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Designing marketplaces in complex settings requires both novel economic theory and
real-world engineering, often drawing upon ideas from fields such as computer science and
operations research. In Discovering Prices, Milgrom (2017) explains the theory and design
of the United States “Incentive Auction” that reallocated wireless spectrum licenses from
television broadcasters to telecoms. Milgrom’s account teaches us how economic designers
can grapple with complexity both in theory and in practice. Along the way, we come to
understand several different types of complexity that can arise in market design.
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1. Introduction

For hundreds of years, people have found in-
genious ways to allocate resources and discover
prices. Merchants in medieval Europe, for ex-
ample, set up multilateral clearing mechanisms
for non-tradable debt, known as rescontre; these
decentralized matching algorithms involved first
clearing reciprocal debts and then clearing debt
chains and cycles (e.g., in which i owes j who
owes k who owes i). Rescontre appears to have
been highly efficient (Börner and Hatfield, 2017).1

Meanwhile, the Ming and Qing Dynasties (1594–
1700) used randomized assignment systems to
eliminate the possibility of corruption in the se-
lection of candidates for civil service jobs (Will,
2002).2 And even the great German poet Johann
Wolfgang von Goethe designed an auction: He
was interested in learning what value his publisher
put on a manuscript, and this led him to devise a
mechanism that turned out to be equivalent to a
second-price, sealed-bid auction (Moldovanu and
Tietzel, 1998).3

Although marketplace design has existed for
ages, systematizing the field through the language
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and logic of economic theory has allowed us to ad-
dress problems in increasingly complex settings.
The markets we consider today are more diverse
and interconnected than before—and our design
goals have grown more ambitious.

In the 1950s, the American Medical Asso-
ciation (AMA) faced the problem of fairly and
efficiently allocating residents to hospitals. The
AMA eventually arrived at an algorithm that ap-
peared to work rather well—the elegant Gale and
Shapley (1962) algorithm (Roth, 1984, 2008). But
several decades later, the residency match faced a
new problem: Doctors were marrying each other
in greater numbers, necessitating a method to
incorporate couples’ joint preferences into the resi-
dency assignment process; solving this real-world
“couples matching” problem relied on a subtle
combination of economic theory and operations
research (Roth and Peranson, 1999). Likewise,
economic theory has informed the adoption of
Myerson (1981) optimal reserve prices in online
ad auctions (Ostrovsky and Schwarz, 2016), as
well as the eventual shift of ad auctions from
practitioner-designed “generalized second price”
auctions (Aggarwal et al., 2006; Edelman et al.,
2007; Varian, 2009; Athey and Ellison, 2011) to
auction theory-inspired Vickrey–Clarke–Groves
mechanisms (Athey and Nekipelov, 2010; Varian
and Harris, 2014). It is hard to imagine any of
these innovations in marketplace design arising
(or even being possible) without the groundwork
laid by economic theory.

Nowadays, many markets are extraordinarily
complex—both in theory and in practice. Con-
sider the myriad difficulties a ride-sharing com-
pany such as Lyft or Uber faces in organizing its
marketplace: The company must figure out where
its customers want to go and how much they are
willing to pay, while tracking drivers and their
time-varying reserve prices for providing service.
The company then needs to efficiently calculate
journey prices and match drivers to riders. Over-
all, the company must raise revenue to cover its
costs (and reward its shareholders) while encour-
aging drivers and customers to join and remain
on the platform. And all of this has to happen
“under the hood” in real time, and preferably be-
fore customers get tired of waiting and switch to
another app.

It seems intuitive that matching of couples
to hospitals and optimal reserve pricing is some-
how more “complex” than Goethe’s manuscript
allocation problem—and the problems that ride-
sharing companies face seems more complex still.
But what does “complex” actually mean in this
context? Economic theory does not on its own
give us a language for understanding complex-
ity of market(place) design problems. Indeed, as
Paul R. Milgrom argues in his new book, Dis-
covering Prices: Auction Design in Markets with
Complex Constraints:

“most of economic theory
treats simple models of the
economy in which prices alone
can guide efficient economic
decisions, but that conclusion
rarely applies exactly in com-
plex systems” (Milgrom, 2017,
p. 44).

