
Lone Wolves in Competitive Equilibria∗

Ravi Jagadeesan
Harvard Business School and Department of Economics

Harvard University

Scott Duke Kominers
Harvard Business School and Department of Economics

Harvard University

Ross Rheingans-Yoo
Center of Mathematical Sciences and Applications

Harvard University

September 29, 2019

Abstract

This paper develops a class of equilibrium-independent predictions of competitive
equilibrium with indivisibilities. Specifically, we prove an analogue of the “Lone Wolf
Theorem” of classical matching theory for the Baldwin and Klemperer (2019) model
of exchange economies with transferable utility, showing that any agent who does not
participate in trade in one competitive equilibrium must receive her autarky payoff in
every competitive equilibrium. Our results extend to approximate equilibria and to
settings in which utility is only approximately transferable.

JEL Classification: C78, D47, D51

Keywords: Indivisibilities; Matching; Lone Wolf Theorem

∗This paper was previously circulated under the more amusing title “If You’re Happy and You Know It
Then You’re Matched.” This research was conducted while Jagadeesan and Rheingans-Yoo were Economic
Design Fellows at the Harvard Center of Mathematical Sciences and Applications (CMSA). The authors
thank Mohammad Akbarpour, John William Hatfield, Bettina Klaus, Shengwu Li, Paul Milgrom, Robbie
Minton, Casey Mulligan, Alvin E. Roth, Alexander Teytelboym, the editor, Marc Fleurbaey, and the anony-
mous referee for helpful comments. Jagadeesan gratefully acknowledges the support of a National Science
Foundation Graduate Research Fellowship under grant DGE-1745303, as well as travel support from Harvard
Business School and the Harvard Mathematics Department. Kominers gratefully acknowledges the support
of National Science Foundation grant SES-1459912 and the Ng Fund and the Mathematics in Economics
Research Fund of the CMSA.

1



1 Introduction

In models of exchange and production, results on the uniqueness of equilibria typically

require continuity and convexity conditions on agents’ preferences, in addition to further

conditions on aggregate demand (see, for example, Section 17.F of Mas-Colell et al. (1995)).

However, continuity and convexity conditions fail in the presence of indivisibilities, leading

to the existence of multiple equilibria. In turn, the presence of multiple equilibria weakens

the predictive power of economic models.

To avoid the problems of multiplicity, we often consider predictions that do not depend on

which equilibrium is realized.1 In this paper, we develop a class of equilibrium-independent

predictions of competitive equilibrium in the Baldwin and Klemperer (2019) model of ex-

change economies with indivisible goods and transferable utility.2 Specifically, we show that

any agent who does not participate in trade in one competitive equilibrium must receive her

autarky payoff in every competitive equilibrium. Hence, observing that an agent does not

participate in trade indicates that there is no competitive equilibrium in which that agent

improves on her autarky payoff.

Our result is analogous to the classical “Lone Wolf Theorem” from matching theory,

which asserts that in one-to-one matching without transfers, any agent who is unmatched in

some stable outcome is unmatched in every stable outcome (McVitie and Wilson (1970)).3

Informally, the Lone Wolf Theorem shows the set of “lone wolves” (unmatched agents) is

equilibrium-independent. Since our setting involves continuous transfers, and hence indif-

ferences, we cannot obtain sharp predictions regarding the set of agents that participate in
1In structural estimation, for example, it is possible to avoid the problem of multiplicity of equilibria by

performing inference based on equilibrium-independent predictions of the model (see, for example, Bresnahan
and Reiss (1991)). A related alternative approach, which is valid even when there are few equilibrium-
independent predictions, is to obtain set-identification of the parameters of interest by assuming that the
observation is one of many possible equilibria (see, for example, Tamer (2003); Ciliberto and Tamer (2009);
Pakes (2010); Galichon and Henry (2011); Pakes et al. (2015); Bontemps and Magnac (2017)).

