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1. Introduction

Multiparty business enterprises take a variety of forms: manufacturing requires comple-
mentary inputs for production; consumer products firms coordinate advertising campaigns
across multiple publishers in order to ensure that each consumer is exposed to multiple ad-
vertisements11; information technology firms collaborate on joint research ventures; cinema
productions’ actors are concerned with the identities of their costars and directors. In all of
these settings, agents’ preferences exhibit a form of complementarity: the willingness of two
agents to contract with each other may be contingent on those agents’ abilities to contract
with third parties.

A natural equilibrium notion for multiparty contracting settings is matching-theoretic
stability, the requirement that no set of agents can profitably recontract. Unfortunately, when
agents contract over discrete goods or services, stable outcomes do not necessarily exist in
the presence of complementarities across contracts. Consequently, standard matching theory
typically rules out all forms of contractual complementarity, and can not be used to study
multiparty enterprises.

This paper introduces a novel matching model with transferable utility in which sets of
two or more agents may enter into multilateral contracts. Certain forms of complementarity
can be expressed through such contracts; in particular, our model embeds a large class of
economies with production complementarities. Our key insight is that stable multilateral
contracting outcomes do exist when agents contract over continuously divisible quantities,
so long as agents’ valuations over production and consumption are concave.22,33 Conversely,
we also show a maximal domain result: If any one agent’s valuation is not concave, then
the existence of competitive equilibria can not be guaranteed. Furthermore, when agents’
utilities are concave, stable outcomes directly correspond to competitive equilibria. Con-
versely, competitive equilibria induce outcomes that are strongly group stable and in the
core.44,55 Analogues of the first and second welfare theorems hold as well, showing in partic-
ular that stable outcomes (and competitive equilibria) are efficient. While our basic model
disallows contractual externalities, competitive equilibria continue to exist even when such
externalities are introduced (although they may not be efficient).

Previous work in matching theory has required (either explicitly or implicitly) that agents
interact via bilateral contractual relationships66; in medical labor markets, medical students

1We thank Preston McAfee for suggesting this example, which is particularly relevant in the sale of
Internet display advertisements.

2The assumption of concavity is natural in settings with decreasing returns to scale and scope. However,
it is violated in settings with fixed costs or increasing returns to scale.

3Note that our model admits two different types of complementarities: those that can be expressed
through multilateral ventures, as well as those allowed by the class of concave valuation functions.

4Note that the correspondence between stable outcomes, core outcomes, and competitive equilibria justi-
fies our attention to the competitive equilibrium solution concept, despite the presence of personalized prices
in our setting.

5Hatfield et al. [2323] obtain analogous results in a setting distinct from ours, in which agents trade via
discrete, bilateral contracts. It is known that analogous results do not hold in matching settings without
transfers (Echenique and Oviedo [1414], Klaus and Walzl [2626]).

6For example, bilateral structure is imposed on relationships in the models of Gale and Shapley [1919],
Crawford and Knoer [1313], Kelso and Crawford [2525], Roth [3232], Hatfield and Milgrom [2424], Echenique and
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“sell” their services to hospitals (Roth and Peranson [3333]), and in school choice applica-
tions, schools “sell” their services to students (Balinski and Sönmez [1010], Abdulkadiroğlu
and Sönmez [44], Abdulkadiroğlu, Pathak, and Roth [11, 22], Abdulkadiroğlu, Pathak, Roth,
and Sönmez [33]). The restriction to bilateral contracts was material in the previous work
as, in order to guarantee the existence of equilibria, agents were required to view contracts
as substitutes (see Hatfield et al. [2323] and references contained therein). Meanwhile, it is
well-known that equilibria may not exist in discrete matching models with multilateral con-
tracting (see Alkan [55] and Chapter 2 of Roth and Sotomayor [3434]). Previous work has
shown the existence of equilibria in models with discrete contracts and complementarities by
assuming a very large number of agents (Ellickson et al. [1515, 1616], Azevedo et al. [99], Azevedo
and Hatfield [88]). By contrast, we find equilibria—irrespective of the number of agents—by
allowing contract participation to vary continuously.77,88

The presence of continuously divisible contracts makes our underlying model similar to
models of general equilibrium (Arrow and Debreu [66], Mas-Colell [2929], Mas-Colell et al. [3030]).
However, unlike in standard general equilibrium theory, we consider production (and other)
relationships that are agent-specific: in our framework, a set of agents may share a nonpublic
production technology, and that technology may require inputs from specific agents, such as
human capital.99,1010 Notwithstanding, we do not strictly extend general equilibrium theory, as
we impose the requirement that agents’ utilities be quasilinear in a numeraire.

The remainder of the paper is organized as follows. In the next section, we illustrate
our model with a simple example (concrete production). In Section 33, we present our model
in generality. We prove welfare theorems and existence results for competitive equilibria in
Section 44; we then analyze the relationship between competitive equilibria, stable outcomes,
and the core in Section 55. In Section 66, we present an application: economies with pro-
duction complementarities embed naturally into the multilateral matching framework. We
present a second application in Section 77, showing that the multilateral matching framework
can be used to prove the existence of competitive equilibria in the continuum-of-agents set-
ting of Azevedo et al. [99]. We then extend the multilateral matching framework to include
contractual externalities in Section 88. We conclude in Section 99. All proofs are presented in

Oviedo [1414], Ostrovsky [3131], Hatfield and Kominers [2222], and Hatfield et al. [2323].
7In particular, our framework is conceptually distinct from the setting of the clubs literature (Ellickson

et al. [1515, 1616]). In our work, we impose no structure on the set of agents, but require that joint venture
participation levels are divisible, while in the clubs literature, participation in a club is a binary decision,
but markets are required to be large (and agents are required to be of distinct types).

8However, as we show in Section 77, it is possible to derive the main result of Azevedo et al. [99] (in the
finite type case) as a direct consequence of our competitive equilibrium existence theorem for multilateral
matching economies.

9As we show in Appendix AAppendix A, in the special case where agents’ valuations satisfy a monotonicity condition,
our existence result can be re-derived by constructing a corresponding general equilibrium model with agent-
specific inputs and outputs of production.

10For production processes with complementary inputs, it is possible to model a multilateral contract as
a collection of bilateral contracts, as we illustrate Section 66. However, for settings with externalities across
contractual partners, such as joint research ventures and entertainment production, multilateral contracting
can not be reduced to a model with only bilateral contracting. (To see why the entertainment industry
requires multilateral contracting, note that actors contract with studios, but face externalities derived from
the studio’s choices of other actors for a given production.)
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Figure 1: The example economy.

