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Abstract

In this paper, we introduce a combinatorial optimization problem that models the investment
decision a political candidate faces when treating the opponent’s campaign plan as given.
Our formulation accounts for both the time cost of traveling between districts and the time
expended while campaigning within districts. We describe a polynomial-time algorithm
that computes a (2 + ε)-approximation to the optimal solution of a discrete version of our
problem by reducing the problem to another combinatorial optimization problem known as
Orienteering.

1. Introduction

In the finite time between the declaration of candidacy for political office and the date
of the election, a candidate must determine the optimal way to spend his or her time and
resources campaigning. An optimized campaign strategy could mean the difference between
victory and defeat, especially in close contests.

Time budgeting presents a difficult optimization problem: the candidate must split his
or her time between campaigning in key districts and traveling among districts, all the while
considering where the opponent is spending time (and attempting to counter him or her
there). Time budget constraints on campaigns were particularly salient in the nineteenth
and early twentieth centuries—before air travel, planning an intelligent sequence of cam-
paign stops was essential for every candidate. We believe that such planning issues remain
relevant today, as in many election contexts either campaign time is limited (as in typical
congressional elections) or the area to be covered is so large that choices must be made
regarding which areas to visit (as in most national elections).

For an illustrative example, we consider the flight distances between the cities where
Hillary Clinton made campaign stops in the March, 2016 leg of her United States presidential
campaign (fetched from www.hillaryspeeches.com/speech-archive/2016-2/march-2016/).
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We estimate flight distances between each of the cities where Clinton stopped using www.

travelmath.com, assuming that if a flight time is < 30 minutes then Clinton drove instead
(in which case we use travelmath.com’s driving time estimation service). We find that on
average Clinton spent at least 111.3 minutes per day traveling—on the same order of magni-
tude as many campaign stops, and accounting for about 7.7% of the total time in the month
of March. (This is an extremely conservative underestimate—e.g., if Clinton had a campaign
stop in one city on a given day and a stop in a distant city the next, we only considered the
time it would take to fly in a straight line from one city to the other. This does not account
for time spent traveling to and from airports, checking into hotels, traveling to campaign
events themselves, security, and so forth.)

A large body of work has applied economic and game-theoretic models to the prob-
lem of resource allocation in campaigns. Perhaps most famous is the work of Snyder [18],
which demonstrated existence, uniqueness, and characterization results for Nash equilibria
of a campaign resource allocation game under relatively general conditions (see also [19] for
empirical estimates of the Snyder [18] model). Related campaign models include those of
Persson and Tabellini [14], Lizzeri and Persico [11], Strömberg [20], and Hummel and Holden
[8]. General models of “all-pay contests,” of which some political campaigns are examples,
have recently been studied by, e.g., Konrad and Kovenock [9] and Siegel [17]. However, to
our knowledge, no work thus far has taken into account candidates’ time budgets, examin-
ing how candidates split their time between campaigning within areas and traveling among
them.

When one accounts for travel time, the candidate’s resource allocation problem becomes
a mixture of discrete and continuous optimization. We introduce a precise formulation of this
problem, which we term Electioneering, and show that it is NP-hard. Our formulation
optimizes one candidate’s allocation of campaign resources while treating the opponent’s
resource allocation as given (e.g., if the opposition candidate has published how much time
he or she will be spending in each district, and the payoff function is known).

The discrete portion of the Electioneering problem involves optimizing over sequences
of districts to visit; in this respect, it bears some resemblance to the traveling Traveling
Salesman (TSP). We show that Electioneering does indeed have an extremely close
connection to a variant of the TSPknown as Orienteering. The Orienteering problem,
like our Electioneering problem, is NP-hard. Fortunately, there are polynomial-time
algorithms to compute approximately optimal solutions to Orienteering. The first such
algorithm, due to Blum et al. [5], computes a solution that approximates the optimum within
a factor 4; this approximation factor was improved to 3 by Bansal et al. [3], and then to 2+ ε
(for any constant ε > 0), by Chekuri et al. [7]. (The algorithm of Chekuri et al. [7] runs in
polynomial time, but the exponent in the running time bound tends to ∞ as ε tends to 0,
which is why the existence of a polynomial-time (2 + ε)-approximation algorithm for every
ε > 0 does not imply the existence of a polynomial time (2+o(1))-approximation algorithm.)