Discovering Prices is based on the Arrow
Lecture Milgrom delivered at Columbia Univer-
sity in November 2014. The introductory chap-
ter is itself a mini-monograph accessible to non-
specialists (including non-economists); there, Mil-
grom illustrates the challenges that arise in de-
signing markets when there are complex con-
straints on the allocative process. Milgrom dis-
cusses three examples: farm consolidation after
land lotteries in Georgia; determining airspace
rights for commercial space and atmospheric
travel; and the Federal Communications Com-
mission’s (FCC’s) multibillion-dollar “Incentive
Auction,” which reallocated wireless spectrum to
repurpose it from broadcast television to telecom
applications. In all three settings, there are sig-
nificant complementarities and interdependencies
between goods; as Milgrom shows, this makes it
difficult to find price mechanisms that guide mar-
ket participants towards efficient allocations. Any
economic theorist could read Discovering Prices
from Chapter 2, which opens with a masterful
exposition of the close analytical relationships
between existence and stability of competitive
equilibria, tâtonnement in general equilibrium
theory, deferred acceptance algorithms in match-
ing markets, and auction design for indivisible
goods. As Milgrom points out, “substitutability”
of goods links all four settings. Indeed, “gross
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substitutability” is crucial for uniqueness of com-
petitive equilibrium and for tâtonnement in a
classical general equilibrium setting (Arrow and
Hurwicz, 1958), for existence of equilibrium in
markets with indivisible goods (Kelso and Craw-
ford, 1982; Milgrom and Strulovici, 2009; Gul and
Stacchetti, 1999; Sun and Yang, 2006; Hatfield et
al., 2013; Fleiner et al., forthcoming), for conver-
gence of simple monotonic auctions (e.g., the de-
ferred acceptance algorithm) to efficient outcomes
(Gul and Stacchetti, 2000; Sun and Yang, 2009;
Teytelboym, 2014), and for the numerous attrac-
tive properties of the Vickrey auction (Ausubel
and Milgrom, 2006).

Milgrom’s main theoretical innovations are
the introduction and development of “near-
substitutability,” and associated approximate
equilibria (inspired by the pioneering work of
Dantzig (1957) and Korte and Hausmann (1978)),
along with the analysis of the performance of
the deferred acceptance auction without substi-
tutability (Milgrom and Segal, forthcoming). The
final two chapters connect the concepts of sub-
stitutes and near-substitutes to powerful insights
from operations research, in order to explain the
theoretical foundations behind the Incentive Auc-
tion, and to suggest future directions for the
design of auctions under complex constraints.

In this essay, taking inspiration from Milgrom
(2017), we offer a conceptual framework for think-
ing about complexity in markets. We show how
Milgrom’s account of the design of the Incen-
tive Auction serves as a sort of “parable” for the
design of complex markets. Along the way, we
highlight three different types of complexity and
describe how they shape marketplace design.

2. Markets, Marketplaces, and
Complexity

A market arises whenever agents interact and
seek to transact, subject to economic incentives.
Markets are everywhere—and many (but not all)
of them are at least partially organized through
marketplaces consisting of rules guiding which
transactions occur and how, and/or infrastruc-
ture that facilitates transaction execution (Komin-
ers et al., 2017; Eisenmann and Kominers, 2018;
Kominers, 2018; Roth, 2018).

Marketplace design operates in settings con-
sisting of

(1) a market and
(2) one or more design goals.

It seems plausible that Goethe’s primary design
goal was long-run profit—that is, he not only
wanted to maximize revenue from his manuscript,
but also to find what value the publisher placed
on his work. Additional design goals common in
practice include:

• fairness (e.g., in school choice, Abdulka-
diroğlu and Sönmez (2003), or food sup-
ply, Prendergast (2016)),
• revenue (e.g., in auctions, Myerson
(1981); Binmore and Klemperer (2002);
Varian (2007); Ostrovsky and Schwarz
(2016)),
• simplicity/ease of use (e.g., of bidding
languages, Lubin et al. (2008); Milgrom
(2009, 2010); Klemperer (2010); Bich-
ler et al. (2014), or ordinal preference
elicitation, Pathak and Sönmez (2008)),
• transparency (e.g., in financial markets,
Asquith et al. (2013)),
• privacy (e.g., in voting systems, McSh-
erry and Talwar (2007)),
• speed (e.g., in algorithmic trading, Bud-
ish et al. (2015); Kyle and Lee (2017)),
• entry or competition (e.g., in auctions
Levin and Smith (1994); Bajari and Hor-
taçsu (2003)),
• price discovery (e.g., in stock exchanges,
Biais et al. (1995, 1999); Cao et al.
(2000)),
• elimination of adverse selection (e.g.,
in ad auctions, Abraham et al. (2013);
Arnosti et al. (2016), or health insurance,
Finkelstein and Poterba (2004)),
• trust (e.g., in financial benchmarks,
Duffie and Stein (2015)), and/or
• operation within ethical bounds (e.g.,
in kidney exchange, Roth et al. (2004);
Roth (2007); Leider and Roth (2010)).