Appendix BAppendix B.

2. An Illustrative Example

We illustrate our approach with a concrete example, using multilateral matching to model
ready-mix concrete production.1111,1212 Ready-mix concrete is produced by mixing three com-
plementary inputs—cement, gravel, and sand—in proportions of approximately 1:2:2.1313 All
three of these inputs are expensive to transport because of their weights; thus, each input
good is only sold locally through relationship-specific contracts that incorporate transport
costs (Syverson [3636]).

The presence of input complementarities renders concrete production outside the scope
of previous matching models. Indeed, previous work has required input substitutability
in order to guarantee equilibrium existence (Gul and Stacchetti [2020], Hatfield et al. [2323]).
As we illustrate, requiring continuous production adjustment (instead of allowing discrete
adjustment as in the previous literature) enables us to relax the substitutability requirement
and study industries, such as concrete production, with input complementarities.

It is natural to model the supply structure of a concrete producer k as requiring bilateral
relationships ωc, ωg, and ωs for the sale of cubic yards of cement, gravel, and sand, respec-
tively, with suppliers c, g, and s. The gravel supplier g also has an outside option, ψ, to sell
to another buyer, b. This economy structure is depicted in Figure 11.

Assuming constant marginal costs of cement and gravel production, and an increasing
marginal cost of sand production, we assume the following supplier valuation functions :

vc(rωc) = −80rωc ,

vg(rωg , rψ) = −25(rωg + rψ),

vs(rωs) = −5rωs −
1

16
(rωs)

2,

11In principle, this example can be studied using only bilateral contracts (as noted in Footnote 1010); however,
using the multilateral matching framework greatly simplifies the analysis. Note also that this example does
not use the full generality of our framework—multilateral matching can be used to study economies with
externalities across contractual parties, which can not be embedded into bilateral contracting models.

12In addition to exemplifying production complementarities which can be studied using multilateral match-
ing, the concrete market has engendered a significant literature in industrial organization; see the work of
Syverson [3535, 3636] and Collard-Wexler [1212].

13We simplify the discussion by omitting other ingredients, such as water and additives.
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Figure 2: The example economy, reinterpreted as multilateral matching.

where rχ denotes the number of cubic yards of the good associated with χ that are delivered.
We assume that concrete is produced with increasing marginal cost by k, and the demand

of b is bounded above. We also make the simplifying assumption that concrete production
requires cement, gravel, and sand in exact 1:2:2 proportions.1414 This gives rise to valuations
of the following form:

vk(rωc , rωg , rωs) = 60 min

{
1

5
rωc ,

2

5
rωg ,

2

5
rωs

}
− 7

100

(
min

{
1

5
rωc ,

2

5
rωg ,

2

5
rωs

})2

,

vb(rψ) = 32 min{rψ, 50}.

The concavity of the valuation function of k with respect to the amount of concrete produced
arises from the fact that k faces an (assumed) downward-sloping demand curve for concrete.1515

Given the (fixed) proportionality in concrete production, k will never buy disproportion-
ate amounts of cement, gravel, and sand. Thus, we may study the contracting decision of k
from the perspective of total concrete production. We represent this by a single multilateral
venture ω which denotes the production of one cubic yard of concrete using cement, gravel,
and sand, as pictured in Figure 22. With this reparameterization, agents’ utilities take the
following form:

vc(rω) = −16rω,

vg(rω, rψ) = −10rω − 25rψ,

vs(rω) = −2rω −
1

100
(rω)2,

vk(rω) = 60rω −
7

100
(rω)2,

vb(rψ) = 32 min{rψ, 50}.

Since relationships are multilateral, the transfer prices corresponding to a relationship must
define payments among all parties to the venture (instead of a single transfer from buyer to
seller); hence the transfer prices associated with the venture ω are represented by a vector
pω such that pkω + pcω + pgω + psω = 0. Similarly, pbψ + pgψ = 0. Agents’ utilities are assumed

14The assumption of exact proportionality is not necessary but simplifies the exposition.
15Alternatively, the same functional form could arise from increasing marginal costs of production.
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to be quasilinear in transfers. Given this formulation of prices and utilities, our definition
of competitive equilibrium is natural: A competitive equilibrium consists of an allocation
r = (rω, rψ) and a price matrix p such that r is utility-maximizing for every agent given p.

We now construct a competitive equilibrium of our economy; generalizations of this
construction show that a competitive equilibrium exists for arbitrary concave valuations
(Theorem 33). Our adaptatation of the first welfare theorem to this environment (Theorem 11)
shows that all competitive equilibria are efficient in our model, and so we begin by identifying
the efficient allocation. Aggregate welfare is given by

vc(rω) + vg(rω, rψ) + vs(rω) + vk(rω) + vb(rψ);

this is maximized at (r̂ω, r̂ψ) = (200, 50). We now construct a price matrix to support
this allocation in competitive equilibrium, demonstrating the second welfare theorem in
our environment (Theorem 22). Competitive equilibrium pricing must render r̂ individually
optimal for each agent; hence we set transfer prices associated with the multilateral venture
ω equal to the marginal utility of each agent for an additional unit of production at the
efficient allocation; a simple computation shows that (pkω, p

c
ω, p

g
ω, p

s
ω) = (32,−16,−6,−10).

These prices are guaranteed to sum to 0 by the fact that r̂ is efficient, from whence it
follows that the social marginal utility of adjusting rω must vanish. Similarly, we have
that (pbψ, p

g
ψ) = (25,−25).1616,1717 Note that r̂ and p together comprise the unique competitive

equilibrium in this model.1818

Furthermore, the competitive equilibrium above is stable in the matching-theoretic sense:
No firm desires to unilaterally drop any venture χ ∈ {ψ, ω} and associated transfer payments,
and no set of firms wishes to renegotiate venture participation levels and transfers. This fact
can be shown directly by computation, or as a special case of our Theorem 77.

3. Model

In this section we introduce our general model of multilateral matching. As we demon-
strate in Section 66, a large class of economies with production complementarities may be
embedded into the multilateral matching framework; this class includes the economy dis-
cussed in the previous section.

