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1 Introduction

In their seminal 1962 paper, Gale and Shapley introduced the following two-sided matching

problem: We are given sets of men and women, each with preferences over members of the

opposite gender; we seek a stable matching, i.e., an assignment of partners such that no one

finds his or her partner unacceptable, and no two agents mutually prefer each other to their

assigned partners.

Gale and Shapley (1962) showed that stable matchings can be found via the following

deferred acceptance algorithm, under which men propose marriage in sequence, and women

defer accepting prospective partners until the full sequence of proposals has been completed.

Deferred Acceptance Algorithm

Step 1. Each man proposes to his first-choice woman. Each woman “holds” her

best acceptable proposal (if any) and rejects all other proposals.

Step ` ≥ 2. Each man who was rejected in the previous step proposes to his

most-preferred woman to whom he has not yet proposed (if any). Each

woman holds her best acceptable proposal among those made in this step

and held from the previous step (if any) and rejects all others.

If at any time no men are available to make proposals—that is, if all men

not currently held have proposed to all women they find acceptable—then the

algorithm terminates. The (man-proposing) deferred acceptance outcome is the

matching that matches each woman to the man whose proposal she is holding (if

any) at the end of the last step before the algorithm terminates.

Variants of deferred acceptance are by now applied in a number of real-world contexts,

including medical residency matching (Roth (1984); Roth and Peranson (1999)), school choice

(Balinski and Sönmez (1999); Abdulkadiroğlu and Sönmez (2003); Pathak (2011)), and the

assignment of cadets to branches of military service (Sönmez and Switzer (2013); Sönmez
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(2013)).1

One of the most classic results in the theory of stable matching is an entry comparative

static that characterizes how the deferred acceptance outcome changes when a new woman

is added to the market (Kelso and Crawford (1982); Gale and Sotomayor (1985); Roth and

Sotomayor (1990); Crawford (1991)). The exact form of the comparative static varies across

settings, but the core result is that under deferred acceptance, adding a new agent to one

side of the market makes all agents on the other side of the market weakly better off (see,

e.g., Blum et al. (1997); Blum and Rothblum (2002); Hatfield and Milgrom (2005); Biró et

al. (2008); Ostrovsky (2008); Hatfield and Kominers (2013); Chambers and Yenmez (2017);

Yenmez (2018); Fleiner et al. (2018)).2

Proofs of the entry comparative static and its generalizations tend to rely either on

meticulous inductive arguments (Kelso and Crawford (1982); Crawford (1991); Blum et al.

(1997); Blum and Rothblum (2002); Hatfield and Milgrom (2005); Biró et al. (2008); Hatfield

and Kominers (2013); Fleiner et al. (2018)) or on broad results characterizing the structure

of the set of stable matchings (Gale and Sotomayor (1985); Ostrovsky (2008); Chambers and

Yenmez (2017)).

In this paper, we give a new, more concise proof of the comparative static by way of

another classic result—specifically, the fact that deferred acceptance respects (unambiguous)

improvements in the sense that making one agent more highly ranked in other agents’

preferences improves that agent’s deferred acceptance outcome (Balinski and Sönmez (1999)).3

We show how to transform the entry of a new agent on one side of the market into a

simultaneous preference rank improvement for the agents on the other side; the comparative

static result then follows directly from respect for improvements.

1For surveys of this and related work in market design, see, e.g., Roth (2008, 2013, 2015); Kominers et al.
(2017).

2As we discuss in Section 6, we typically also obtain a sort of dual to this result: agents on the same side
of the market as the entering agent are made worse off. To our knowledge, however, the methods we use here
only enable us to derive the comparative static for agents on the side of the market opposite to that of the
entering agent.

3See also the work of Wang and Kominers (2020), which uses the theory of matching with contracts to
show a particularly strong link between respect for improvements and strategy-proofness.
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As we describe, our approach extends naturally to yield novel comparative static results

in more general settings, such as the “slot-specific preferences” framework that Kominers and

Sönmez (2016) introduced to model matching with diversity constraints. In particular, we

show that expanding the capacity of a firm that has slot-specific preferences weakly improves

employees’ match outcomes. Then, again in the slot-specific preference setting, we obtain

what—to the best of our knowledge—are the first comparative statics for how the set of

stable matchings changes when new contracts with an agent become possible.