In the next section, we formalize the Electioneering problem, compare it with the Sny-
der [18] model of campaign resource allocation, and show that it is NP-hard. The remainder
of the paper presents an algorithm that approximates the optimal solution to Election-
eering by reducing it to a problem we call Orienteering-with-Mining: In Sections 3
and 4, we present an approximate reduction from Orienteering-with-Mining to Ori-
enteering, which implies that the known approximation algorithms for the latter problem
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can be used to compute approximately optimal solutions of the former. In Section 5, we
then present an algorithm that solves Electioneering by reducing it to Orienteering-
with-Mining. In Section 6, we consider an extension of our model that incorporates time
dependencies between campaign strategies in different districts. We provide concluding dis-
cussion in Section 7.

2. Electioneering

In this section we formalize the problem of choosing an optimal political campaign given
(a) the support for each candidate prior to the campaign in each district and (b) the op-
ponents’ chosen campaign strategies. We assume there is a set N of districts; each district
n ∈ N has en electoral votes. We suppose that there are I candidates, 1, . . . , I, who cam-
paign across districts to try to maximize their expected electoral vote totals. By introducing
the electoral votes en, our model allows the possibility of including an “electoral college” like
the United States has in its current presidential election process. To use a majority vote rule
instead, we just set each district’s electoral vote count equal to that district’s population.

We assume that there is time T ≥ 0 until the election, and that traveling between
districts n and n′ takes travel time d(n, n′); these travel times are assumed to be non-
negative and symmetric (i.e., d(n, n′) = d(n′, n)), and to satisfy the triangle inequality
(i.e., d(n, n′′) ≤ d(n, n′′) + d(n′, n′′)). We imagine that at the start of time, the candidates
i ∈ {1, . . . , I} respectively already have support levels x′i,n in each district n, equivalent
to their having spent time x′i,n campaigning in that district. The candidates respectively
allocate time xi,n ≥ 0 to campaigning in each district n.

We let Ni denote the set of districts that candidate i campaigns in, i.e.,

Ni := {n ∈ N : xi,n > 0}.
We require that ∑

n∈N

xi,n ≤ T −Di (1)

for all i, where Di is the minimal travel time required to visit each district in Ni. (We can
also impose a budget constraint on the opponent’s strategies analogous to (1). However,
such a constraint is not necessary in our solution or analysis.)

We denote by h the payoff function for campaign time spent in a district, that is, the
relation between time spent in a district and the expected electoral vote gain for that district;
we assume that h is increasing and weakly concave, and normalize so that prior support levels
enter additively in the argument of h. (A nice h to start with is h(x) = xb for b ≤ 1.) We
have that candidate i’s probability of winning a particular district (dependent on candidate
i’s allocation xi,n of time to that district and opponents’ allocations x−i,n) is:

p̃i,n(x1,n, . . . , xI,n) :=
h(x′i,n + xi,n)

h(x′i,n + xi,n) +
∑

j 6=i h(x′j,n + xj,n)
.

The Electioneering problem seeks a campaign time allocation xi for candidate i that
maximizes the resulting (expected) electoral vote total,∑

n∈N

p̃i,n(x1,n, . . . , xI,n) · en,
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subject to the constraint (1), given prior allocations x′i, and the time allocations of the other
candidates.

2.1. Relation to the Snyder [18] model

Snyder [18] introduced a model in which candidates allocate campaign resources across
districts to maximize the expected number of electoral votes they receive. In Snyder’s [18]
model, there are two candidates (called 1 and 2 herein) and some prior probability an that
candidate 1 wins, so that the probability candidate 1 wins after x1,n and x2,n resources have
been allocated in district n is

p1,n(x1,n, x2,n) =
anh(x1,n)

anh(x1,n) + (1− an)h(x2,n)
.