2The Baldwin and Klemperer (2019) model nests the exchange economy models of Gul and Stacchetti
(1999) and Sun and Yang (2006), as well as the Hatfield et al. (2013) model of matching in trading networks
with transferable utility.

3To the best of our knowledge, the term “Lone Wolf Theorem” was coined by Klaus and Klijn (2010).
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trade in equilibrium. Instead, we show that any agent who does not participate in trade in

one equilibrium cannot benefit from trade in any equilibrium.

When utility is perfectly transferable, there is generically a unique efficient allocation

of goods among agents, although there may be multiple possible equilibrium price vectors.

Hence, the set of agents that participate in trade is generically equilibrium-independent. How-

ever, our lone wolf result applies even when there are multiple efficient allocations. Moreover,

we show that versions of our Lone Wolf Theorem hold in settings in which multiple alloca-

tions can be robustly sustained in equilibrium. Specifically, we consider an approximate

equilibrium concept—which may be a reasonable solution when the economy suffers from

small frictions—and derive an approximate Lone Wolf Theorem. We also prove an approxi-

mate Lone Wolf Theorem for equilibria in economies in which utility is only approximately

transferable among agents.

Quasi-conversely, we show that some assumption on the transferability of utility is es-

sential to our lone wolf results. Specifically, we show by example that lone wolf results do

not generally hold in settings with strong income effects. Hence, while our lone wolf results

show that competitive equilibrium has some (approximately) robust predictions when utility

is (approximately) transferable, it remains an open question whether we can derive classes

of equilibrium-independent predictions more generally.

In a companion paper (Jagadeesan et al. (2018)), we use our Lone Wolf Theorem to

show that descending salary-adjustment processes are strategy-proof in quasilinear Kelso and

Crawford (1982) economies. Our argument for strategy-proofness rests crucially on applying

our Lone Wolf Theorem to (non-generic) economies with multiple efficient matchings.

The remainder of this paper is organized as follows. Section 2 presents the model. Sec-

tion 3 presents our lone wolf results. Section 4 discusses the role of the hypothesis that utility

is (approximately) transferable. Section 5 connects our results to the matching literature.

Proofs omitted from the main text are presented in Appendix A.
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2 Model

We consider a general model of exchange economies with indivisible goods and transferable

utility, following Baldwin and Klemperer (2019); this framework embeds the trading network

model of Hatfield et al. (2013), which in turn generalizes the settings of Gul and Stacchetti

(1999, 2000) and Sun and Yang (2006, 2009). There is a finite set Γ of goods and a finite

set I of agents.

Each agent has an endowment ei ∈ ZΓ and a valuation

vi : ZΓ → R ∪ {−∞}.

We assume that valuations are bounded above and that vi(ei) > −∞; however, we do

not impose any further conditions on them. The valuation vi induces a quasilinear utility

function ui by

ui(qi, ti) = vi(qi) + ti,

where ti is the transfer received by agent i. We allow ti to be arbitrarily negative, so agents

have unlimited budgets.

A competitive equilibrium is comprised of (1) an allocation of goods to agents and (2)

prices for each good such that the allocation maximizes each agent’s utility given prices.

Definition 1. A competitive equilibrium is a pair [q; p] , where q = (qi)i∈I , at which

• each agent i demands her bundle qi at prevailing prices p, i.e.,

qi ∈ arg max
q̄i∈ZΓ

{
ui(q̄i, (ei − q̄i) · p)

}
(1)

for all i ∈ I, and

• the market clears, i.e., ∑
i∈I

qi =
∑
i∈I

ei. (2)
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Baldwin and Klemperer (2019) have provided sufficient conditions for the existence of

competitive equilibria in the model we consider here. For example, competitive equilibria

exist if units of goods are substitutable and only finitely many bundles have valuations greater

than −∞ (see also Kelso and Crawford (1982), Gul and Stacchetti (1999), and Milgrom and

Strulovici (2009)).