2 An Illustrative Example

We consider a market with three men {Alex,Bob,Charlie} and two women {Xena,Yvette},

who rank each other as follows (with the option ∅ representing being unmatched):

Alex : Yvette � Xena � ∅ Xena : Alex � Bob � Charlie � ∅

Bob : Yvette � Xena � ∅ Yvette : Alex � Bob � ∅. (1)

Charlie : Xena � Yvette � ∅

If we run deferred acceptance on our example, we see that first Alex and Bob propose

to Yvette, while Charlie proposes to Xena; then Yvette and Xena hold Alex’s and Charlie’s

proposals, respectively. Thus Bob is rejected; he proposes to Xena in the second step, causing

Xena to hold Bob and reject Charlie. Finally, Charlie proposes to Yvette but is rejected, leaving

us with an outcome µ in which Alex is matched to Yvette and Bob is matched to Xena. By

construction, this matching µ is stable—everyone who is matched has an acceptable partner,

and that no man and woman mutually prefer each other to their assigned partners.

Now, we imagine that a new woman, Zelda, is added to the market we considered earlier,

and that Zelda has the same preferences over men as Yvette. We suppose further that Zelda
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is especially popular4 so that preferences are now given by

Alex : Zelda � Yvette � Xena � ∅ Xena : Alex � Bob � Charlie � ∅

Bob : Zelda � Yvette � Xena � ∅ Yvette : Alex � Bob � ∅ (2)

Charlie : Zelda � Xena � Yvette � ∅ Zelda : Alex � Bob � ∅.

Deferred acceptance now produces a matching µ̃ under which Alex, Bob, and Charlie are

matched to Zelda, Yvette, and Xena, respectively. Under µ̃ every man is matched to a partner

he weakly prefers to his partner under µ; the entry comparative static implies that this sort

of improvement should arise in general.

Now, to illustrate our approach to the comparative static, we recall that deferred acceptance

respects improvements in the sense that making one agent more highly ranked in other agents’

preferences improves that agent’s deferred acceptance outcome. We show in particular that

the entry of a new woman such as Zelda can be modeled as a (weak) increase in the preference

rank of every man in the market. Indeed, we could have written our original market (1) in

the form

Alex : Zelda � Yvette � Xena � ∅ Xena : Alex � Bob � Charlie � ∅

Bob : Zelda � Yvette � Xena � ∅ Yvette : Alex � Bob � ∅ (3)

Charlie : Zelda � Xena � Yvette � ∅ Zelda : ∅ � Alex � Bob,

with Zelda treated as if she were already present, but found all men unacceptable. (Note that

in (3) we have given Zelda a ranking of unacceptable men consistent with her preferences over

men in (2), even though she will end up assigned to “∅” rather than to any of them.) Now, the

deferred acceptance outcome under (3) corresponds directly to that under (1): Alex is matched

to Yvette and Bob is matched to Xena, just as under µ. Yet the “entry” of Zelda obtained by

4Perhaps she has an entire videogame franchise to her name.
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transforming (3) to (2) represents a ranking improvement for all the men, since each man is

now more highly ranked relative to ∅. This implies by the respect for improvements result

that all the men’s deferred acceptance outcomes must weakly improve—precisely the entry

comparative static.

We show in the sequel that the argument just described can be formalized to prove the full

entry comparative static for the marriage model. Moreover, the argument extends directly to

yield comparative static results in more general settings.

3 The Marriage Model

We start by introducing the marriage model of Gale and Shapley (1962): There are finite sets

M and W of men and women; we denote by I ≡M ∪W the set of agents. We assume that

each man m ∈M has a complete, transitive, and strict preference ordering �m over W ∪{∅},

where ∅ denotes an outside option that represents the possibility of remaining unmatched.

Similarly, each woman w ∈ W has a complete, transitive, and strict preference ordering �w

over M ∪{∅}. For each agent i ∈ I, we denote the weak part of i’s preferences by <i , so that

if j <i k then either j �i k or j = k. We use the convention that �I′ ≡ (�i )i∈I′ ; analogously,

we write <I′ ≡ (<i )i∈I′ .

3.1 Stable Matchings

A (marriage) matching is a map µ : I → I ∪ {∅} from the set of agents to the set of agents

plus the outside option, such that:

1. Under µ, each man is assigned to a woman or to the outside option—that is, µ(m) ∈

(W ∪ {∅}) for each m ∈ M—and each woman is assigned to a man or to the outside

option—µ(w) ∈ (M ∪ {∅}) for each w ∈ W .