Unlike in our work, Snyder [18] did not explicitly account for travel time as part of the
candidate’s budget constraint. Our functional form for within-district campaign impact is
not directly comparable to Snyder’s, but is arguably richer—it is capable of representing
prior advantage in a deeper way than Snyder’s [18] model, as it can encode both a prior
probability and the tightness of the bounds on that probability. For example, it may be the
case that in two districts the advantage of candidate 1 is 60%-40%, but one of those districts
may be competitive while the other is not. For example, if one district is particularly large
or has voters with particularly deeply entrenched views, this effect can be captured by the
magnitude of prior support levels in our model, but cannot be modeled in Snyder’s [18]
framework. Note that if we set I = 2, x′1,n = x′2,n = 0, and d ≡ 0, we get back the Snyder
[18] model, albeit without the priors an.

2.2. NP-hardness of Electioneering

Like many other problems that involve optimizing over sequences of vertices in a graph,
the Electioneering problem is NP-hard. To see this formally, we present a reduction
from the Hamiltonian Path problem to Electioneering. For the proof, we look at the
simple case in which there are only two candidates, 1 and 2; this suffices to show that the
problem is NP-hard.

Recall that Hamiltonian Path is the problem of deciding, for a given undirected graph,
whether there exists a path that visits every vertex exactly once. Letting G denote an in-
stance of Hamiltonian Path with vertex set V , we construct an instance of Election-
eering with N = V ∪ {s}, where the number of electoral votes in district n is given by

en =

{
1 n 6= s

0 n = s.

The travel times d(n, n′) are defined as follows: d(n, n′) = 0 if n = n′, d(n, n′) = 1 if n 6= n′

and one of n, n′ is equal to s, and otherwise d(n, n′) is the length of the shortest path from
n to n′ in G. For the payoff function h, we simply use h(x) = x, and for candidate 2’s
allocations we use x2,n = |V |−2 and x′2,n = 0. The time budget for candidate 1 is set to
T = |V |+ 1, and the prior allocations x′1,n are set to 0 for all n.

If G has a Hamiltonian path, then candidate 1 has an election strategy that involves
visiting all the districts in the order dictated by the Hamiltonian path (entailing a travel
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cost of |V |) and investing time x1,n = |V |−1 campaigning in each district. The expected
number of electoral votes earned by this strategy is

|V |· h(|V |−1)
h(|V |−1) + h(|V |−2) = |V |· |V |−1

|V |−1 + |V |−2 = |V |· 1

1 + |V |−1 > |V |·
(
1− |V |−1

)
= |V |−1.

If G does not have a Hamiltonian path, then any election strategy for candidate 1 must
either omit one of the districts, or it must entail a travel cost of |V |+ 1. In the former case,
the expected number of electoral votes is less than |V | − 1 (each district visited contributes
strictly less than one electoral vote in expectation) while in the latter case, the expected
number of electoral votes is 0, as candidate 1’s remaining budget leaves no time at all for
campaigning in any of the districts.

Thus, the question of whether G has a Hamiltonian path is equivalent to the question of
whether candidate 1 can win more than |V |− 1 electoral votes, in expectation, in the Elec-
tioneering instance constructed by the reduction. Consequently, maximizing the expected
electoral vote total (as in Electioneering) would allow us to solve the Hamiltonian
Path problem.

3. Orienteering-with-Mining

We now introduce the Orienteering problem. We are given a graph with edge lengths
and with prizes at each vertex; we seek to construct a path of length at most T , starting from
a designated vertex s, that maximizes the total prize value of the vertices visited. Intuitively,
Orienteering represents an agent traveling from vertex to vertex, collecting prizes, with
a limited budget of travel time.

First, we present a simple generalization of the Orienteering problem: Orienteering-
with-Mining, in which collecting prizes from vertices requires time investment, and time
spent at each individual vertex has diminishing marginal returns. We consider an undirected
graph G = (V,E) with vertex set V and edge set E. We assume that there is a distance
function d : E → R≥0 on edges that satisfies the metric space axioms, and a prize function
πv(t) : R≥0 → R≥0 for each vertex v ∈ V . (Here, we use the notation R≥0 to denote the
set of nonnegative real numbers.) We assume moreover that each prize function exhibits
diminishing marginal returns, i.e., that each πv is non-decreasing and weakly concave.