3 Results

The classical Lone Wolf Theorem from the theory of two-sided matching without transfers

asserts that any agent who is matched in some equilibrium outcome is matched in every equi-

librium (McVitie and Wilson (1970); see also Roth (1984, 1986) and Klaus and Klijn (2010)).

In this section, we prove analogues of the Lone Wolf Theorem for exchange economies.

3.1 An Exact Lone Wolf Theorem

For a pair [q; p], we say that an agent i ∈ I does not participate in trade in [q; p] if qi = ei.

Such an agent is a “lone wolf” in [q; p] .

Our first result asserts that any agent who does not participate in trade in some com-

petitive equilibrium receives her autarky payoff in every competitive equilibrium. Thus, we

show that any agent who is a “lone wolf” in some equilibrium cannot benefit from trade in

any equilibrium.

Theorem 1. Let [q; p] and [q̂ ; p̂] be competitive equilibria, and let j ∈ I be an agent. If

j does not participate in trade in [q̂ ; p̂] (i.e., if q̂j = ej), then uj(qj, tj) = uj(ej, 0), where

tj = (ej − qj) · p is the net transfer to agent j at equilibrium [q; p] .

We prove Theorem 1 as a corollary of a more general result that allows for optimization

error in equilibrium.
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3.2 An Approximate Lone Wolf Theorem

Note that Theorem 1 has bite only in economies in which there are multiple competitive

equilibrium allocations. As competitive equilibrium allocations are generically unique in

transferable utility economies, Theorem 1 has nontrivial consequences only for nongeneric

economies.

However, as we show in this section, our lone wolf result holds more generally. In partic-

ular, we prove a version of Theorem 1 for approximate equilibria; as approximate equilibria

are only approximately efficient, this result has nontrivial consequences in settings in which

equilibrium allocations are robustly non-unique.

We relax the definition of competitive equilibrium by allowing agents’ total maximization

error to be positive but bounded above by ε.

Definition 2. An ε-equilibrium consists of a pair [q; p] for which

∑
i∈I

(
max
q̄i∈ZΓ

{
ui(q̄i, (ei − q̄i) · p)

}
− ui(qi, (ei − qi) · p)

)
≤ ε

and (2) is satisfied (i.e., the market clears).

Our Approximate Lone Wolf Theorem asserts that if there exists an ε-equilibrium in

which no agents in J ⊆ I participate in trade, then the difference between the total utility

of agents in J and the total autarky payoff of agents in J is bounded above by (δ + ε) in

every δ-equilibrium.

Theorem 2. Let [q; p] be a δ-equilibrium, let [q̂ ; p̂] be an ε-equilibrium, and let J ⊆ I be a

set of agents. If no agent in J participates in trade in [q̂ ; p̂] (i.e., if q̂j = ej for all j ∈ J),

then ∑
j∈J

uj(qj, tj) −
∑
j∈J

uj(ej, 0) ≤ δ + ε,

where tj = (ej − qj) · p is the net transfer to agent j at approximate equilibrium [q; p] .
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The key to the proof of Theorem 2 is the following lemma, which allows us to produce a

new approximate equilibrium from any two approximate equilibria.

Lemma 1. If [q; p] is a δ-equilibrium and [q̂ ; p̂] is an ε-equilibrium, then [q̂ ; p] is a (δ + ε)-

equilibrium.

Lemma 1, which we prove in Appendix A, is an approximate version of the well-known fact

that [q̂ ; p] is a competitive equilibrium whenever [q; p] and [q̂ ; p̂] are competitive equilibria

(see page 3 of Shapley (1964), as well as Gul and Stacchetti (1999), Sun and Yang (2006),

and Hatfield et al. (2013)).

To prove Theorem 2, we exploit the fact that [q̂ ; p] is a (δ +ε)-equilibrium (by Lemma 1),

so the allocation q̂ must approximately maximize j’s utility given the price vector p.