There is a finite set I of agents, and a finite set Ω of ventures. Each venture ω ∈ Ω is
associated with a set of at least two agents a(ω) ⊆ I; there may be several ventures associated
with the same set of agents.1919 For a set of ventures Ψ ⊆ Ω, we denote by a(Ψ) ≡ ∪ψ∈Ψa(ψ)
the set of agents associated with ventures in Ψ. We denote by Ψi ≡ {ψ ∈ Ψ : i ∈ a(ψ)} the

16Since the valuation function of b is not differentiable, subgradient calculations are needed in the compu-
tation of pψ; for details, see the proof of Theorem 22.

17This price matrix corresponds to prices of 80, 15, and 25 per cubic yard for cement, gravel, and sand,
respectively.

18In our general model, the competitive equilibrium is always unique when all valuation functions are
continuously differentiable and strictly concave.

19Mathematically, the set of agents and the set of ventures together define a multi-hypergraph, where each
agent is a node of the graph and each venture is a hyperedge. A hyperedge generalizes the notion of an edge
to allow for an arbitrary number of endpoints, instead of just two.
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set of ventures in Ψ associated with agent i.
A venture may represent production (of a good such as concrete, as in Section 22), a joint

research program, or any other multi-agent endeavor for which participation is continuously
adjustable. The possibility of multiple ventures between a given set of agents allows us to
encode production processes that do not require fixed input proportions.

We denote by rω ∈ [0, rmax
ω ] the chosen level of participation in venture ω ∈ Ω by the

agents in a(ω); for instance, as in our example in Section 22, if the venture ω is between
a supplier of cement, a supplier of gravel, a supplier of sand, and a producer of concrete,
rω may paramaterize the number of cubic yards of concrete produced. As the notation
suggests, we assume that participation in each venture ω ∈ Ω is bounded by some finite
bound rmax

ω ∈ R≥0.
Each agent i ∈ I has a continuous valuation function vi(r) over ventures, where the

vector r ≡ (rω)ω∈Ω is an allocation which indicates the investment in each venture ω ∈ Ω.
Many of our results rely on the assumption that the valuation functions vi are concave in
venture participation. This assumption is natural when firms face capacity constraints or
when their production technologies exhibit decreasing returns to scale.2020 We assume that vi

is unaffected by ventures to which i is not a party, i.e., vi(rω, rΩr{ω}) = vi(r̃ω, rΩr{ω}) for all
ω such that i /∈ a(ω).2121

As illustrated in Section 22, the definitions presented—multilateral ventures and valuation
functions—allow us to model production processes with fixed proportions. In fact, these
definitions are quite flexible. In addition to proportional production, they can be used to
model complementarities between ventures, such as in the case of a Cobb-Douglas production
function: To see this, let I = {i, j, k} and Ω = {ψ, ω}, with a(ψ) = {i, j} and a(ω) = {i, k}.
If vi(r) = (rψ)a(rω)b where a, b ∈ [0, 1] and a + b ≤ 1, then the production technology used
by agent i has Cobb-Douglas form.

A venture ω ∈ Ω only represents the nonpecuniary aspects of a transaction between the
members of a(ω). The purely financial aspects of venture ω are represented by a vector
pω, where piω is the transfer price per unit of the venture that agent i pays in order for the
venture ω to transact; this transfer price may be negative if i receives compensation from
the other agents in the venture. For any agent j /∈ a(ω), we use the convention that pjω ≡ 0.
Furthermore, a venture does not create or use the numeraire; hence

∑
i∈I p

i
ω = 0 for all

ω ∈ Ω.2222 We denote by p ≡ (piω)i∈I,ω∈Ω the matrix for which piω is the per-unit transfer from
agent i when he engages in venture ω.

An allocation r along with a price matrix p together define an arrangement [r; p].2323 The
utilty function ui([r; p]) of an agent i is quasilinear over ventures and transfer prices, hence

20Unfortunately, the concavity of agents’ valuations may depend upon the specification of the venture
set Ω. The issue of how contractual language interacts with agents’ preferences arises throughout matching
theory (see Hatfield and Kominers [2121]).

21We relax this assumption in Section 88 in order to consider contracting externalities.
22This assumption is without loss of generality: if a venture ω required a certain amount of numeraire t

per unit, it would be equivalent to a venture that did not require the numeraire but imposed an additional
utility cost of t on one agent in a(ω).

23We use the term “arrangement” instead of “outcome”, as we later we use the term “outcome” to specify
a set of contracts.
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it can be expressed in the form

ui([r; p]) ≡ vi(r)− pi · r.

Given prices p, we define the demand correspondence Di(p) for agent i as

Di(p) ≡ arg max
0≤r≤rmax

{ui([r; p]}).

Since any two allocations which differ only on ventures to which i is not a party provide
the same payoff to i, ui([r; p]) does not depend on the size of rω for any ω ∈ Ω r Ωi.
Hence, the demand correspondence Di(p) has the feature that if (rΩi , rΩrΩi) ∈ Di(p), then
(rΩi , r̃ΩrΩi) ∈ Di(p) for all r̃ΩrΩi such that 0 ≤ r̃ΩrΩi ≤ rmax

ΩrΩi
. We adopt this somewhat

unintuitive convention—which typically makes Di(p) very large—so that we may define the
natural demand correspondence for the entire economy as

D(p) ≡
⋂
i∈I

Di(p),

which exactly characterizes the levels of investment in each of the (joint) ventures at which
all agents’ demands are satisfied given prices p.

A contract x is comprised of a venture ω ∈ Ω, a size of that venture rω ∈ [0, rmax
ω ], and

a transfer vector sω ∈ RI (where we set sjω = 0 for all j /∈ a(ω), maintaining the convention
that agents do not receive transfers for ventures to which they are not associated). We study
contracts which specify transfers sω (instead of per-unit prices pω) in order to maintain
consistency with the previous literature (e.g., Hatfield et al. [2323]); transfers are related to
per-unit prices by the formula sω = rωpω.

The set of all contracts is

X ≡

{
(ω, rω, sω) ∈ Ω× R≥0 × RI : rω ≤ rmax

ω , siω = 0 for i /∈ a(ω), and
∑
i∈I

siω = 0

}
.