2. If a man m ∈ M is assigned to a woman w ∈ W , then w is assigned to m—i.e., if

µ(m) = w ∈ W , then µ(w) = m—and vice versa—if µ(w) = m ∈M , then µ(m) = w.
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We say that agent i ∈ I is matched to j ∈ I under µ if µ(i) = j; we say that i ∈ I is

unmatched under µ if µ(i) = ∅.

A matching µ is individually rational if no agent prefers the outside option to his or her

assigned partner, i.e., if for all i ∈ I, we have that µ(i) <i ∅. A matching µ is unblocked if

there does not exist a man m ∈ M and woman w ∈ W who mutually prefer each other to

their assigned match partners, i.e., such that w �m µ(m) and m �w µ(w). A matching µ is

stable if it is both individually rational and unblocked.

The main result of Gale and Shapley (1962) shows that the deferred acceptance algorithm

introduced in the Introduction always produces a stable outcome.

4 The Classic Comparative Static

Now, we show that the entry of a new woman w̃ to the market must make all the men weakly

better off under (man-proposing) deferred acceptance. Abusing notation slightly, we extend

our model to the set of agents I ∪ {w̃} = M ∪W ∪ {w̃}, writing �̃ and µ̃, respectively, for

preferences and matchings in the expanded market. To reflect the idea that w̃ is a new

entrant to an existing market, we require that the preference profile �̃ be consistent with �

on I:

for all i, j, k ∈ I, we have j �̃i k ⇐⇒ j �i k;

equivalently, for each man m ∈M , the expanded preferences �̃m correspond to �m with w̃

added in somewhere, and for each woman w ∈ W , we have �̃w = �w.

Theorem 1 (Kelso and Crawford (1982); Gale and Sotomayor (1985); Roth and Sotomayor

(1990, p. 44)). If µ∗ is the outcome of man-proposing deferred acceptance in the market I and

µ̃∗ is the outcome of man-proposing deferred acceptance in the market I ∪ {w̃} that arises

after the entry of woman w̃, then each man m ∈M (weakly) prefers his assignment under µ̃∗
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to his assignment under µ∗; that is,

µ̃∗(m) <̃m µ∗(m).5 (4)

One can prove Theorem 1 by explicitly tracking how the presence of w̃ affects each step

of deferred acceptance (see, e.g., Crawford (1991); Chambers and Yenmez (2017)). Another

approach to Theorem 1 starts with the outcome of man-proposing deferred acceptance in

the original market and then studies how the market re-equilibrates after w̃ enters (see, e.g.,

Kelso and Crawford (1982); Blum et al. (1997)).6

Here, we give a novel proof of Theorem 1 that avoids the need to explicitly track either

the algorithm or the path of adjustment. The key to our approach is a core property of

deferred acceptance called respect for (unambiguous) improvements.

4.1 Respect for Improvements

For w ∈ W and preference relations �̂w and �̌w, we say that �̂w unambiguously improves

upon �̌w for m ∈M if m is ranked (weakly) higher under �̂w than under �̌w, and the relative

rankings of all other men are left unchanged. Formally:

Definition 1. We say that �̂w is an unambiguous improvement over �̌w for m ∈M if

� for all m′ ∈ ((M \ {m}) ∪ {∅}), if m �̌w m
′ then m �̂w m

′, and

� for all m′,m′′ ∈ (M \ {m}), we have m′ �̌w m
′′ if and only if m′ �̂w m

′′.

We say that a profile of the women’s preferences �̂W is an unambiguous improvement over

�̌W for m if each �̂w is an unambiguous improvement over �̌w for m.

5Theorem 1 is also a special case of the comparative static results of Crawford (1991); Hatfield and
Milgrom (2005); Ostrovsky (2008); Hatfield and Kominers (2013); Chambers and Yenmez (2017); Yenmez
(2018); Fleiner et al. (2018).

6Dworczak (2018) tracks similar re-equilibration dynamics in his Deferred Acceptance with Compensation
Chains algorithms, which generalize deferred acceptance by allowing agents on both sides to make proposals.

8



Balinski and Sönmez (1999) showed that deferred acceptance respects (unambiguous)

improvements in the sense that if �̂W is an unambiguous improvement over �̌W for m,

then m (weakly) prefers his man-proposing deferred acceptance outcome when the women’s

preferences are �̂W to that when the women’s preferences are �̌W .

Lemma 1 (Balinski and Sönmez (1999)). If �̂W is an unambiguous improvement over

�̌W for m, and µ̂∗ and µ̌∗ denote the man-proposing deferred acceptance outcomes under

(�M , �̂W ) and (�M , �̌W ), respectively, then m (weakly) prefers his or her assignment under

µ̂∗ to that under µ̌∗; that is,

µ̂∗(m) <m µ̌∗(m).