Marketplace designers must overcome both
theoretical and practical challenges in order to
achieve their goals; complexity characterizes the
structure and difficulty of those challenges. Thus
complexity of a setting is somewhat like veloc-
ity: it has both a magnitude and a direction (or,
rather, a type). Moreover, as much as we might
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want complexity to be an absolute property of de-
sign goals (a “topological property,” if you will),
complexity is inextricably linked to the specific
market under consideration. For instance, bidder
anonymity/privacy is easy to achieve in online
auctions, but is far more difficult to ensure in an
auction room at Sotheby’s. Transparency and
trust, on the other hand, are a headache for eBay,
but are less of a problem for brick-and-mortar
auction houses.4

3. The Auctioneer’s Parable

Milgrom’s Discovering Prices illustrates mar-
ketplace design in one of the most complex set-
tings to date, showcasing how tools from eco-
nomic theory, computer science, and operations
research were combined in the design of Incen-
tive Auction. Along the way, Milgrom helps us
understand how to identify and address different
sources of complexity.

3.1. The Setting. Radio spectrum is a lim-
ited resource: only a narrow band is useful for
communication, and signals sent on overlapping
channels will interfere with each other. In the US,
some of the most desirable spectrum—channels
on which signals can travel long distances and pen-
etrate walls—was allocated to television broad-
casters in the 1940s and 50s (Hazlett, 2008). To-
day, however, fewer and fewer people in the US
watch broadcast television, while more and more
access information through their mobile phones.

The Incentive Auction sought to buy back
wireless spectrum licenses from hundreds of tele-
vision broadcasters, while simultaneously selling
those licenses to telecoms. The FCC hoped to
clear the market as efficiently as possible, with
payments from the telecoms compensating broad-
casters who gave up their licenses. At the same
time, the government sought to raise revenue to
cover the costs associated with the process.

If all spectrum licenses were homogeneous,
then the FCC could have simply run a double auc-
tion to clear the market (Wilson, 1985; McAfee,
1992). But licenses are by nature heterogeneous—
they cover different areas and wavelengths (Cram-
ton, 2002). Moreover, most broadcasters owned

local licenses, which needed to be aggregated into
national networks for telecom use (Rosston, 2012;
Leyton-Brown et al., 2017); this created a holdout
problem. Any television broadcaster who knew
that his or her license was crucial for assembling
a contiguous national network could in principle
have demanded compensation far above his or her
true value (Kominers and Weyl, 2012; Rosston,
2012). Congress partially ameliorated holdout
risk by granting the FCC the authority to move
broadcasters to different channels—i.e., to repack
them—in order to ensure that the spectrum freed
up was on the same wavelengths nationwide.

But in order for the FCC to figure out which
broadcasters it had to repack, it needed to know
how much spectrum transfer the market would
bear, and which broadcasters would sell their
licenses back. Working from the rough frame
of a double auction, the plan was first to run a
“reverse” auction to determine which broadcast
licenses could be bought back (with the remain-
ing broadcasters being neatly repacked); then,
those licenses would be auctioned off to telecoms
in a “forward” (clock) auction. If the telecoms’
willingness to pay in the forward auction was not
high enough to cover the spectrum acquisition
cost determined in the reverse auction (plus a
revenue target), the FCC would reduce the spec-
trum clearing target, and return to the reverse
auction.

3.2. What made the Incentive Auction
complex? Underlying the setting for the In-
centive Auction was a computational problem:
Repacking the broacasters who did not sell back
their licenses created the possibility of interfer-
ence, whereby those broadcasters’ signals might
partially or fully block each other; a given repack-
ing would be deemed appropriate only if it cre-
ated no more than “minimal” interference for
every station.5 However, the general problem of
determining when a minimal-interference repack-
ing exists is computationally intractable—it em-
beds a well-known, NP-complete graph-coloring
problem—making it effectively impossible to be
certain which sets of broadcasters could be left

4But see recent work by Banksy (2018).
5According to the FCC criteria, a station j suffers minimal interference if no other station i interferes with more than
0.5% of station j’s pre-auction audience (Leyton-Brown et al., 2017, p. 7205).
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“on the air” without interference.6 As a conse-
quence, there was some fundamental risk of error
in identifying the efficient set of broadcast licenses
to buy back.