A path (of length `) is a function P : {1, . . . , `} → V encoding an ordered sequence of
vertices P (1), . . . , P (`) ∈ V . An investment path (of length `) P̃ : {1, . . . , `} → V × R≥0
encodes both a sequence of vertices and an amount of time investment at each step in the
sequence. We denote by P̃V the path underlying P̃ , that is, the projection of P̃ to V ;
analogously, we denote by P̃R the projection of P̃ to R≥0.

The travel time for a path P of length `,

τ(P ) :=
`−1∑
k=1

d(P (k), P (k + 1)),

records the time required to traverse the vertices of P in sequence. For an investment path
P̃ of length `, the time spent at vertex v ∈ V is

τv(P̃ ) :=
∑̀
k=1

P̃R(k) · 1P̃V (k)=v.
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For an investment path P̃ , the total time

τ(P̃ ) := τ(P̃V ) +
∑
v∈V

τv(P̃ ) (2)

records the total time investment required in following P̃ , combining travel time and invest-
ment time at each vertex. The prize associated to investment path P̃ is

Π(P̃ ) :=
∑
v∈V

πv(τv(P̃ )). (3)

The Orienteering-with-Mining problem seeks to find the investment path P̃ of total
time at most T , starting from a fixed root node s, that maximizes the associated prize:

max: Π(P̃ )

subject to: τ(P̃ ) ≤ T

P̃V (1) = s.

The Orienteering problem is the special case of Orienteering-with-Mining in
which πv is a constant function for each v ∈ V . Indeed, if πv is constant for each v ∈ V ,
then any optimal investment path will spend 0 time at each vertex, as that eliminates the
second term in (2) without changing (3).

4. Reducing Orienteering-with-Mining to Orienteering

We now construct a graph G′ = (V ′, E ′) and Orienteering problem 〈G′, d′, π′, s〉 that
yields an approximation to the Orienteering-with-Mining problem 〈G, d, π, s〉. We dis-
cretize time spent at nodes into units of length m; we leave travel times between nodes
unchanged. Formally, 〈G′, d′, π′, s〉 is defined as follows:

• We construct V ′ ⊃ V by supplementing V with T/m dummy nodes νv1 , . . . ν
v
T/m for

each node v ∈ V .

• We construct E ′ ⊃ E by supplementing E with an edge connecting each dummy node
νvk to its parent node v.

• We take d′ ≡ d on V , and set d′(v, νvk) = m/2 for each dummy node νvk associated to v.

• We take π′v ≡ πv(0) for v ∈ V , and then set

π′νvk = πv(k ·m)− πv((k − 1) ·m),

that is, we set the prize for visiting νvk to be equal to the marginal reward of spending
m additional units of time at v under π (after having already spent (k − 1) ·m units
of time at v).
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v

T = 3

πv(t) =
h(x′

1,v+t)

h(x′
1,v+t)+h(x2,v+x′

2,v)

(a) An Orienteering-with-Mining problem, with the reward for visiting
node v given by πv(t).

v

νv1
νv2

νv3

T = 3, m = 1

πνvk =
h(x′1,v+km)

h(x′1,v+km)+h(x2,v+x′2,v)
− h(x′1,v+(k−1)m)

h(x′1,v+(k−1)m)+h(x2,v+x′2,v)

(b) The graph in (a) augmented with dummy nodes νvk , to be solved with
Orienteering.

Figure 1: An illustration of our reduction applied to Electioneering, with two candidates 1 and 2.
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The graph G′ is constructed by adding a series of dummy nodes attached to each v ∈ V ; these
nodes take time m/2 to travel to (or from), and encode the returns to spending an additional
m units of time at v in 〈G, d, π, s〉, as pictured in Figure 1. Because πv has diminishing
marginal returns, the prize-maximizing path through G′ will always visit dummy nodes in
sequence (νv1 , ν

v
2 , . . .). The discrete approximation can get arbitrarily close to the correct

solution as we adjust m.
Now, we can run the polynomial-time approximation algorithm of Chekuri et al. [7] on