Respect for unambiguous improvements is an extremely natural property to desire in

practice, as it means that agents have no incentive to try to lower their standing in others’

preference relations.7,8 But the respect for improvements condition is also subtle: If a man’s

rank just improves relative to the outside option ∅, then the second condition of Definition 1

holds automatically. Thus a (strict) unambiguous improvement for one man can also be a

(strict) unambiguous improvement for some other man, so long as both men’s positions only

improve relative to the outside option ∅; this property allows us to derive an elegant and

efficient proof of Theorem 1.

4.2 Proof of Theorem 1

As in the theorem statement, we suppose that µ∗ is the outcome of man-proposing deferred

acceptance in the market I and µ̃∗ is the outcome of man-proposing deferred acceptance in

the market I ∪ {w̃}.

We write the preferences of w̃ in the form

�̃w̃ : m1 �̃w̃ · · · �̃w̃ m` �̃w̃ ∅ �̃w̃ m`+1 · · · (5)

7Imagine the chaos if intentional self-sabotage were a standard feature of the marriage market!
8Moreover, respect for unambiguous improvements in some sense uniquely characterizes deferred acceptance

(see Theorems 5 and 6 of Balinski and Sönmez (1999)).
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and let �̄w̃ be the “null” preference relation for w̃ that is consistent with �̃w̃ but treats all

men as unacceptable:

�̄w̃ : ∅ �̄w̃ m1 �̄w̃ · · · �̄w̃ m` �̄w̃ m`+1 · · · . (6)

We let µ̄∗ be the outcome of man-proposing deferred acceptance in the market with agents

I ∪ {w̃} and preference profile (�̃M , �̃W , �̄w̃). As �̃W = �W and each �̃m agrees with �m

except for the inclusion of w̃, we see directly that

µ̄∗(i) = µ∗(i) (7)

for each i ∈ I. Indeed, as w̃ treats all men as unacceptable under �̄w̃, deferred acceptance’s

outcome is unchanged if all men drop w̃ from their preference relations—and with that

preference adjustment, the algorithm corresponds exactly to deferred acceptance in the

market I, and so must yield an outcome that corresponds to µ∗.

Now, we note by inspecting (5) and (6) that �̃w̃ is an unambiguous improvement over �̄w̃

for each man m ∈M . Hence, by Lemma 1, we see that each man m ∈M (weakly) prefers

his assignment under µ̃∗ to that under µ̄∗; that is,

µ̃∗(m) <̃m µ̄∗(m) (8)

for each man m ∈M . Combining (7) and (8) shows the desired result, (4).

4.3 Discussion

Our proof of Theorem 1 highlights that the key feature underlying Theorem 1 is that w̃’s

entry simultaneously improves all the men’s overall standing in the market by increasing

competition among the women. This idea is closely related to a much earlier argument due

to Gale and Sotomayor (1985). Like us, Gale and Sotomayor (1985) treated w̃’s entry as
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equivalent to transforming w̃’s preferences from a null relation to �̃w̃. Unlike in our argument,

however, Gale and Sotomayor (1985) derived the comparative static through appeal to a result

showing that the set of stable outcomes has on lattice structure (see Roth and Sotomayor

(1990, pp. 43–44)). Approaching the argument in terms of respect for improvements instead is

useful because it immediately suggests substantial generalizations, some of which are outside

the scope of the lattice structure result—as we describe next.

5 A More General Model: Matching with Slot-Specific

Preferences

We now extend Theorem 1 to a setting with many-to-one matching—that is, one in which

employees on one side of the market may take multiple partners on the other side (Gale

and Shapley (1962); Roth (1985); Roth and Sotomayor (1990)). We furthermore generalize

by allowing the matching process to determine not just who matches with whom but also

contracts that specify terms of exchange like wages or hours worked (Crawford and Knoer

(1981); Kelso and Crawford (1982); Hatfield and Milgrom (2005)). Specifically, we work with

the slot-specific preference structure introduced by Kominers and Sönmez (2016).

5.1 Intuition

The slot-specific preferences framework, which we describe formally in the next section, is a

model of employee–firm matching in which each firm has a set of positions—slots—that can

be assigned to different employees. Slots have their own (potentially independent) rankings

over contracts. Within each firm, a linear order called the order of precedence determines the

order in which slots are filled.