Proof of Theorem 2. By Lemma 1, [q̂ ; p] is a (δ + ε)-equilibrium. As q̂j = ej for all j ∈ J by

assumption, we have that

∑
j∈J

(
max
q̄j∈ZΓ

{
uj(q̄j, (ej − q̄j) · p)

}
− uj(ej, 0)

)
≤ δ + ε. (3)

Meanwhile, with tj = (ej − qj) · p, we have that

uj(qj, tj) = uj(qj, (ej − qj) · p) ≤ max
q̄j∈ZΓ

{
uj(q̄j, (ej − q̄j) · p)

}
. (4)

Combining (3) and (4), we see that

∑
j∈J

(
uj(qj, tj) − uj(ej, 0)

)
≤
∑
j∈J

(
max
q̄j∈ZΓ

uj(q̄j, (ej − q̄j) · p) − uj(ej, 0)
)

≤ δ + ε,

as desired.

Taking J = {j} yields the following corollary.
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Corollary 1. Let [q; p] be a δ-equilibrium, let [q̂ ; p̂] be an ε-equilibrium, and let j ∈ I be an

agent. If j does not participate in trade in [q̂ ; p̂] (i.e., if q̂j = ej), then

uj(qj, tj) − uj(ej, 0) ≤ δ + ε,

where tj = (ej − qj) · p.

Note that the δ = ε = 0 case of Corollary 1 is Theorem 1.

3.3 A Lone Wolf Theorem for Economies with Approximately

Transferable Utility

Theorem 2 also implies a Lone Wolf Theorem for economies in which utility is “close to

transferable” in a formal sense. Specifically, we consider economies in which agents’ utility

functions can be well-approximated by quasilinear utility functions.

Definition 3. A utility function ui is quasilinear within η if there exists a quasilinear utility

function ǔi for which

sup
qi,ti

{∣∣∣ui(qi, ti) − ǔi(qi; ti)
∣∣∣} ≤ η.

When utility functions are approximately quasilinear, we obtain another approximate

Lone Wolf Theorem.4

Theorem 3. Let [q; p] and [q̂ ; p̂] be competitive equilibria, and let J ⊆ I be a set of agents.

If no agent in J participates in trade in [q̂ ; p̂] (i.e., if q̂j = ej for all j ∈ J) and ui is

quasilinear within η for all i ∈ I, then

∑
j∈J

uj(qj, tj) −
∑
j∈J

uj(ej, 0) ≤ 6η|I|,

4While Definition 1 technically assumes that utility functions are quasilinear, the definition extends ver-
batim to settings with income effects. Hence, we use the notion of competitive equilibrium from Definition 1
in this section.
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where tj = (ej − qj) · p is the net transfer to agent j at equilibrium [q; p] .

To prove Theorem 3, we construct an approximating economy in which utility functions

are quasilinear. Competitive equilibria in the original economy give rise to approximate

equilibria in the approximating economy; Theorem 3 then follows from Theorem 2.

Proof of Theorem 3. We define an auxiliary economy in which utility functions are given

by (ǔi)i∈I , with each ǔi quasilinear as in Definition 3. By construction, [q; p] and [q̂ ; p̂] are

2η|I|-equilibria in the auxiliary economy. Theorem 2 then guarantees that

∑
j∈J

ǔj(qj; tj) −
∑
j∈J

ǔj(ej; 0) ≤ 4η|I|. (5)

As ∑j∈J |uj(qj, tj) − ǔj(qj; tj)| ≤ η|I| and ∑j∈J |uj(ej, 0) − ǔj(ej; 0)| ≤ η|I| by our choice of

(ǔi)i∈I , we see from (5) that

∑
j∈J

uj(qj, tj) −
∑
j∈J

uj(ej, 0) ≤ 6η|I|,

as desired.

