : c3 �s3 c2 �s3 c1

With these preferences, s2 will be matched to c3, and s3 will not be matched to c3. s3
can’t be matched to c3 since s1 doesn’t require a reserve. However, if we have s3 submit false
preferences c1 �s3 c3 �s3 c2, the reserve seat will be used at c1 to protect s1’s claim, and s2
will not have a reserve seat. As a result, s3 will be matched to c3, so the mechanism is not
strategy proof for non-reserve eligible students.

Appendix A.7. Proof of Proposition 5

The key step is to show that the matching underlying any stable outcome that includes
M must be precisely the auxiliary matching M ′. We then show that the BPA algorithm
finds the smallest set of reserve locations to make M ′ stable.

Lemma 7. Let
O0 = (M0, L0, R0,�S, C)

be a stable outcome. Let S ′ ⊆ S and C ′ ⊆ C be sets, and let M ′
0 ⊆ M0 ∩ (S ′ × C ′) be a

matching. If M0 \M ′
0 ⊆ (S \ S ′)× (C \ C ′), then

O′0 = (M ′
0, L0 ∩ C ′ ∩M ′

0[R0 ∩ S ′], R0 ∩ S ′,�S′ , C
′)

is a stable outcome.

Proof. We first show that O′′0 = (M ′
0, L0 ∩ C ′, R0 ∩ S ′,�S′ , C

′) is stable. The preferences
(resp. priorities) of S ′ (resp. C ′) over the schools in C ′ (resp. the students in S ′) are the same
in O0 and O′′0 . Note that M ′

0[x] = M0[x] for all x ∈ S ′ ∪ C ′. Therefore, since the matching,
preferences, and priorities are the same between O0 and O′′0 , (s, c) blocks O′′0 iff it blocks O0

as well, and thus O′′0 is stable.
The conclusion of the lemma follows by Lemma 1.
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Lemma 8. Assume that the outcomes (M0, L1, R1,�S′ , C
′) and (M ′

0, L2, R2,�S′ , C
′) are both

stable outcomes for S ′ ⊆ S and C ′ ⊆ C and R1, R2 ⊆ S where at most one of L1 and R1 are
nonempty, and at most one of L2 and R2 are nonempty. Then M0 = M ′

0.

Proof. By [17, Proposition 6], M and M ′ must both be the result of serial dictatorship with
order dictated by I. Hence, M must equal M ′.

Suppose that there exists L ⊂ C and a matching M ′′ such that (M ′′, L,R,�S, C) is a
stable outcome, and M ′′[s] = M [s] for s ∈ S ′ and M ′′[c] = M [c] for c ∈ C ′. By Lemma 7,
the outcome

(M ′′ \M,L′,∅,�S\S′ , C \ C ′)

is stable. The outcome

(DA(∅,∅,�S\S′ , C \ C ′),∅,∅,�S\S′ , C \ C ′)

is also stable, so by Lemma 8, we must have that M ′′ \M = DA(∅,∅,�S\S′ , C \ C ′) and
hence that M ′′ = M ′.

Claim 6. Consider the outcomes O0 = (M ′, L,R,�S, C) and O1 = (M ′, L∪{c0}, R,�S, C).

(a) If c0 ∈M ′[R], O1 is stable if O0 is stable.

(b) If c0 6∈M ′[R], O0 is stable if O1 is stable.

Proof. We prove the contrapositives of assertions (a) and (b) separately.

(a) Let (s, c) be a blocking pair in O1; we show that (s, c) is a blocking pair in O0. If c 6= c0,
then the result is immediate, as such c have the same priorities in both O0 and O1.
Hence, it suffices to consider the case in which c = c0.
If (s, c0) does not block O0, we must have that c0 prioritizes M [c0] over s in O0, but c0
prioritizes s over M [c0] in O1. However, since M [c0] ∈ R, adding a reserve at c0 will
never reduce M [c0]’s priority relative to any other student—including s. But this would
mean that (s, c0) also could not block O1, a contradiction.

(b) Following a similar argument to that in part (a), we see that it suffices to consider the
case in which c = c0.
Now, if (s, c0) is not a blocking pair in O1, then since s’s preferences do not change
between O1 and O0, it must be the case that either (i) c0 prioritizes M [c0] over s in
O1, but c0 prioritizes s over M [c0] in O0, or (ii) s is acceptable to c0 in O1, but not
in O0. Case (ii) is ruled out by our assumption that all students are acceptable to all
schools. Therefore, we must have case (i). But since M [c0] is a non-reserve-eligible
student, adding a reserve at c0 will never raise her priority with respect to another
student—meaning that (s, c0) cannot a block O0, a contradiction.

Applying Claim 6 repeatedly yields the following result.

Claim 7. If there exists an L ⊆ C such that (M ′, L,R,�S, C) is a stable outcome, then
(M ′,M ′[R], R,�S, C) is also stable.
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The BPA returns ∞ in the case where (M ′,M ′[R], R,�S, C) is not stable. Indeed, if
(M ′,M ′[R], R,�S, C) is not stable, then by Claim 7 there is no L such that (M ′, L,R,�S, C)
is stable and we may conclude.

Otherwise, there is at least one set L such that (M,L,R,�S, C) is stable; |L0| is the
minimum feasible number of O. Let L0 be the smallest subset of C so that (M ′, L0, R,�S, C)
is stable. Let U be the set of schools in M ′[R] that are blocked by students in S \ R in the
outcome (M ′,∅, R,�S, C). Since BPA outputs |U |, to show that BPA outputs the minimum
feasible number |L0|, it suffices to show that L0 = U .

We first show that U ⊆ L0. Assume for the sake of deriving a contradiction that there
exists c ∈ M ′[R] such that c ∈ U , but c 6∈ L0. This means there is a student s ∈ S \ R so
that (s, c) blocks the outcome (M ′,∅, R,�S, C). But then, (s, c) also blocks the outcome
(M ′, L0, R,�S, C), since the priority of c is the same in (M ′,∅, R,�S, C) and (M ′, L0, R,�S

, C), which is a contradiction.
We next show that L0 ⊆ U . By Lemma 1, the outcome (M ′[R], L0 ∩M ′[R], R,�S, C) is

stable as well, and L0 ∩M ′[R] has smaller size than L0. Hence, the minimality of L0 entails
that L0 ⊆M ′[R]. Assume for the sake of deriving a contradiction that there exists c ∈M ′[R]
so that c ∈ L0 \U . This means there are no students s ∈ S \R so that (s, c) forms a blocking
pair in the outcome (M ′,∅, R,�S, C). Then we claim that (M ′, L0 \ {c}, R,�S, C) is also
stable, contradicting minimality of L0. Assume that (M ′, L0 \ {c}, R,�S, C) is not stable;
this implies that there exists a student s so that (s, c) forms a blocking pair in this outcome.
Take any such student s0 so that (s0, c) blocks the outcome (M ′, L0\{c}, R,�S, C). If s0 ∈ R,
note that (s0, c) also blocks (M ′, L0, R,�S, C). Therefore, s0 ∈ S \R. But then, (s0, c) forms
a blocking pair in (M ′,∅, R,�S, C), which implies that c ∈ U and is contradiction.

Since U ⊆ L0 and L0 ⊆ U , we have that L0 = U . As |U | is the output of the BPA,
outputting |U | gives us |L0| and we are done.

Appendix A.8. Proof of Proposition 6

Note that each step of dynamic programming (of which there are b) runs deferred accep-
tance once (at O(mn) time complexity) and BPA up to m times (at O(mn) time complexity
each), so the overall runtime is bounded by b ·mn+ b ·mn ·m = O(bm2n).
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