If the efficient set of purchasable spectrum
licences could not be identified with certainty,
then we could at best hope to approximate the
efficient allocation. But incentive-compatible
mechanisms—like VCG—suggested by theory
(Vickrey, 1961; Clarke, 1971; Groves, 1973; Green
and Laffont, 1977; Holmström, 1979) determine
prices by comparing efficient and nearly-efficient
allocations; in such mechanisms, small errors in
assessing efficiency get magnified into large errors
in pricing (Milgrom, 2017, p. 168). The challenge
was therefore to design an auction that would
be (approximately) efficient and robust to im-
perfections in assessing repacking feasibility—yet
simple enough for broadcasters to participate in.
Existing economic theory provided a useful guide,
but was only a starting point.

The reverse auction that Milgrom and his
collaborators proposed would start by offering a
high price for each broadcaster’s license. The auc-
tioneer would then decrease the price offers in se-
quence. As soon as a broadcaster rejected the auc-
tioneer’s offer, it exited the auction permanently—
thus remaining on the air (Milgrom and Segal,
forthcoming). To deal with concerns about in-
terference, the auction would “freeze” the price
of any broadcaster that could potentially create
interference if it were to leave the auction.

The reverse auction format just described
corresponds exactly to a broadcaster-proposing
deferred acceptance algorithm in which broad-
casters propose prices at which they would be
willing to sell their licenses, and any price re-
jected by the auctioneer cannot be offered again
(Kelso and Crawford, 1982; Hatfield and Milgrom,
2005); such a mechanism is simple to implement,
and makes it particularly easy for broadcasters
to figure out how to bid. Indeed, in the deferred
acceptance auction, honest bidding is obviously
optimal for unit-demand bidders (Li, 2017), in

the sense that bidders are incentivized to bid
truthfully—and should be able to understand as
much. As a result, under the deferred acceptance
auction, bidders can figure out that truthful bid-
ding is optimal without subtle contingent reason-
ing about other bidders. Additionally, the format
ensures that bidders can trust the auctioneer not
to tamper with prices in an undetectable way
(Akbarpour and Li, 2018).

But how can we ensure that a deferred
acceptance-based auction can actually clear the
market? In a classic paper, Kelso and Crawford
(1982) showed that the deferred acceptance algo-
rithm can find market-clearing prices whenever
goods are (gross) substitutes. If some broadcast-
ers’ licenses are instead complements from the
perspective of the FCC—in the sense that getting
access to one might make others more valuable—
then market-clearing prices might not even exist.
One of Milgrom’s key theoretical contributions
in Discovering Prices (pp. 190–194) is that if
goods are, in a formal sense “near-substitutes,”
then the deferred acceptance algorithm will reach
prices that are nearly efficient, and the resulting
allocation will be close to efficient, as well.

To be a bit more precise: Milgrom consid-
ers the structure of the FCC’s preferences over
broadcast licenses. The FCC wanted to buy back
licenses in a way that would maximize the value
of the broadcasters who kept their licenses (and
thus remained on the air) in the end. That is, the
set of rejected broadcasters that the FCC does
not acquire licenses from should be those with
highest value for operating as stations.7 From an
auction design perspective, it would be ideal if
the FCC’s preferences were (one-for-one) substi-
tutable, meaning that if, at a given price profile,
the FCC chooses to leave set of broadcasters S
on the air but some station s ∈ S indicates that
it will be willing to sell its license at a new, lower
price, then the FCC will still want to leave the
broadcasters in S \ {s} on the air.

Unfortunately, because of the practical con-
straints on repacking, the FCC’s preferences were

6A problem is in (complexity class) NP if it can be solved in nondeterministic polynomial time; a problem is NP-complete
if it is in NP and all problems in NP can be reduced to it (Sipser, 2012). At least assuming a mathematical conjecture
widely believed to be true (Cook, 2006), solutions to problems in NP cannot, in general, be found efficiently (although
they can be verified quickly).
7For technical reasons, it is typically easier to work with the set of broadcasters whose offers to sell back their licenses
are rejected, rather than the set whose are accepted.
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not substitutable. It was possible, for exam-
ple, that when a small-bandwidth broadcaster
reduced its buyout price, the FCC would want
to reject a large-bandwidth broadcaster and in-
stead buy back licenses from a set of currently
rejected small-bandwidth stations. To get around
this problem, Milgrom showed how to approxi-
mate non-substitutable preferences, like those
of the FCC, with substitutable ones. The ap-
proximation gives rise to an intuitive and robust
“index of substitutability” ρ that is equal to 1
whenever preferences are exactly substitutable,
and approaches 0 when stations become perfectly
complementary.