4 The Role of Utility Transferability

The proofs of our Lone Wolf Theorems use the assumption that utility is (at least approxi-

mately) transferable. In fact, the Lone Wolf Theorem does not always hold when utility is

not transferable. For example, the result can fail in the presence of income effects.

Consider an economy with four agents, a house builder B, two real estate agents HighEnd

and LowEnd, and a consumer C. Real estate agent HighEnd specializes in high-end properties,

while LowEnd specializes in low-end properties. The builder B can construct a high-end prop-

erty or a low-end property and sell it to the consumer C via HighEnd or LowEnd, respectively.
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These possible interactions can be summarized in the following network:5

B

~~||
||
||
||

  B
BB

BB
BB

B

HighEnd

  B
BB

BB
BB

B
LowEnd.

~~||
||
||
||
|

C

(6)

It costs B 110 to construct a high-end property and 50 to construct a low-end property.

It costs each real estate agent 0 to intermediate between B and C. We suppose that C values

the high-end property more than the low-end property but experiences income effects—when

prices are high, C prefers to buy the low-end property. Intuitively, the high-end property

might require additional fees, such as maintenance costs and property taxes, which could

cause C to prefer the low-end property when prices are high, but not when prices are low.

Moreover, C cannot costlessly convert a high-end property into a low-end property.6 Formally,

C has utility function

uC(high-end property, t) = 2t + 600

uC(low-end property, t) = t + 400.

As there is only one real estate agent of each type (or, more generally, as we do not

assume that there is free entry in the markets for real estate agents), it may be possible for

the real estate agents to extract rents. Thus, a competitive equilibrium must specify prices

that the consumer faces for each type of property separately from the prices that real estate

agents face.

There are two possible equilibrium allocations: either B can construct a high-end property

and sell it to C via HighEnd, or B can construct a low-end property and sell it to C via LowEnd.

5Formally, the trading network is a case of the model of Fleiner et al. (2019), who incorporate income
effects (and frictions) into the transferable-utility trading network model of Hatfield et al. (2013).

6We rule out intentional-flooding and dynamite-based solutions by assumption.
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For example, two competitive equilibria are:
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(A) (B)

(Here, we denote competitive equilibria by writing a price for each interaction in (6) and

boxing the prices of interactions that occur.) In Equilibrium (A), HighEnd extracts a rent of

5 from intermediating between B and C; in Equilibrium (B), LowEnd extracts a rent of 5 from

intermediating. However, HighEnd does not trade in Equilibrium (B), while LowEnd does

not trade in Equilibrium (A). Thus, there are agents who do not trade in one equilibrium

but receive utility strictly greater than their autarky payoffs in the other equilibrium—that

is, the lone wolf result fails.

In our example, the builder is able to extract more surplus when the low-end property

is traded because the consumer is willing to pay more for the low-end property due to the

failure of free disposal. Similarly, the consumer is able to extract more surplus from the

builder when the high-end property is traded due to having higher marginal utility of wealth

after buying the high-end property. Therefore, the high-end real estate agent is able to

improve the consumer’s utility, while the low-end real estate agent improves the builder’s
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utility, making it possible for either real estate agent to extract rents.7

In contrast, our Lone Wolf Theorem shows that if utility is transferable, then at most

one of the real estate agents can extract rents. Intuitively, if utility is transferable, then the

builder and consumer agree on which possible trade is better.8 In the presence of income

effects, on the other hand, agents can contribute to the social surplus in one allocation but

not in another. For example, HighEnd must contribute to the economy when the high-end

property is traded, as she is able to extract rents in Equilibrium (A). However, because

HighEnd does not participate in trade in Equilibrium (B), she cannot possibly contribute to

the economy when the low-end property is traded.