For example, we might imagine a firm with two slots, s1 and s2, one of which can be used

to hire any worker at either a high ($H) or low ($L) salary, while the second slot can only be
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used to hire workers at a lower salary:

s1 : (i, $L) � (i, $H) � (j, $L) � (j, $H) � · · ·

s2 : (i, $L) � (j, $L) � · · · .

One special case of slot-specific preferences is when we make all the slots within a given

firm identical, making that firm’s preferences consistent with a single linear order over

contracts and a maximum number of positions that can be filled (the responsive preference

model of Roth (1985)). More broadly, slot-specific preferences embed multiple models of

affirmative action, such as using some slots to reserve positions for members of disadvantaged

groups (Abdulkadiroğlu (2005); Kojima (2012); Hafalir et al. (2013); Kominers and Sönmez

(2014); Dur et al. (2016, 2018)).

5.2 Formal Model

We suppose that there is a set of employees E and a set of firms F , and a (finite) set of

contracts X. Each contract x ∈ X is between an employee e(x) ∈ E and firm f(x) ∈ F ,

and may also specify additional “terms” of exchange drawn from a set T . Thus X may be

considered a subset of E × F × T . We extend the notations e(·) and f(·) to sets of contracts

Y ⊆ X by setting e(Y ) ≡ ∪y∈Y {e(y)} and f(Y ) ≡ ∪y∈Y {f(y)}. For Y ⊆ X, we denote

Ye ≡ {y ∈ Y : e(y) = e} and YE′ ≡ ∪e∈E′Ye; analogously, we denote Yf ≡ {y ∈ Y : f(y) = f}

and YF ′ ≡ ∪f∈F ′Yf .

Each employee e ∈ E has a complete, transitive, and strict preference order �e (with

weak order <e) over contracts in Xe ∪ {∅}, where Xe ≡ {x ∈ X : e(x) = e} and, as before, ∅

is an “outside option,” which represents remaining unmatched; we use the convention that

∅ �e x for all x ∈ X \Xe. We say that the contracts x ∈ X for which ∅ �e x are unacceptable

to e. We denote the profile of all employees’ preferences by �E.

Each firm f ∈ F has a set Sf of slots; each slot can be assigned up to one contract
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in Xf ≡ {x ∈ X : f(x) = f}. Slots s ∈ Sf have (linear) preference orders �s (with weak

orders <s) over contracts in Xf . As with employees, we assume that each slot s ∈ Sf ranks

an outside option ∅ which represents remaining unassigned, and as with employees, we use

the convention that ∅ �s x if x ∈ X \Xf . We set S ≡ ∪f∈FSf and denote the profile of all

slots’ preferences by �S.

Employees have unit demand, that is, they choose at most one contract from a set of

contract offers. We assume also that employees always choose the best available contract, so

that the choice Ce(Y ) of an employee e ∈ E from contract set Y ⊆ X is the �e-maximal

element of Ye (or the outside option if ∅ �e y for all y ∈ Ye).9

Meanwhile, firms f ∈ F may be assigned as many as qf ≡ |Sf | contracts—one for each

slot in Sf—but may hold no more than one contract with a given employee. We assume that

for each f ∈ F , the slots in Sf are ordered according to a (linear) order of precedence Bf . We

denote Sf ≡
{
s1f , . . . , s

qf
f

}
with the understanding that s`f Bf s`+1

f unless otherwise noted.

The interpretation of Bf is that if s Bf s′ then—whenever possible—firm f fills slot s before

filling s′.

Formally, the choice Cf (Y ) of a firm f ∈ F from contract set Y ⊆ X is defined as follows:

� First, slot s1f is assigned the contract x1 that is �
s1f

-maximal among contracts in Y .

� Then, slot s2f is assigned the contract x2 that is �
s2f

-maximal among contracts in the

set Y \ Ye(x1) of contracts in Y with employees other than e(x1).

� This process continues in sequence, with each slot s`f being assigned the contract x`

that is �
s`f

-maximal among contracts in the set Y \ Ye({x1,...,x`−1}).

If no contract x ∈ Y is assigned to slot s`f ∈ Sf in the computation of Cf(Y ), then s`f is

assigned the null contract ∅.
9To simplify our exposition and notation, we treat individual contracts as interchangeable with singleton

contract sets.
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5.3 Stable Outcomes

An outcome is a set of contracts Y ⊆ X that is “feasible” in the sense that

� Y contains at most one contract for each employee, i.e., |Ye| ≤ 1 for each e ∈ E, and

� Y contains at most qf contracts for each firm f , i.e., |Ye| ≤ qf for each f ∈ F .