For x = (ω, rω, sω) ∈ X, we let τ(x) ≡ ω; for Y ⊆ X we let τ(Y ) ≡ ∪y∈Y {τ(y)}. Analogously
to the notation for ventures, for a contract x ∈ X we let a(x) ≡ a(τ(x)) and for Y ⊆ X we
let a(Y ) ≡ a(τ(Y )). Similarly, Yi ≡ {y ∈ Y : i ∈ a(y)}. We define κ([r; p]) to be the set of
contracts that implement the arrangement [r; p], i.e.,

κ([r; p]) ≡ {(ω, r̃ω, s̃ω) ∈ X : r̃ω = rω > 0 and s̃ω = rωpω}.

A set of contracts Y ⊆ X is an outcome if it describes a well-defined participation and
pricing plan, i.e., if for any (ω, rω, sω), (ω̄, r̃ω̄, s̃ω̄) ∈ Y such that (ω, rω, sω) 6= (ω̄, r̃ω̄, s̃ω̄), we
have that ω 6= ω̄.2424 For any arrangement [r; p], the set of contracts κ([r; p]) is an outcome.

24Without loss of generality, we also impose the requirement that outcomes not include contracts of the
form (ω, 0, sω).
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For a given outcome Y , we define ρ(Y ) as

ρω(Y ) ≡

{
rω (ω, rω, sω) ∈ Y
0 otherwise;

that is, ρ(Y ) denotes the associated allocation vector of venture participations. Similarly,
we let π(Y ), where

πjω(Y ) ≡

{
sjω
rω

(ω, rω, sω) ∈ Y
0 otherwise,

denote the matrix of per-unit transfer prices associated to Y . The utility from an outcome
Y for agent i is then given by

ui(Y ) ≡ vi(ρ(Y ))− πi(Y ) · ρ(Y ).

The choice correspondence of agent i is given by

Ci(Y ) ≡ arg max
Z⊆Yi;Z is an outcome

{ui(Z)}.

4. Competitive Equilibria

We first introduce the competitive equilibrium solution concept.

Definition. A competitive equilibrium is an arrangement [r; p] such that r ∈ D(p).

The statement that the arrangement [r; p] is a competitive equilibrium incorporates both
individual optimality and market clearing. Individual optimality holds in competitive equi-
librium, as each agent i demands the allocation r given the prices p. Furthermore, markets
clear in competitive equilibrium, as if an agent i ∈ a(ω) demands rω at competitive equilib-
rium prices p, each other agent j ∈ a(ω) demands rω at those prices.

4.1. Welfare Theorems for Multilateral Matching

In our setting, we obtain results on the relationship between efficient allocations and
competitive equilibria that are analogous to the first and second welfare theorems of general
equilibrium theory. However, because our setting allows for arbitrarily large transfers of the
numeraire, the standard Pareto optimality condition is replaced by (global) efficiency.

An allocation r̂ is efficient if

r̂ ∈ arg max
0≤r≤rmax

∑
i∈I

vi(r),

i.e., if it maximizes social surplus. Our “First Welfare Theorem” indicates that any compet-
itive equilibrium allocation is efficient.

Theorem 1. For any competitive equilibrium [r; p], the allocation r is efficient.

9



The proof of Theorem 11 uses standard techniques: For any competitive equilibrium [r; p],
suppose that some other allocation r̂ delivers strictly greater social surplus than r does.
Then, since

∑
i∈I p

i
ω = 0 for all ω ∈ Ω,∑

i∈I

(vi(r)− pi · r) =
∑
i∈I

vi(r) <
∑
i∈I

vi(r̂) =
∑
i∈I

(vi(r̂)− pi · r̂). (1)

However, the inequality (11) can only hold if there exists an agent j such that

vj(r)− pj · r < vj(r̂)− pj · r̂.

But then r /∈ Dj(p).
Our “Second Welfare Theorem” gives a partial converse to Theorem 11.

Theorem 2. Suppose that agents’ valuation functions are concave. Then, for any efficient
allocation r, there exist prices p such that [r; p] is a competitive equilibrium.

While the result of Theorem 22 is familiar, the proof, unlike in general equilibrium settings,
relies on arguments from differential algebra. The logic is especially transparent in the case
that agents’ valuation functions are differentiable: In this case, for an efficient allocation r,
let piω ≡ ∂

∂rω
vi(r). It follows from the linearity of the differential operator and the fact that

r is globally optimal that, for all ω ∈ Ω,∑
i∈I

piω =
∑
i∈I

∂

∂rω
vi(r) =

∂

∂rω

∑
i∈I

vi(r) = 0;

hence, p is a valid price matrix. Furthermore, as each vi is concave, by the construction of
p we have that

r ∈ Di(p)

for each i ∈ I. It then follows immediately that [r; p] is a competitive equilibrium.

4.2. Existence of Competitive Equilibria

An immediate consequence of Theorem 22 is that a competitive equilibrium exists in our
setting whenever agents’ valuation functions are concave.

Theorem 3. Suppose that agents’ valuation functions are concave. Then there exists a com-
petitive equilibrium. If the agents’ valuation functions are strictly concave and continuously
differentiable, then there exists a unique competitive equilibrium.

Concavity of agents’ valuation functions and the boundedness of the allocation space
imply the existence of an efficient allocation r̂. Theorem 22 then shows that there exist prices
p such that [r̂; p] is a competitive equilibrium. Note that, as preferences are quasilinear
in the numeraire, this argument does not require the fixed-point methods used in general
equilibrium theory. In fact, the proofs of Theorems 22 and 33 imply a simple algorithm based
on Newton’s method for computing competitive equilibria in our setting.2525

25As we show in Appendix CAppendix C, 33 can also be proven by appealing to Kakutani’s fixed point theorem, using
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Our next result shows that the conditions of Theorem 33 are tight—the domain of concave
valuations is the maximal domain for which competitive equilibria are guaranteed to exist.

Theorem 4. Suppose that the valuation function vi of some agent i is not concave. Then
there exist concave valuation functions for the other agents such that no competitive equilib-
rium exists.

To demonstrate the intuition behind this result, consider the case where I = {i, j},
Ω = {ω}, a(ω) = {i, j}, and rmax

ω = 2. Let

vi(rω) = (rω)2.