Milgrom shows that the worst-case efficiency
performance of the deferred acceptance auction
(across all valuations) is precisely ρ (Proposi-
tion 4.6 of Milgrom (2017); see also de Vries
and Vohra (2019)).8 That is, the more substi-
tutable the FCC’s preferences are according to
Milgrom’s index, the closer the worst-case perfor-
mance of the deferred acceptance auction is to
the fully efficient outcome. By making repack-
ing rules quite flexible, the FCC sought to make
licenses as substitutable as possible (Kominers
and Weyl, 2012; Rosston, 2012). In simulations,
the deferred acceptance auction achieved around
95% efficiency (Leyton-Brown et al., 2017).

Even with deferred acceptance auctions as-
sured to produce nearly efficient outcomes, the
repacking problem would still need to be solved
at every round of the auction clock. Thus, the
design team developed state-of-the-art infrastruc-
ture for finding feasible repackings quickly, based
on newly-developed deep optimization techniques
(Newman et al., 2017). The new computational in-
frastructure ensured that the feasibility-checking
software did not timeout too frequently—and it
would never make Type I (“false positive”) er-
rors.9

While the reverse auction was a “key and
innovative part of the FCC’s Incentive Auction”
(Cramton et al., 2015, p. 1), the forward clock

auction was also quite intricate,10 as were the
auction-closing rule and the “assignment round”
in which different frequencies were allocated to
telecoms.

And with so many important details to get
right, it would be unlikely for everything to go
entirely according to plan. Discovering Prices
went to press as the assignment round was still
running; that phase used a Vickrey auction to set
final prices for particular bandwidths. It is well-
known that when bidders have complementary
preferences over frequencies, some Vickrey auc-
tion equilibria could result in low revenues (Mil-
grom, 2004; Ausubel and Milgrom, 2006; Marsza-
lec, 2018). And indeed, this is exactly what ap-
pears to have happened: Ausubel et al. (2017)
estimate that successful coordination by the bid-
ders cost the assignment round around $5 million
in revenue (admittedly just 3.5% of the round’s
revenue, and less than a tenth of a percent of
the overall auction revenue). Meanwhile, some
private equity funds appear to have coordinated
ownership of “Class A” broadcast licenses in the
reverse auction, reducing supply and substantially
raising the FCC’s acquisition costs (Doraszelski
et al., 2017).

4. Three Types of Complexity

The story of the Incentive Auction as told
in Discovering Prices vividly illustrates at least
three types of complexity that also arise in other
design settings. First, how should marketplace de-
signers specify and trade-off various design goals?
Second, how can a marketplace designer overcome
difficulties of eliciting information from and/or
providing information to market participants?
Third—perhaps least familiar to economists—
how should marketplace designer tackle funda-
mental computational constraints? As we already
saw in Section 3, computational complexity at
the heart of spectrum reallocation was a large
part of what made the setting so challenging.

8The result uses insights from the theory of matroids (see also Korte and Hausmann (1978); Ostrovsky and Paes Leme
(2015)).
9That is, the feasibility-checker would only deem a set of broadcasters non-interfering if a permissible repacking could
be found. But by nature, there was still some possibility of Type II errors (“false negatives”): for some configurations
of broadcasters, it might not be possible to find a feasible repacking sufficiently quickly; in that case, the system would
declare the set of broadcasters potentially interfering.
10It featured intra-round bidding to avoid bidder exposure, as well as condition reserves to promote competition.
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4.1. Specification complexity. In many
market design settings, it can be difficult to trans-
late abstract design goals into practical objectives.
And even once we have done so, our design goals
may be hard—or even impossible—to achieve si-
multaneously. When goals conflict and/or are
difficult to express, simply specifying what to pri-
oritize becomes a design challenge all of its own;
specification complexity reflects these decisions
and tradeoffs.

Specification complexity in spectrum realloca-
tion. The FCC’s early remarks on its goals for re-
purposing spectrum were extremely abstract. For
example, the 2010 National Broadband Plan rec-
ommended that the policymakers “ensure greater
transparency concerning spectrum allocation and
utilization” and “expand incentives and mecha-
nisms to reallocate or repurpose spectrum” (FCC,
2010, p. 75). One can imagine that there are
many objective functions that would satisfy such
an abstract specification. The exercise of making
the design goals more precise was the first prin-
cipal complexity in the design of the Incentive
Auction. Following a wide-ranging consultation,
the policymakers decided that the goals of the
auction would be: (1) to buy out hundreds of
TV broadcasters with heterogeneous licenses, (2)
to reallocate their licenses to telecoms as effi-
ciently as possible, and (3) to ensure a reasonable
amount of revenue for the government. But even
these goals were not precise enough to serve as
guidance for how the auction should be run. If
the market were one-sided (e.g., if the FCC only
had to sell available spectrum), then the problem
would have been easier—the FCC could have de-
signed an efficient auction and simply increased
the amount of spectrum on sale until the revenue
target was hit. But designing efficient centralized
two-sided markets with privately informed par-
ticipants typically requires a subsidy (Myerson
and Satterthwaite, 1983). Thus, the revenue vs.
efficiency trade-off is much starker in broadcast
spectrum reallocation settings than in typical
spectrum auctions (Loertscher et al., 2015).