We say that an outcome Y is stable if it is

1. individually rational—Ce(Y ) = Ye for all e ∈ E and Cf (Y ) = Yf for all f ∈ F—and

2. unblocked—there does not exist a firm f ∈ F and blocking set Z 6= Cf(Y ) such that

Z = Cf (Y ∪ Z) and Ze = Ce(Y ∪ Z) for all e ∈ e(Z).

Note that if all employee–firm pairs may contract and the set T of contractual terms

is trivial, then X = E × F . If moreover all workers and firms have unit demand (i.e., if

we always have |Ce(Y )| ≤ 1 and |Cf(Y )| ≤ 1), then we recover the marriage model from

Section 3, where the man–woman pairs matched under some matching µ correspond to the

pairs contained in an outcome Y .

5.4 Generalized Deferred Acceptance

Kominers and Sönmez (2016) showed that stable outcomes exist under slot-specific preferences,

and can be found via the following (employee-proposing) cumulative offer process (Kelso and

Crawford (1982); Hatfield and Milgrom (2005)), which generalizes deferred acceptance:10

Cumulative Offer Process

10The cumulative offer process generalizes deferred acceptance by (in principle) allowing firms to hold
contracts they had rejected in earlier steps—although under slot-specific preferences, firms never actually
use this extra degree of freedom (see, e.g., Hatfield et al. (2018)). For consistency with Kominers and
Sönmez (2016), we state the cumulative offer process with a single agent proposing in each step; Hirata and
Kasuya (2014) showed that in our setting this formulation is equivalent to one in which employees propose
simultaneously, directly generalizing the version of deferred acceptance we presented in the Introduction.
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Step 1. Some employee e1 ∈ E proposes his or her most-preferred contract,

x1 ∈ Xe1 . Firm f(x1) holds x1 if x1 ∈ C f(x1)({x1}), and rejects x1 otherwise.

Set A2
f(x1) = {x1}, and set A2

f ′ = ∅ for each f ′ 6= f(x1); these are the sets of

contracts available to firms at the beginning of Step 2.

Step ` ≥ 2. Some employee e` ∈ E for whom no contract is currently held by

any firm proposes his or her most-preferred contract that has not yet been

rejected, x` ∈ Xe` . Firm f(x`) holds the contracts in C f(x`)(A`
f(x`)
∪{x`}) and

rejects all other contracts in A`
f(x`)
∪ {x`}; firms f ′ 6= f(x`) continue to hold

all contracts they held at the end of Step `− 1. Set A`+1
f(x`)

= A`
f(x`)
∪ {x`},

and set A`+1
f ′ = A`

f ′ for each f ′ 6= f(x`).

If at any time no employee is able to propose a new contract—that is, if all

employees for whom no contracts are on hold have proposed all contracts they

find acceptable—then the algorithm terminates. The outcome of the (employee-

proposing) cumulative offer process is the set of contracts held by firms at the

end of the last step before the algorithm terminates.11

Although stable outcomes exist under slot-specific preferences, the set of stable outcomes

under slot-specific preferences does not have lattice structure (see Kominers and Sönmez

(2016); Hatfield and Kominers (2019)). Consequently the approach Gale and Sotomayor

(1985) used to prove Theorem 1 does not carry over to the slot-specific preference setting.

Nevertheless, as we show next, our approach based on respect for improvements extends

directly.

11Here we refer to “the” outcome of the cumulative offer process because—at least under slot-specific
preferences—the outcome is independent of the order proposals (see Kominers and Sönmez (2016), as well as
Hirata and Kasuya (2014)).
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5.5 Respect for Improvements Under Slot-Specific Preferences

Following Kominers and Sönmez (2016), �̂S is an unambiguous improvement over preference

profile �̌S for e ∈ E if �̂S is obtained from �̌S by raising the positions of some of e’s contracts

(at some slots) while leaving the relative preference orders of other employees’ contracts

unchanged. Formally:

Definition 2. We say that preference profile �̂S is an unambiguous improvement over �̌S

for e ∈ E if for all slots s ∈ S:

1. for all x ∈ Xe and y ∈ (XE\{e} ∪ {∅}), if x �̌s y, then x �̂s y; and

2. for all y, z ∈ XE\{e}, y �̂s z if and only if y �̌s z.