In this case, vi(rω) is not concave at rω = 1; in fact, vi(rω) is globally convex. Let

vj(rω) =

{
2014rω rω ≤ 1

2014(2− rω) 1 ≤ rω ≤ rmax
ω ,

which is globally concave. It is clear that the efficient allocation has rω = 1. Hence, any
competitive equilibrium must be of the form [(1); (pω)]. However, for any price piω, we have
that

Di(p) ⊆ {(0), (2)},

as vi is globally convex. Hence, no competitive equilibrium exists.
The intuition of the preceding example generalizes to prove Theorem 44: If there is a

point at which the valuation function of agent i is not concave, then we construct concave
valuation functions for the other agents so that the efficient allocation is at that point. Given
that the utility function of agent i is quasilinear in the numeraire, there does not exist a
price vector such that it is individually optimal for i to demand an allocation at which his
valuation function is not concave. Thus, there does not exist a price vector that induces
i to demand the allocation that is efficient in the constructed economy. Hence, since by
Theorem 11 all competitive equilibria are efficient, no competitive equilibrium exists.

4.3. Comparative Statics

We now prove an intuitive comparative static result: as an individual venture ψ becomes
more valuable for the agents in a(ψ), those agents will not choose to participate in ψ less
than before.2626

Theorem 5. Consider a family of valuation functions vi(·; `) parameterized by `. Suppose
that for all i ∈ I, vi is strictly concave in r for all ` ∈ R and is twice continuously differen-

an approach similar to the standard techniques of general equilibrium theory. The Kakutani fixed point
approach, however, has the disadvantage that it not does not provide an explicit method for computing
competitive equilibria.

26Note that we can not characterize how participation in any other venture ξ changes as ψ becomes more
valuable, as ψ and ξ may act as either complements or substitutes.
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tiable in r and `. Suppose additionally that for all i ∈ I, all ` ∈ R, and some ψ ∈ Ω,

∂2vi(r; `)

∂rψ∂`
≥ 0 and

∂2vi(r; `)

∂rω∂`
= 0 for all ω ∈ Ω such that ω 6= ψ.

Let [r̂(`); p̂(`)] be the unique competitive equilibrium in the economy (for the parameter `)
implied by Theorem 33. Then,

∂r̂ψ(`)

∂`
≥ 0.

Note that under the conditions of Theorem 55, the efficient allocation r̂(`) is unique. As
venture ψ becomes more profitable for the agents in a(ψ), the conditions on rψ in the global
optimization problem slacken. The implicit function theorem then shows that the efficient
level of participation in ψ must increase. Since the competitive equilibrium allocation is
efficient, the value of r̂ψ must therefore also increase.

5. Cooperative Solution Concepts

5.1. Definitions

We now introduce the standard notion of stability from the matching literature.2727

Definition. An outcome A is stable if it is

1. individually rational : for all i ∈ I, Ai ∈ Ci(A);

2. unblocked : there does not exist a nonempty Z ⊆ X r A such that for all i ∈ a(Z) we
have that Zi ⊆ Y i for all Y i ∈ Ci(Z ∪ A).

Individual rationality of A requires that no agent i prefer to drop some of the contracts
in Ai. Unblockedness of A requires that there does not exist a new set of contracts Z such
that all the agents in a(Z) would strictly prefer to sign all the contracts in Z (and possibly
drop some of their existing contracts in A) rather than only sign some (or none) of them.2828

Closely related to stability is the standard solution concept of cooperative game theory:
the core.

Definition. An outcome A is in the core if it is core unblocked : there does not exist a
nonempty Z ⊆ X such that ui(Z) > ui(A) for all i ∈ a(Z).

The definition of the core differs from that of stability in two ways. First, core un-
blockedness requires that all of the blocking agents (i.e., those agents in a(Z)) drop all of

27Note that unlike in classical matching theory, we must consider the possibility of indifference between
two sets of contracts; hence, we use the definition of Hatfield et al. [2323].

28Note that our stability concept allows agents associated with a blocking set to disagree on whether a
contract in the original allocation is maintained while deviating. As can easily be checked, ruling out such
blocks does not weaken our results.
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their prior contracts (i.e., those contracts in ArZ); this is a more stringent restriction than
that of stability, which allows agents in a(Z) to retain previous relationships. Second, core
unblockedness does not require that the deviation be individually optimal for each deviating
agent (i.e., it need not be the case that for all i ∈ a(Z), Zi ⊆ Y i for each Y i ∈ Ci(Z ∪ A));
rather, it requires only that the weaker condition that each blocking agent is made better
off by the deviation (i.e., ui(Z) > ui(A)).

Finally, we introduce strong group stability, first proposed by Hatfield et al. [2323], which
is a stronger solution concept than both the core and stability.

Definition. An outcome A is strongly group stable if it is:

1. individually rational;

2. strongly unblocked : There does not exist a nonempty set Z ⊆ X rA′ such that for all
i ∈ a(Z) there exists a Y i ⊆ Z ∪ A such that Zi ⊆ Y i and ui(Y i) > ui(A).

Strong group stability is more restrictive than the core—unlike coalitional unblockedness,
strong unblockedness does not require agents to drop previous relationships. Additionally,
strong group stability is more restrictive than stability, as strong unblockedness does not
require that the deviation set Z be individually optimal for each deviating agent (i.e., it
need not be the case that for all i ∈ a(Z), Zi ⊆ Y i for each Y i ∈ Ci(Z ∪ A)), but only that
there exists a utility-increasing individual-specific deviation for each agent (i.e., a Y i ⊇ Zi
such that ui(Y i) > ui(A)).2929

5.2. The Relationship between Cooperative Solution Concepts

The following result is immediate from the definitions.

Theorem 6. If an outcome Y is strongly group stable, then Y is stable and in the core.
Furthermore, all core allocations are efficient.

In general, there are no relationships between the cooperative solution concepts beyond
those in Theorem 66 without additional assumptions on the valuation functions. To see this,
suppose Ω = {ψ, ω}, a(ω) = a(ψ) = I = {i, j}, and rmax

ψ = rmax
ω = 1. Let the valuation

functions of the two agents be given by

vi(r) = 7 min{rψ, rω}
vj(r) = −6 min{rψ, rω}.

The unique efficient allocation is r = (1, 1). It follows that the core is given by

{{(ψ, rψ, (siψ, s
j
ψ)), (ω, rω, (s

i
ω, s

j
ω))} ⊆ X : rψ = rω = 1, 6 ≤ siψ + siω ≤ 7}.