the Orienteering problem 〈G′, d′, π′, s〉, to obtain an αB-approximation to the reward
conferred by the best investment path P̃ on the 〈G′, d′, π′, s〉, where αB = 2 + ε for an
arbitrarily small constant ε > 0. (The algorithm’s running time is |V ′|O(1/ε2), so in order
to obtain a polynomial running time we require αB to be bounded away from 2.) We let
ALG be the utility produced by running the approximation algorithm of Chekuri et al. [7] on
〈G′, d′, π′, s〉; we seek to compare ALG to the utility OPT := π(P̃OPT) obtained in 〈G, d, π, s〉
under the optimal (investment) path P̃OPT.

We do a worst case analysis to bound the additional error that we introduce by using
a discrete approximation to Orienteering-with-Mining, relative to the true continuous
version. We let DIS = π(P̃DIS) be the utility achieved by the best investment path P̃DIS

under discrete approximation. Reasoning conservatively, we can ignore travel costs, as any
travel route among nodes in V that is used under OPT can be replicated under DIS. When
“mining” units of prize from each node v ∈ V , DIS can lose to OPT by at most π′νv1 , as

at a given node, DIS can never be behind OPT by more than a single discrete unit (and
the biggest discrete unit for v is π′νvk ). Additionally, DIS may slightly overestimate OPT, as

follows: at time T −m/2, DIS may spend the last m/2 time units to travel to a dummy node
associated to v without returning, collecting at most maxv∈V [π′νv1 − πv(m/2)] extra units of
reward relative to OPT. That is, at the end of its path, DIS can collect a reward as if it
spent m extra units of time at a node in V , despite only having spent m/2 units of time. So
we have that:

DIS ≥ OPT−
(∑
v∈V

π′νv1

)
+

(
max
v∈V

[π′νv1 − πv(m/2)]

)
.

Combining the preceding observations, we see that:

ALG ≥ 1

αB
DIS ≥ 1

αB

(
OPT−

(∑
v∈V

π′νv1

)
+

(
max
v∈V

[π′νv1 − πv(m/2)]

))
. (4)

The expression (4) completely describes the approximation that our algorithm provides. As
m→ 0, we have

∑
v∈V π

′
νv1
→ 0 and (maxv∈V [π′νv1 −πv(m/2)])→ 0, so we can make the error

in our approximation to Orienteering-with-Mining arbitrarily close to the error bound
that Chekuri et al. [7] found for approximating Orienteering. (The Chekuri et al. [7]
approximation factor does not depend on the number of nodes in the input graph, and hence
does not depend on the level of discretization—although the running time of the Chekuri
et al. [7] algorithm does.)

8



5. Algorithm for Electioneering

Now, as an application of the results from the preceding section, we present an approxi-
mation algorithm for the Electioneering problem introduced in Section 2. Our algorithm
proceeds by reducing Electioneering to Orienteering-with-Mining.

We assume that candidates j 6= i have made their allocations across districts, xj. The
problem i faces is then an Orienteering-with-Mining problem in which

• the graph G is the graph of districts, with associated distances given by travel times,
and

• each district n ∈ N has reward function

πn(t) =
h(x′i,n + t)

h(x′i,n + t) +
∑

j 6=i h(x′j,n + xj,n)
.

With the Electioneering→Orienteering-with-Mining reduction just described, the
weights on the dummy nodes in our reduction would be

π′νnk =
h(x′i,n + km)

h(x′i,n + km) +
∑

j 6=i h(xj,n + x′j,n)
− h(x′i,n + (k − 1)m)

h(x′i,n + (k − 1)m) +
∑

j 6=i h(xj,n + x′j,n)

for k ∈ {1, . . . , T/m}. Then simply applying the algorithm presented in Section 4 yields
an approximation to Electioneering that achieves the approximation bound (4), that is,
within a factor of αB of

OPT−
(∑
n∈N

π′νn1

)
+

(
max
n∈N

[π′νn1 − πn(m/2)]

)
.

A graphical illustration of our reduction in action on the Electioneering problem is
given in Figure 1.