The cumulative offer process respects unambiguous improvements in the sense that if �̂S

is an unambiguous improvement over �̌S for e, then e (weakly) prefers his or her cumulative

offer process outcome under (�E, �̂S) to that under (�E, �̌S).

Lemma 2 (Kominers and Sönmez (2016)). If �̂S is an unambiguous improvement over �̌S

for e, and Ŷ ∗ and Y̌ ∗ denote the employee-proposing cumulative offer process outcomes under

(�E, �̂S) and (�E, �̌S), respectively, then e (weakly) prefers his or her assignment under Ŷ ∗

to that under Y̌ ∗; that is,

Ŷ ∗e <e Y̌
∗
e .

5.6 Comparative Statics

Lemma 2 immediately implies several comparative statics for markets with slot-specific

preferences—generalizing Theorem 1—through a version of the argument we presented in

Section 4.2.

5.6.1 Expanding Capacity

First, we consider what happens to the cumulative offer process outcome when we add a

slot s̃ at firm f . Abusing notation again, we extend our slot-specific preference model to
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the set of slots S ∪ {s̃}, writing �̃S and Ỹ , respectively, for slot preferences and outcomes

in the expanded market (s̃ can appear anywhere in the precedence order). To reflect the

idea that s̃ is a new addition to an existing market, we require that preferences of slots in S

are unchanged: �̃S = �S. (Note that here we may also leave the employee preferences �E

unchanged, as we have not in any way changed the set of firms F or the set of contracts X.)

By construction, adding the new slot s̃ impacts the market exactly the way that adding

a new woman impacted the market in Section 4.2: it is as if we raised the position of all

agents’ contracts at a slot that previously treated all contracts as unacceptable, holding all

other slots’ preferences fixed. Hence, adding s̃ results in an unambiguous improvement for all

agents; this implies the following comparative static.

Theorem 2. If Y ∗ is the outcome of the employee-proposing cumulative offer process in the

market with the set of slots S and Ỹ ∗ is the outcome of the employee-proposing cumulative

offer process in the market with the set of slots S ∪ {s̃}, then each employee e ∈ E (weakly)

prefers his or her assignment under Ỹ ∗ to his or her assignment under Y ∗; that is,

Ỹ ∗e <e Y
∗
e .

Theorem 2 generalizes Theorem 1, as in the slot-specific preferences framework we can

model entry of a new woman into a marriage market as adding a single slot to a firm that

previously had none. Theorem 2 also has practical implications: Perhaps most naturally, the

result means that under deferred acceptance, expanding the number of available positions

at a firm always works in employees’ favor. Moreover, by applying Theorem 2 iteratively

(adding one slot at a time), we obtain the conclusion of Theorem 2 for the entry of a wholly

new employer to the market.
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5.6.2 Adding Contracts

A further generalization of Theorem 1 shows that adding new contracts at the bottom of some

slots’ preference orders (that is, right before the null contracts ∅) again results in improved

outcomes for all employees.

Suppose that we introduce new contracts X̃, yielding the contract set X ∪ X̃. We write

�̃ and Ỹ for preferences and outcomes in the expanded market, assuming that y �̃r y
′ if and

only if y �r y
′ for all r ∈ E ∪ S and y, y′ ∈ X—reflecting the idea that adding x̃ does not

affect agents’ or slots’ preferences over pre-existing contract options. If y �̃s x̃ for all s ∈ S,

y ∈ X, and x̃ ∈ X̃, then, just as in the argument we used in Section 4.2, we may interpret

�̃S as an unambiguous improvement over �S under the contract set X ∪ X̃ by imagining

that �S ranks all the contracts in X̃ as unacceptable—with relative ranking consistent with

�̃S—so that �̃S can be obtained from �S by raising the position of contracts in X̃ relative

to the outside option. Thus, we have the following comparative static by Lemma 2.

Theorem 3. If Y ∗ is the outcome of the employee-proposing cumulative offer process in

the market with the set of contracts X and Ỹ ∗ is the outcome of the employee-proposing

cumulative offer process in the market with the set of contracts X ∪ X̃ (with y �̃s x̃ for all

s ∈ S, y ∈ X, and x̃ ∈ X̃), then each employee e ∈ E (weakly) prefers his or her assignment

under Ỹ ∗ to his or her assignment under Y ∗; that is,

Ỹ ∗e <̃e Y
∗
e .