29This concept is called strong group stability as it is stronger than the existing concepts of strong stability
and group stability. Strong stability (introduced by Hatfield and Kominers [2121]) also requires that each Zi be
individually rational. Group stability (introduced by Roth and Sotomayor [3434] and extended to the setting
of many-to-many matching by Konishi and Ünver [2828]) requires that if y ∈ Y i for some i ∈ a(Y ), then y ∈ Y j
for all j ∈ a(y), i.e., that the deviating agents agreed on which contracts from the original allocation would
be kept after deviation. Hatfield et al. [2323] provide a further discussion.
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However, no core outcome is stable. Suppose, without loss of generality, that siψ ≥ siω. Since

siψ+siω ≤ 7 we have that siω ≤ 7
2
. Then agent j will choose to drop the contract (ω, 1, (siω, s

j
ω))

as it costs him 6 (due to the cost of production) but gains him at most 7
2

in transfer.

However, the outcome ∅ is stable. Consider a blocking set of the form {(ψ, rψ, (siψ, s
j
ψ))}

or {(ω, rω, (siω, sjω))}; since no agent gains benefits or incurs costs from such a set of contracts,
each agent is indifferent between this set of contracts and ∅. For a blocking set of the form
{(ψ, rψ, (siψ, s

j
ψ)), (ω, rω, (s

i
ω, s

j
ω))} we must have that siψ + siω > −7 min{rψ, rω} as i must

choose both contracts; this implies that sjψ + sjω < 7 min{rψ, rω}. Suppose without loss of

generality that sjψ ≥ sjω; then sjω <
7
2

min{rψ, rω} < 6 min{rψ, rω}. Hence j strictly prefers

{(ψ, rψ, (siψ, s
j
ψ))} to {(ψ, rψ, (siψ, s

j
ψ)), (ω, rω, (s

i
ω, s

j
ω))} and so {(ψ, rψ, (siψ, s

j
ψ)), (ω, rω, (s

i
ω, s

j
ω))}

is not a blocking set.
The preceding example illustrates that, in general, there is no logical relationship between

stable and core outcomes.3030 Appendix DAppendix D gives an example of an outcome that is both stable
and core, but is not strongly group stable.

5.3. The Relationship between Stable Outcomes and Competitive Equilibria

We now show that every competitive equilibrium is associated with a stable outcome.

Theorem 7. Suppose that [r; p] is a competitive equilibrium. Then, κ([r; p]) is (strongly
group) stable and in the core.

The proof of Theorem 77 is similar to, but more technical than, the proof of Theorem 11
sketched in Section 4.24.2. If κ([r; p]) is not individually rational, then κ([r; p])i /∈ Ci(κ([r; p])),
which implies that r /∈ Di(p), so [r; p] is not a competitive equilibrium. If κ([r; p]) is not
strongly unblocked, then there is a set Z such that for all i ∈ a(Z), there exists Y i ⊇
Zi such that ui(Y i) > ui(κ([r; p])). Summing over individuals, and using the fact that
πi(κ([r; p])) · ρ(κ([r; p])) = pi · ρ(κ([r; p])), we obtain∑

i∈a(Z)

vi(ρ(Y i))− πi(Y i) · ρ(Y i) >
∑
i∈a(Z)

vi(ρ(κ([r; p])))− pi · ρ(κ([r; p])).

Since transfers among agents in a(Z) sum to 0, we have that
∑

i∈a(Z) π
i
ω(Y i) = 0 =

∑
i∈a(Z) p

i
ω

for each ω ∈ τ(Z). Hence,∑
i∈a(Z)

vi(ρ(Y i))− pi · ρ(Y i) >
∑
i∈a(Z)

vi(ρ(κ([r; p])))− pi · ρ(κ([r; p])).

But then there must exist j ∈ a(Z) such that uj(κ([ρ(Y j); p])) > uj(κ([r; p])), and hence

r = ρ(κ([r; p])) /∈ Dj(p),

implying that [r; p] is not a competitive equilibrium.

30Moreover, since no outcome in this example is both stable and in the core, no strongly group stable
outcome exists.
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An immediate corollary of Theorems 33 and 77 is the existence of strongly group stable
outcomes for concave valuation functions.

Corollary 1. Suppose that agents’ valuation functions are concave. Then a (strongly group)
stable outcome exists.

The converse of Theorem 77 is not true: not all (strongly group) stable outcomes corre-
spond to competitive equilibria. Consider the case where there are two agents i and j, and
two ventures ψ and ω. Suppose that

vi(r) = −4 max{rψ, rω}
vj(r) = 3 max{rψ, rω}.

Then ∅ is a (strongly group) stable outcome; however, no competitive equilibrium exists.
As Theorem 11 shows, every competitive equilibrium is efficient, hence any competitive equi-
librium must be of the form [(0, 0); p]. For any price matrix p, we must have that

min{pjψ, p
j
ω} ≥ 3

as otherwise agent j will demand positive amounts of ψ or ω. This implies that

piψ + piω ≤ −6,

as pjψ = −piψ and pjω = −piω. Then agent i will demand positive amounts of both ψ and ω;
hence no prices will support r = (0, 0) as a competitive equilibrium.

The example above relies on the fact that the valuation function of j is not concave.
Our next two results show that the lack of concavity is essential for the example: when all
agents have concave valuation functions, every stable outcome corresponds to an efficient
allocation, and hence induces a competitive equilibrium.

Theorem 8. Suppose that agents’ valuation functions are concave. Then, for any stable
outcome A, the allocation ρ(A) is efficient.

When all agents’ valuation functions are concave, at any outcome A corresponding to an
inefficient allocation r = ρ(A), either A is not individually rational or there exists a venture
ψ such that the total welfare of the agents in a(ψ) can be increased by adjusting rψ to some
other value r̃ψ. The agents in a(ψ) can then choose transfers s̃ψ so as to share the surplus
from adjusting rψ to r̃ψ. By construction, then, it follows that {(ψ, r̃ψ, s̃ψ)} blocks A. Thus,
if A is stable, then ρ(A) is efficient.

Combining Theorems 22 and 88, we immediately obtain the following corollary.

Corollary 2. Suppose that agents’ valuation functions are concave. Then, for any stable
outcome A, there exists a price matrix p such that the arrangement [ρ(A); p] is a competitive
equilibrium.

An analogous result holds for core outcomes, since those outcomes are efficient by The-
orem 66.
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Figure 3: The Relationships Between the Solution Concepts.

Corollary 3. Suppose that agents’ valuation functions are concave. Then, for any core
outcome A, there exists a price matrix p such that the arrangement [ρ(A); p] is a competitive
equilibrium.