The auctioneers resolved the objective specifi-
cation complexity in two ways. First, in order to
increase competition between broadcasters, spec-
trum was homogenized by allowing repacking.
Second, the need to figure out how much spec-
trum to clear while ensuring that the revenue

target was hit led the designers to run the for-
ward and reverse auctions sequentially, adjusting
the clearing target as they went along.

Specification complexity in other settings.
Even settings with few design goals often force
the market designer to make difficult decisions
about ill-specified objectives. Take efficiency, for
example. We often think of “efficient outcomes”
as being those that maximize allocative surplus
(the “Kaldor–Hicks criterion”). In Goethe’s case,
we might think of efficiency as purely allocative:
the goal was simply to deliver the manuscript
to the publisher who valued it the most. But
efficiency really means maximizing welfare—and
thus our interpretation of efficiency as a design
goal depends on the welfare function. If we have
distributional preferences, then efficiency might
involve distorting the allocation—or even wasting
resources—in order to improve the outcomes of
poorer people in the market (Rawls (1971); Weitz-
man (1977); see also Dworczak R© Kominers R©
Akbarpour (2018)). Likewise, design goals such
as “fairness” and “transparency” depend crucially
on the market in question, and may be complex
to define in practice.

Even once we understand our design goals
individually, balancing among them can be com-
plex. Sometimes, trade-offs arise from formal im-
possibility results: Voting rules satisfying fairly
mild desiderata end up being dictatorial (Arrow,
1951; Gibbard, 1973; Satterthwaite, 1975). In
school choice and similar matching settings, it
is typically impossible to simultaneously ensure
(Pareto) efficiency, strategy-proofness, and elimi-
nation of justified envy (Abdulkadiroğlu and Sön-
mez, 2003; Abdulkadiroğlu et al., 2009; Kesten,
2010). Other times, some of our design goals
pin down a unique rule or a class of rules—but
all the mechanisms in that class might fail to
satisfy some other design goal. For example, in
an object allocation setting with independent
private values and transfers, if we always want
to choose efficient outcomes in a strategy-proof
way, we must use a Groves mechanism (Groves,
1973; Green and Laffont, 1977; Holmström, 1979;
Williams, 1999). But Groves mechanisms are not
budget-balanced and might be susceptible to col-
lusion (Klemperer, 2004; Ausubel and Milgrom,
2006). Another common example arises when
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governments run spectrum auctions and set effi-
ciency and revenue as their two key goals—it is
well-known that these objectives conflict even in
single-object auctions (Myerson, 1981). Yet more
complex trade-offs arise from practical considera-
tions: in ecosystem services markets in develop-
ing countries, for example, market designers must
balance development targets with environmental
concerns (Jayachandran et al., 2017; Salzman et
al., 2018; Wunder et al., 2018; Teytelboym, 2019).

Specification complexity can also arise in the
seemingly simple process of choosing which trans-
actions should be allowed. When goods are com-
modities, every transaction is like every other
(for a given transaction volume). But in mar-
kets with substantial heterogeneity, it may be
hard to determine which types of transactions
to “conflate” (i.e., treat as identical), and which
to keep distinct. These sorts of questions arise
in ride-sharing (how local should pricing be?),
online advertising (how fine-grained should audi-
ence targeting be?), and most spectrum auctions
(which bands should be sold together?). By con-
flating sets of slightly different transactions, the
market designer might be able to increase mar-
ket thickness, reduce cherry-picking, and make
the marketplace safer for participants (Levin and
Milgrom, 2010; Milgrom, 2010). But at the same
time, conflation might harm efficiency or other
allocative goals by limiting the marketplace’s abil-
ity to respond to heterogeneity in preferences.

4.2. Informational complexity. Even af-
ter the designer’s objectives are clear, information
frictions often stand in the way. The market needs
to somehow “discover” participants’ preferences.
And before that, participants need to acquire
and process information in order to access the
market and form their preferences. Informational
complexity reflects the difficulties that arise in ag-
gregating information from market participants
and/or in providing information to them.