6. Extension: Incorporating time dependencies

As an extension of our model, we consider the possibility of side constraints that in-
troduce time dependencies between campaign strategy decisions in different districts. Such
constraints are natural, for example, if a candidate must pass through one district en route
to others. Unfortunately—at least when considered in generality—they appear to introduce
significant computational difficulties.

The side constraints that we consider take the following form: For each district n ∈ N and
τ > 0, let θn,τ denote a predicate that is satisfied by investment paths that devote at least τ
units of time to visiting n. (Here, abusing terminology only slightly, we extend our concept
of “investment paths” from the setting of Orienteering to Electioneering, using this
structure for the travel sequences implicitly computed in (1).) Let Λ denote a finite set of
clauses, each of which is a disjunction of one or more predicates of the form θn,τ . For each
district n ∈ N there is a constraint φn, which is a conjunction of (0 or more) clauses in Λ;
an empty conjunction φn = > is interpreted as a trivial constraint that is always satisfied.
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An investment path satisfies the constraint set Φ = {φn}n∈N if it is the case that, for every
district n occurring along the path, the sub-path that precedes the first visit to n satisfies
the Boolean combination of predicates represented by φn. Let Electioneering-with-
Dependencies denote the problem of finding an investment path starting in district s that
maximizes the expected electoral vote total, subject to a specified set of time dependency
constraints, Φ, and a constraint that the total time investment is at most T .

The Electioneering-with-Dependencies problem is complex enough that it is NP-
hard to decide whether the optimum value of an instance of Electioneering-with-
Dependencies is non-zero, and thus also NP-hard to approximate the optimum to within
any finite factor. This can be seen using the following reduction from the Hitting Set
problem, in which one is given a finite set U , a collection of subsets S1, . . . , Sr ⊆ U , and a
desired number of elements k, and one must decide whether there exists a set of at most k
elements that has non-empty intersection with each of S1, . . . , Sr.

Indeed, given an instance of Hitting Set, 〈U, S1, . . . , Sr〉, we construct an Electioneering-
with-Dependencies instance with districts N = {s} ∪ U ∪ {v1, . . . , vr} ∪ {w}. The are
two candidates, 1 and 2, with x′1,n = x′2,n = 0 and x2,n = 1 for each district n. The payoff
function of each district is h(x) = x, and the electoral vote counts satisfy

en =

{
1 n = w

0 otherwise,

so that a candidate’s expected electoral vote total equals his or her probability of winning
district w. We set φvj =

∨
u∈Sj

θu,1 for each j ∈ {1, . . . , r} and we set φw =
∧r
j=1 θvj ,1: to

campaign in vj, a candidate must first spend at least 1 unit of time campaigning in at least
one of the districts in Sj, and to campaign in w, a candidate must first campaign in each of
the districts v1, . . . , vr. For every other district n, the constraint φn is the trivial constraint
>. The reduction is completed by defining the distance between any two distinct districts
to be 1, and defining the time budget to be T = 2k + 2r + 2.

Under our construction, if there is a hitting setH = {u1, . . . , uk}, then there is a campaign
strategy in which the candidate visits

s, u1, . . . , uk, v1, . . . , vr, w

in sequence, spending one unit of time in each of those districts except s, resulting in a
positive probability of winning district w. Conversely, if there is a campaign strategy that
results in a positive probability of winning district w, then the candidate must spend at
least 1 unit of time in each of v1, . . . , vr, plus 1 unit of time traveling to each of those
districts and to w—a total time investment of 2r+1. If H denotes the set of districts in U in
which the candidate spends at least 1 unit of time, then H must be a hitting set for S1, . . . , Sr
because each of the clauses φvj is satisfied, and |H| ≤ k because the candidate must invest
at least 2 units of time per element of H (one time unit is spend traveling to each u ∈ H;
the other is spent campaigning there), and the remaining time budget (when we subtract
the amount of time invested in districts v1, . . . , vr, w) is less than T − (2r + 1) = 2k + 1.