5 Discussion and Conclusion

We developed a class of Lone Wolf Theorems that provide equilibrium-independent predic-

tions of competitive equilibrium analysis in contexts with indivisibilities. Our results show

that when utility is perfectly transferable, any agent who does not participate in trade in one

competitive equilibrium must receive her autarky payoff in every competitive equilibrium;

moreover, this result holds approximately under approximate solution concepts and in set-

tings in which utility is only approximately transferable. Partial transferability of utility is
7Formally, the extremal equilibria are
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>>

>>
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��
� 400
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??

??
??
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HighEnd

110 ��?
??

??
??

??
LowEnd

−20
����
��
��
��
�

and HighEnd

460
��?

??
??

??
??

LowEnd.

400����
��
��
��
��

C C

(C) (D)

Equilibrium (C) is the equilibrium with lowest prices (and is in particular buyer-optimal), while equilibrium
(D) is the equilibrium with highest prices (and is in particular seller-optimal). Note that the high-end
property is traded in (C) while the low-end property is traded in (D).

8It might be the case that both trades generate the same social surplus—but when utility is transferable,
the builder and the consumer will agree on this fact.
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essential for our results—the lone wolf conclusion fails when utility is not transferable (e.g.,

in the presence of income effects).

5.1 Relationship to the Lone Wolf Theorems and Rural Hospitals

Theorems of Matching Theory

Our lone wolf results extend a classical matching-theoretic insight of McVitie and Wilson

(1970) to exchange economies. Other analogues of the Lone Wolf Theorem have been devel-

oped in matching, but those results have different hypotheses and conclusions from ours.

The most-general matching-theoretic generalizations—developed by Hatfield and Komin-

ers (2012) and Fleiner, Jankó, Tamura, and Teytelboym (2015)—state that for every agent

in a trading network (without transfers), the difference between the numbers of the goods

bought and sold is invariant across stable outcomes.9 Our results extend the Lone Wolf

Theorem to exchange economies (with transfers) by assessing when agents participate in

(profitable) trade instead of analyzing the amounts that agents trade. Furthermore, the

matching-theoretic results rely on two regularity conditions—some form of (gross) substi-

tutability (Kelso and Crawford, 1982), and a regularity condition called the “law of ag-

gregate demand”10—which we do not require. We instead require that utility is at least

approximately transferable.

Recently, Schlegel (2016) has proven a lone wolf result for many-to-one matching with

continuous transfers. While Schlegel (2016) allowed workers (i.e., agents on the unit-demand

side) to experience income effects, he required that firms (i.e., agents on the multi-unit-

demand side) have utility functions that are not only quasilinear but also gross substitutable.
9These results are typically called Rural Hospitals Theorems because they imply that that clearinghouses

cannot improve the recruitment total of rural hospitals—which are often less attractive to doctors—by
switching to different (stable) market-clearing mechanisms. The first Rural Hospitals Theorems were proven
by Roth (1984, 1986) for many-to-one matching with responsive preferences. Rural Hospitals Theorems were
also developed for many-to-many matching (Alkan (2002); Klijn and Yazıcı (2014)), many-to-one matching
with contracts (Hatfield and Milgrom (2005); Hatfield and Kojima (2010)), and many-to-many matching
with contracts (Hatfield and Kominers (2017)).

10The law of aggregate demand follows from substitutability in settings with quasilinear utility functions
(Hatfield and Milgrom (2005); Hatfield et al. (2019)).
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Thus, the Schlegel (2016) lone wolf result is logically independent of ours.

5.2 Application to Strategy-Proofness

It has been well known since the work of Dubins and Freedman (1981) and Roth (1982)

that the Gale–Shapley (1962) deferred acceptance mechanism is dominant-strategy incentive

compatible for all unit-demand agents on the “proposing” side of the market; this one-

sided strategy-proofness result has been important in practice (see, e.g., Roth and Peranson

(1999); Abdulkadiroğlu, Pathak, and Roth (2005); Abdulkadiroğlu, Pathak, Roth, and Sön-

mez (2005); Pathak and Sönmez (2008)) and has been extended to settings with discrete

transfers (or other discrete contracts; see Hatfield and Milgrom (2005); Hatfield and Kojima

(2010); Hatfield and Kominers (2012, 2019)).