Informational complexity in spectrum reallo-
cation. Figuring out how much to compensate
broadcasters for selling their licenses was a daunt-
ing challenge. If repacking had not been possible,

then broadcaster holdout on its own would have
made reassembly impossible: there was likely
so much complementarity between TV stations
that the FCC would have had no chance of de-
termining the appropriate compensation to take
a nationwide band of them off-air (Mailath and
Postlewaite, 1990). Fortunately, the ability to
repack TV stations created enough competition
to be able to think of the market as approximately
competitive (Cramton et al., 2015).11 While the
forward auction rules could, in principle, build on
previous package auctions for spectrum, running
the reverse auction to clear the TV stations off-
air was no trivial matter. The natural strategy-
proof way to find the efficient outcome—running
a VCG auction—would have been confusing for
the broadcasters and, in the presence of possible
complementarities, would have had undesirable
properties (Rothkopf, 2007). Informational com-
plexity therefore remained in two forms: how to
elicit broadcasters’ valuations as accurately as
possible and how to give broadcasters clear and
credible signals about how to bid. The deferred
acceptance auction elegantly tackled this informa-
tional complexity; meanwhile, Milgrom’s results
on the robustness of the deferred acceptance auc-
tion in the presence of complementarities gave
some reassurance about how closely the outcome
might approximate efficiency.

Informational complexity in other settings. In
many settings, of course, market-clearing prices
are enough to both aggregate preferences and
guide market-clearing. But communication fric-
tions, preference heterogeneity, and/or comple-
mentarities among goods may make it hard to
determine market prices (Hurwicz, 1960; Mount
and Reiter, 1974; Nisan and Segal, 2006; Segal,
2007). Pricing is also difficult whenever utility is
not fully transferable, either because of societal
preferences or incomplete markets (Fleiner et al.,
forthcoming). Additionally, efficient pricing may
conflict with other design goals.12

When prices are unavailable to aid decen-
tralized market-clearing, we sometimes develop

11However, as we noted briefly in Section 3.2, Doraszelski et al. (2017) estimate that strategic supply reduction did
impact the market, and may have increased FCC’s acquisition costs by 22%.
12For example, in auctions to sell complements, Vickrey prices sit outside the core, result in low revenue, and encourage
collusion. In response, many different core-pricing rules have been proposed (Day and Milgrom, 2008; Erdil and
Klemperer, 2010; Day and Cramton, 2012; Bünz et al., 2018).
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centralized mechanisms in which we elicit par-
ticipants’ preferences directly. But here again
complexity can arise: Many systems for assigning
children to schools, for example, ask parents to
rank-order the schools their children may attend.
If the assignment mechanism is strategy-proof,
then it is straightforward for parents to submit
preferences—they simply list the schools they
find acceptable in true preference order. But sub-
mitting even a simple list may be difficult for
parents if the assignment system is manipulable;
moreover, in that case, the designer struggles to
determine how the submitted rank-order lists re-
late to parents’ true preferences. Moreover, even
if a marketplace can elicit true preferences from
individual agents, it may be unable to prevent
more complicated manipulations. For example,
Vickrey auctions can not only be manipulated
by coordinated misreporting (i.e., they are not
“collusion-proof”), but also by using shill bidders
(i.e., they are not “false-name-proof”; see Yokoo
et al. (2004)).

Complexity might also arise when the de-
signer needs to elicit combinatorial preferences
over a large set of objects. In contexts like dis-
play ad auctions (Lahaie et al., 2008), electricity
markets (Schnizler and Neumann, 2007), and
business school course allocation (Sönmez and
Ünver, 2010; Budish, 2011; Budish and Cantillon,
2012), some goods might be complements, while
others are substitutes—meaning that rank-order
lists are insufficient to characterize participants’
preferences. Yet submitting high-dimensional
combinatorial preferences is infeasible, necessi-
tating the design of simpler bidding languages
(Milgrom, 2009; Bichler et al., 2014; Budish and
Kessler, 2016; Budish et al., 2016).

In still other markets, complexity can arise
from the need to provide information to help par-
ticipants learn their own preferences. It can be
nontrivial, for example, to enable parents to un-
derstand the trade-offs between different school-
ing options for their children (Hastings et al.,
2007; Corcoran et al., 2018). And even struc-
tured marketplace exchanges may lack ratings or
certification systems that would help participants

identify high-quality trading partners (Pallais,
2014; Li et al., 2016).13

4.3. Computational complexity. Ques-
tions of how to specify objectives and structure
information have been central in market(place)
design—and economics, more broadly—for a long
time. But many market design settings have a
further layer: computational complexity, under
which fundamental computational constraints im-
pede the designer’s ability to achieve his or her
goals.14 Computational problems affect the ex-
tent of specification and informational complex-
ity, and can also introduce independent practical
problems.