Note that Corollaries 22 and 33 imply that the underlying allocations of stable and core
outcomes can be supported in competitive equilibrium, but do not imply any relationship
between the supporting prices and the transfers associated with the original outcomes. These
results are analagous to results in general equilibrium theory, where the set of utilities induced
by core outcomes is also, in general, larger than the set of utilities induced by competitive
equilibria.

We summarize the relationship between the various solution concepts in Figure 33. Solid
lines indicate relationships which hold in general; dashed lines represent relationships that
hold in the presence of concave valuations.

6. Application: Production Economies with Complementary Inputs

We now demonstrate how our model can be applied to economies where production
requires complementary inputs. In Appendix EAppendix E, we show how the example presented in
Section 22 can be described as such an economy.

Consider an economy with a set of agents I in which each agent i ∈ I has an initial
endowment eig ≥ 0 of each good g; the set of all goods is denoted G. Available to the agents
are a set of production processes Ω. Each ω ∈ Ω is represented by a matrix in RI×G, where
the value ωig indicates that i obtains ωig units of good g per unit of process ω executed. If
ωig > 0, then good g is an output of the process for agent i; if ωig < 0, then good g is an
input of the process for agent i. Note that these processes need not result in the creation or
destruction of goods: For example, the process

ψig =


−1 i = j and g = x

1 i = k and g = x

0 otherwise

denotes the transfer of one unit of good x from agent j to agent k. In contrast, a linear
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production process of the form

χig =


−1 i = j and g = x

−2 i = k and g = y

1 i = h and g = z

0 otherwise

denotes the production of one unit of good z by agent h using one unit of good x from agent j
and two units of good y from agent k.3131 We denote by rω ≤ rmax

ω the quantity of engagement
in process ω; for instance, rψ = 2 (where ψ is as defined above) indicates the transfer of two
units of good x from i to j.

The final consumption of agent i is given by a vector ci, where

cig(r) = eig +
∑
ω∈Ω

rωω
i
g.

Each agent i ∈ I has a continuous valuation function over consumption, denoted v̇i(ci).
Note that since the production processes we have specified are linear, all production costs
are implicitly embedded into agents’ valuations.3232 Thus, the valuations v̇i are concave when
production exhibits nonincreasing returns to scale and scope, and agents receive diminishing
marginal utility from final consumption.

The economy just described may be reinterpreted as a multilateral matching economy
with agent set I, venture set Ω, and valuation functions

vi(r) = v̇i(ci(r)).

It is clear that vi is concave if v̇i is, as then, for all a ∈ [0, 1],

avi(r) + (1− a)vi(r̃) = av̇i(ci(r)) + (1− a)v̇i(ci(r̃))

≥ v̇i(aci(r) + (1− a)ci(r̃))

= v̇i(ci(ar + (1− a)r̃))

= vi(ar + (1− a)r̃),

31Note that while each process specifies the exact amount of each input good to be provided by each agent,
it is possible that two processes χ and ω might have the same net inputs and outputs (i.e.,

∑
i∈I ω

i
g =

∑
i∈I χ

i
g

for all g ∈ G) but differ in the idenities of the providers of the inputs and recipients of the outputs. Similarly,
mulitple processes may produce the same quantity of good g for i, but use different mixtures of inputs.

32For illustration, consider an economy with a single good g, which can be produced by the agent i ∈ I via
process ω (using goods from other agents). When using process ω, agent i incurs a convex cost of production
c(cig). After production, i receives linear utility from consuming good g. The valuation v̇i then takes the

form v̇i(ci) = cig − c(cig).
Note that this convention also allows us to consider the case where an agent can produce the same product

at two different factories (with appropriate inputs); we specify the set of goods G to include a good for the
product of each factory, so that we may model utility from total consumption alongside convex costs of
production at each factory.
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where the inequality follows from the concavity of v̇i and the subsequent equality follows
from the linearity of ci. Thus agents’ valuations are concave whenever their underlying
preferences over goods are concave.

The preceding discussion shows that multilateral matching encompasses a large class of
economies with production complementarites. Unlike general equilbrium theory, the mul-
tilateral matching framework allows us to model economies with agent-specific production,
i.e., production that relies on technologies available only to certain agents.3333

The class of economies with production complementarities includes standard examples
from manufacturing, such as the assembly of automobiles and computers. Additionally, this
class encompasses economies in which production requires many complementary inputs but
the value of the output is uncertain; real world examples of such economies include the oil
and gas industries.3434 By contrast, the formation of joint research ventures between firms is
not adequately modeled in a production economy setting; nonetheless, it is apparent that
research venture formation may be modeled using multilateral matching.3535

7. Application: Competitive Equilibrium in Economies with a Continuum of
Agents

In this section, we demonstrate how our results can be used to derive the existence of
competitive equilibria (and stable outcomes) in the large market setting of Azevedo et al.
[99]. In the Azevedo et al. [99] setting, there is a set of actor types J and a set of goods G; each
actor of type j has a utility function that is quasilinear in the numeraire but is otherwise
arbitrary with respect to the valuation over goods.3636 In particular, the type of actor j is
specified by a vector wj ∈ R℘(G), where ℘(·) denotes the power set operator and wi

Ḡ
denotes

the value of an actor of type j for the bundle of goods Ḡ ⊆ G; for simplicity, we normalize
wj∅ = 0 for all j ∈ J .

For each good g ∈ G, there exists quantity qg of good g; since utility is quasilinear in
the numeraire, we do not model initial ownership explicitly. We consider the case where
there are a finite set of actor types, and denote by mj the measure of actors of type j. An
allocation is a measurable map A : J → ∆℘(G), where ∆℘(G) is the finite-dimensional
simplex over subsets of the set of goods G. An allocation is feasible if 0 ≤ Aj

Ḡ
≤ 1 for all

j ∈ J and Ḡ ⊆ G, and ∑
j∈J

 ∑
{g}⊆Ḡ⊆G

Aj
Ḡ

mj

 = qg

for all g ∈ G; that is, the full quantity of each good is allocated to actors.

33Agent-specificity may be material, for instance, in economies with intellectual property rights or implicit
knowledge gained from learning-by-doing.

34To model such economies in our framework, it suffices that the valuation functions of agents with
uncertain outcomes incorporate an expectation operator.

35As we remarked in Footnote 1010, examples such as joint research ventures show the true strength of our
framework. While economies with production complementarities may be modeled using only bilateral con-
tracting, economic activities which exhibit externalities across contractual partners require the full generality
of multilateral contracting.