Lastly, we note that adding new contracts for a single employee e ∈ E anywhere in slots’

preferences also results in an unambiguous improvement—and hence ensures that e will be

better off under the cumulative offer process.12

Indeed, suppose that we introduce a new contract x̃, yielding the contract set X ∪ {x̃}.

We write �̃ and Ỹ for preferences and outcomes in the expanded market, assuming that

12We cannot in general add contracts at arbitrary positions for multiple agents, however, as the resulting
change in preferences might not be an unambiguous improvement.
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y �̃r y
′ if and only if y �r y

′ for all r ∈ E ∪ S and y, y′ ∈ X—again reflecting the idea that

adding x̃ does not affect agents’ or slots’ preferences over pre-existing contract options. By

construction, adding the new contract x̃ results in an unambiguous improvement for e(x̃):

employee e(x̃) has weakly-higher ranked contracts at every slot, while relative rankings of all

other contracts are unchanged; this implies the following comparative static by Lemma 2.

Theorem 4. If Y ∗ is the outcome of the employee-proposing cumulative offer process in

the market with the set of contracts X and Ỹ ∗ is the outcome of the employee-proposing

cumulative offer process in the market with the set of contracts X ∪ {x̃}, then e(x̃) (weakly)

prefers his or her assignment under Ỹ ∗ to his or her assignment under Y ∗; that is,

Ỹ ∗e(x̃) <̃e(x̃) Y
∗
e(x̃).

5.7 Discussion

Our use of the respect for improvements result (Lemma 2) here is similar to an early application

Kominers and Sönmez (2014) presented for the slot-specific preferences framework. Indeed,

Kominers and Sönmez (2014) use respect for improvements under slot-specific preferences

to show that guaranteeing slots at a school for minorities (Hafalir et al. (2013)) improves

welfare relative to simply capping the number of majority students allowed to attend that

school (Kojima (2012)). The crux of the Kominers and Sönmez (2014) argument consists of

observing that converting a quota slot into a reserve slot is an unambiguous improvement for

all majority students, as it corresponds to raising majority students’ positions relative to the

null option at each quota slot (while still ranking majority students below minority students

at those slots); this is analogous to the way we apply Lemma 2.

Meanwhile, Chambers and Yenmez (2017) showed a result analogous to Theorem 2 for

ways of “expanding” choice rules that satisfy a regularity condition called path-independence

(Aizerman and Malishevski (1981)). Yenmez (2018) extended the Chambers and Yenmez

(2017) result still further to cover choice rules that can be modified—or in the language of
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Hatfield and Kominers (2019), completed—in ways that make them path-independent (see

also Echenique and Yenmez (2015); Kamada and Kojima (2015)). Slot-specific preferences are

not path-independent, in general, but do have path-independent completions (see Hatfield and

Kominers (2019)). However, the additions of slots and contracts considered in Theorems 2–4

are not expansions in the sense of Chambers and Yenmez (2017) and Yenmez (2018); hence, our

results here extend Chambers and Yenmez’s (2017) and Yenmez’s (2018) comparative statics

to new types of transformations. To our knowledge, we are the first to prove comparative

statics for the addition of new contracts to the market.13

6 Conclusion

Using the respect for improvements property of deferred acceptance, we have developed a new

method of proving entry comparative statics in matching markets. Our method generalizes

readily to any matching setting for which a respect for improvements result is known: We

illustrated one such generalization in Section 5, where we used respect for improvements to

show comparative statics for matching settings with slot-specific preferences.14

We note, however, that others have found more refined comparative static results through

appeal to structural results for the set of stable matchings. Most common is a sort of

dual to Theorem 1, showing that entry of a new woman to the market makes all the other

women (weakly) worse off (see, e.g., Gale and Sotomayor (1985); Roth and Sotomayor (1990);

Crawford (1991)). Others have given more precise characterizations of which agents are

helped and/or harmed by other agents’ entry (see, e.g., Romm (2014)), or shown comparative

statics for the full set of stable matchings, rather than just for the deferred acceptance

outcome (see, e.g., Blum et al. (1997); Chambers and Yenmez (2017)). It is unclear whether

our respect for improvements-based approach can also be used to prove the refinements just

13That said, a few comparative statics have been shown previously for structured changes to the full set of
contracts, such as adjustments to the level at which transfers between agents are taxed (see, e.g., Dupuy et
al. (forthcoming)).

14Likewise, we can extend the entry comparative static to some matching settings under weakened
substitutability conditions using the respect for improvements results of Afacan (2017).
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described. At minimum, such an argument would seem to require a sharper version of the

respect for improvements theorem.
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