Computational complexity in spectrum reallo-
cation. As we have already discussed, the prob-
lem of determining which sets of broadcasters
could be left on the air with minimal interference
was computationally intractable. This computa-
tional complexity constrained the design of the
Incentive Auction substantially—in particular, it
made computing efficient allocations impractical,
which ruled out VCG and similar mechanisms. In
VCG, errors in solving the repacking problem are
amplified by interdependence of prices and by the
need to compute prices in one step. By adjusting
prices gradually, the deferred acceptance auction
was less sensitive to imperfections in feasibility
checking and more likely to find market-clearing
prices (and thus an efficient allocation). Even so,
advances in deep optimization were required in
order to ensure that the repacking problems could
be solved quickly and accurately enough that the
auctioneer would know which prices could be
reduced at each stage.

Computational complexity in other settings.
More generally, we know from computer science
that some types of computation (say, the “set
cover” problem or finding (Bayesian) Nash equi-
libria) are difficult to execute quickly. On the
other hand, it is straightforward to run English
auctions to find efficient allocations of heteroge-
neous, substitutable items (Kelso and Crawford,
1982; Demange et al., 1986; Gul and Stacchetti,

13For further discussion, see Sections 4 and 5 of Kominers (2018).
14Our usage of the term “computational complexity” is not too distant from its use in theoretical computer science.
Complexity theory characterizes the inherent difficulty of different computational problems; our broader usage here
also includes practical computational challenges.
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2000). But when markets are dynamic or fea-
ture substantial heterogeneity, computing market-
clearing prices is often very difficult (Nisan and
Segal, 2006; Gonczarowski et al., 2014). Likewise,
in two-sided matching markets we can find stable
outcomes via the deferred acceptance algorithm
(Gale and Shapley, 1962). But in markets with
combinatorial preferences, it can be computation-
ally intractable to compute a stable outcome or
even check whether one exists (McDermid and
Manlove, 2010; Manlove, 2013).

Sometimes, we can “relax” computationally
complex problems to solve them faster and/or ap-
proximately (see, e.g., Nguyen and Vohra (2018,
forthcoming); Nguyen et al. (2019))—yet practi-
cal concerns may rule such relaxations out. For
example, computing fully efficient allocations in
electricity markets is computationally difficult,
yet if we seek approximate solutions we might
end up with mismatches in supply and demand
that cause blackouts (Cramton, 2017).

5. Outlook

So what have we discovered from Prices?
Modern marketplace design increasingly wres-
tles with complexity; as it does so, we need novel,
tailor-made theory as well as supporting infras-
tructure. Complexity has real economic meaning—
and can take multiple forms.

Discovering Prices teaches us how to map and
isolate different forms of complexity—to pin down
exactly where the standard economic toolkit can
be applied, where existing methods can be ex-
tended, and where entirely new tools are required.
In doing so, Milgrom (2017) proves that market-
place design can work in increasingly complex
settings. Briefly returning to the ride-sharing ex-
ample from the introduction. Ride-share market-
places face specification complexity in determin-
ing how to trade-off efficiency and revenue goals.
They must then elicit information about riders’
and drivers’ multidimensional preferences over
cost, direction, and speed. Computational com-
plexity plays a role, too, as optimal allocations
and travel schedules must be computed quickly,
in real time. Once isolated, these different forms
of complexity become approachable both in the-
ory in and practice (see, for example, Manna

and Prestwich (2014); Masoud and Jayakrishnan
(2017); Ma et al. (2018); Rheingans-Yoo et al.
(2019)). And surely even more complex settings
will yield to our design efforts in years to come.

Marketplace design in increasingly complex
settings may bring political and societal chal-
lenges. As Hitzig (2018) argues, the Incentive
Auction is a signal that a future market designer
advising the government might no longer be able
to act simply as competent technocrat or a hum-
ble “economic engineer” (Roth, 2002), but would
have to become “a craftsman [and] a technol-
ogist who implements as well as designs, and
who creates as well as conceives”. As market
design moves into complex settings, it becomes
less clear how designs can be audited and how
designers can be scrutinized. Market designers
must not lose not sight of the need to maintain
public trust. But checks on the remit of market
designers should not necessarily place limits on
the expanding role of market design. At a time
when politicians say that “the people . . . have had
enough of experts,”15 Milgrom (2017) gives us
hope that market designers will still be called
upon to showcase their craft.
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