One-sided strategy-proofness results have heretofore been difficult to derive in matching

settings with continuous transfers—in part because the now-standard proof of one-sided

strategy-proofness (due to Hatfield and Milgrom (2005)) relies on the matching-theoretic

Lone Wolf Theorem, and prior to our work there was no lone wolf result for settings with

transfers.11 In a companion paper (Jagadeesan et al. (2018)), we use the results developed

here to give a direct proof of one-sided strategy-proofness for worker–firm matching with

continuously transferable utility.12

5.3 Divisible Goods

Finally, we note that while we assumed that the domains of agents’ valuations consist of

integer quantity vectors, identical arguments apply if instead agents maximize over real

quantity vectors. Thus, although our model formally requires that goods be indivisible, our
11Indeed, it appears that until Hatfield, Kojima, and Kominers (2019) found an indirect argument by way

of a version of Holmström’s (1979) lemma, one-sided strategy-proofness of deferred acceptance in the presence
of continuously transferable utility was known only for one-to-one markets (Demange (1982); Leonard (1983);
Demange and Gale (1985); Demange (1987)).

12Jagadeesan et al. (2018) worked with the quasilinear case of the Crawford and Knoer (1981) and Kelso
and Crawford (1982) models.
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results apply in settings with divisible goods as well.
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A Proof of Lemma 1

As [q̂ ; p̂] is an ε-equilibrium, we have that

ε ≥
∑
i∈I

(
max
q̄i∈ZΓ

{
ui(q̄i, (ei − q̄i) · p̂)

}
− ui(q̂ i, (ei − q̂ i) · p̂)

)

≥
∑
i∈I

(
ui(qi, (ei − qi) · p̂) − ui(q̂ i, (ei − q̂ i) · p̂)

)

=
∑
i∈I

(
vi(qi) − vi(q̂ i)

)
+
(∑

i∈I

qi −
∑
i∈I

q̂ i

)
· p̂

=
∑
i∈I

(
vi(qi) − vi(q̂ i)

)
,

where the last equality holds as ∑i∈I qi = ∑
i∈I ei = ∑

i∈I q̂ i.13 Hence, we have that

∑
i∈I

vi(q̂ i) + ε ≥
∑
i∈I

vi(qi).

It follows that

∑
i∈I

ui(qi, (ei − qi) · p) =
∑
i∈I

vi(qi) +
∑
i∈I

(
ei − qi

)
· p

=
∑
i∈I

vi(qi)

≤
∑
i∈I

vi(q̂ i) + ε

=
∑
i∈I

vi(q̂ i) +
∑
i∈I

(
ei − q̂ i

)
· p + ε

=
∑
i∈I

ui(q̂ i, (ei − q̂ i) · p) + ε. (7)

Grouping (7) by agents, we have

∑
i∈I

(
ui(qi, (ei − qi) · p) − ui(q̂ i, (ei − q̂ i) · p)

)
≤ ε. (8)

13Intuitively, this argument shows that the allocation (q̂ i)i∈I must be within ε utils of maximizing the
sum of agents’ values over all allocations—i.e., that the allocation is approximately efficient.
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As [q; p] is a δ-equilibrium, we have

∑
i∈I

(
max
q̄i∈ZΓ

{
ui(q̄i, (ei − q̄i) · p)

}
− ui(qi, (ei − qi) · p)

)
≤ δ. (9)

Summing (8) and (9), we have

∑
i∈I

(
max
q̄i∈ZΓ

{
ui(q̄i, (ei − q̄i) · p)

}
− ui(q̂ i, (ei − q̂ i) · p)

)
≤ δ + ε.

Hence, [q̂ ; p] is a (δ + ε)-equilibrium, as claimed.
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