Even if we constrain each of the clauses in Λ to be a single predicate θn,τ , rather than
a disjunction of such predicates, the Electioneering-with-Dependencies problem re-
mains at least as hard to approximate as the Densest k-Subgraph problem, via the
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following reduction. Given graph G = (V,E) and parameter k, we construct an instance
of Electioneering-with-Dependencies in which N = {s, s′} ∪ V ∪E and the electoral
vote counts are specified by

en =

{
1 n ∈ E
0 otherwise.

Distances are given by

d(s, s′) = 2

∀v ∈ V : d(s, v) = d(s′, v) =
3

2
|E|

∀ξ ∈ E : d(s, ξ) = d(s′, ξ) = 1

∀x, y ∈ N : d(x, y) = d(x, s) + d(s, y) if {x, y} ∩ {s, s′} = ∅,

and the payoff function for each district is h(x) = x. There are two candidates, 1 and 2, with
x′1,n = x′2,n = 0 and x2,n = 1 for each district n. The time budget is T = (k + 1)(3|E| + 1).
The time dependency constraint φn is defined to be trivial unless n = ξ for some edge ξ with
endpoints u and v; in that case φn = θs′,1 ∧ θu,1 ∧ θv,1. In other words, before campaigning
in a district corresponding to an edge of G, a candidate must first campaign in s′ as well as
the districts corresponding to both endpoints of E.

Note that if G contains a subgraph L with k vertices and k′ edges, then there is a
campaign strategy that consists of visiting the vertices of L, followed by s′, followed by the
edges of L, while spending 1 time unit in each district visited. This strategy obeys the
budget and dependency constraints, and earns an expected electoral vote total of 1

2
k′. As

a partial converse, any strategy that earns at least q electoral votes in expectation must
visit at least q of the districts corresponding to edges of G, in expectation. To do so,
the candidate must first visit—and spend at least 1 unit of time in—each of the districts
corresponding to endpoints of those edges, as well as the district s′. Visiting r vertices
followed by s′, while spending one unit of time in each, incurs a time cost of r(3|E|+ 1) + 1,
which exceeds the budget T unless r ≤ k. Thus, an electoral strategy resulting in expected
electoral vote total q implies the existence of a subgraph with r ≤ k vertices and at least
q edges. Thus, an α-approximation algorithm for Electioneering-with-Dependencies
would imply the existence of a (2α)-approximation algorithm for Densest k-Subgraph.
The latter problem is widely conjectured to be hard to approximate to within an nε factor
for some constant ε > 0 (see, e.g., [4, 6]), although the only known proofs of super-constant
hardness of approximation for Densest k-Subgraph depend either on the Exponential
Time Hypothesis [12] or on average-case hardness assumptions [1].

7. Discussion

In an actual election campaign with a limited number of districts to visit (e.g., fifty states
in the case of American presidential campaigns), the worst-case computational hardness of
the resource allocation problem may not pose a severe impediment to computing optimal
solutions using intelligently chosen heuristics to prune the search space. (For example,
Applegate et al. [2] report successfully solving an instance of the traveling salesman problem
with 85,900 cities.)
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For using our approach in practice, however, two additional issues are paramount: struc-
tural estimation and equilibrium computation. We imagine that an algorithm like the one
we provide here would be used as a subroutine for iteratively computing best responses in a
heuristic equilibrium solver. As input for such a system, we would need an estimate for h,
the cumulative return for campaign effort in a particular district. In principle, any campaign
planner would already need such an estimate, although in practice the function would as-
suredly be multivariate, unlike the univariate function we have assumed here. For example,
it is likely that spending a large, continuous block of time in a district is less effective than
that same amount of time spread out over the campaign; this is not accounted for by our
model. Our model also does not account for any externalities between campaign time spent
in one district and electoral returns in another. While we have not found academic estimates
of the returns to spending time at individual campaign sites, academic estimates of the value
of campaign spending are available (these estimates are based on public records of campaign
spending, vote totals, and exogenous instruments; see, e.g., Levitt [10], Palda and Palda
[13], Samuels [16], Rekkas [15]). Meanwhile, equilibrium computation in our setting remains
a subtle problem, which we regard as an enticing open question for future investigations of
optimal election campaign strategy.
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