36In particular, valuations are not assumed to be substitutable in the sense of Gul and Stacchetti [2020].
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We denote by tg ∈ R the price of good g ∈ G. The demand of an actor of type j ∈ J , as
a function of the price vector t ∈ RG, is given by

Dj(t) ≡ arg max
Ḡ⊆G

wjḠ −∑
g∈Ḡ

tg

 .

A competitive equilibrium in this setting is an allocation–price pair [A; t] such that A is
feasible and, if Aj

Ḡ
> 0, then Ḡ ∈ Dj(t).

Azevedo et al. [99] show the existence of competitive equilibria in this setting.

Theorem 9 (Azevedo et al. [99]). A competitive equilibrium [A; t] exists.

We now use the multilateral matching framework to provide a novel proof of Theorem 99.
To do so, we construct a multilateral matching economy by letting the set of agents be
I = J ∪G and specifying a venture ωj

Ḡ
for each bundle of goods Ḡ ) ∅ that can be assigned

to agent type j; hence a(ωj
Ḡ

) = {j} ∪ Ḡ.
The valuation of an agent g ∈ G is given by

vg(r) = −K

∣∣∣∣∣∣
∑
ω∈Ωg

rω

− qg
∣∣∣∣∣∣ ,

where K > 2 maxḠ⊆G |wjḠ|; this ensures that, in any competitive equilibrium [r; p], exactly
the full quantity of each good g is sold through ventures, i.e.,∑

ω∈Ωg

rω

− qg = 0. (2)

The valuation of an agent j ∈ J is given by

vj(r) =

{∑
ω∈Ωj

wja(ω)r{j}rω
∑

ω∈Ωj
rω ≤ mj∑

ω∈Ωj
wja(ω)r{j}rω − Lmax

{
0,
(∑

ω∈Ωj
rω

)
−mj

}
otherwise,

where L > maxḠ⊆G{|wjḠ|}+ K|G|; this ensures that∑
ω∈Ωj

rω ≤ mj, (3)

that is, no actor type is assigned a greater measure of bundles than the measure of actors of
that type.

It is immediate from Theorem 33 that a competitive equilibrium [r; p] exists in the con-
structed multilateral matching economy, as the valuation function for each i ∈ J ∪ G is
concave.

Unfortunately, under the arrangement [r; p], it may not be the case that each good “sells”
for the same price in all bundles, since our framework allows for personalized, bundle-specific
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prices. However, for each g ∈ G, since agent g is optimizing (i.e., r ∈ Dg(p)) and the marginal
returns to g of all ventures in Ωg are equal:

• The agent g must be indifferent among participating in ventures that actually transact,
given the price matrix p, i.e., for each ψ, ω ∈ Ωg such that rψ > 0 and rω > 0, pgψ = pgω.

• The agent g must weakly prefer participating in any venture ω ∈ Ωg such that rω > 0
to participating in any venture ψ ∈ Ωg such that rψ = 0, i.e., pgω < pgψ.3737

Consider the arrangement [r; p̄] where p̄gω = minψ∈Ωg{p
g
ψ}. For each ω ∈ Ω, since |a(ω)∩J | =

1, knowing p̄gω for each g ∈ G pins down the price p̄jω for the unique j ∈ (a(ω) ∩ J):

p̄jω = −
∑

g∈(a(ω)r{j})

p̄gω.

Of course, p̄iω = 0 for all i /∈ a(ω).
The preceding observations imply that, for each venture ω such that rω > 0, we have

that p̄ω = pω, as for any such ω, and any g ∈ (a(ω) ∩G),

pgω = min
ψ∈Ωg
{pgψ} = p̄gω.

The preceding observations also imply that, for each j ∈ J and venture ω such that rω = 0,
we have p̄jω ≥ pjω, as for any such ω, and any g ∈ (a(ω) ∩G),

pgω ≥ min
ψ∈Ωg
{pgψ} = p̄gω.

Hence, the arrangement [r; p̄] is a competitive equilibrium: For each j ∈ J , prices of ven-
tures which j does not demand have weakly increased relative to [r; p], while ventures j does
demand have not changed in price. For each g ∈ G, the prices of ventures in which g is par-
ticipating are still weakly higher than those of the ventures in which he is not participating.

The arrangement [r; p̄] of the multilateral matching economy induces an arrangement
[Ā; t̄] of the Azevedo et al. [99] economy, with

Āj
Ḡ

=
rωj

Ḡ

mj

for all Ḡ 6= ∅,

Āj∅ = 1−
∑

ω∈Ωj
rω

mj
,

and t̄g = −p̄gω (for any ω ∈ Ωg).

Lemma 1. The allocation price pair [Ā; t̄] is a competitive equilibrium of the Azevedo et al.
[99] economy.

37Recall that in the multilateral matching framework, the price pgω denotes the price paid by g so the
revenue of g is higher when pgω is lower.
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Lemma 11, which we prove in Appendix BAppendix B, immediately implies Theorem 99.
Note that, unlike the argument of Azevedo et al. [99], this method based on the multilateral

matching framework avoids the use of Kakutani’s fixed point theorem, and in particular
only relies on solving a concave maximization problem. Thus, our approach, unlike that of
Azevedo et al. [99], can be used to efficiently compute competitive equilibria of the Azevedo
et al. [99] economy.

8. Extension: Markets with Externalities

In this section, we incorporate externalites into our model by relaxing the assumption
that vi(rω, rΩr{ω}) = vi(r̃ω, rωr{ω}) for all ω ∈ Ω such that i /∈ a(ω). For clarity, throughout
this section we express the valuation function vi of agent i as vi(rΩi ; rΩrΩi), to highlight the
fact that i treats participation in ventures to which he is not a party as exogenous. Abusing
terminology slightly, we will say that vi(rΩi ; rΩrΩi) is concave if it is concave in the venture
participation rΩi of agent i for all rΩrΩi . Note that we allow for arbitrary externalities so
long as each vi(r) is continuous in r = (rΩi , rΩrΩi).

We must now consider demand functions of the form

D̄i(p; r̃) ≡ arg max
0≤r≤rmax

{vi(rΩi ; r̃ΩrΩi)− pi · r},

where the additional input r̃ highlights the dependence of the demand of agent i on the
venture participation of other agents, r̃ΩrΩi . As in the case without externalities, the demand
correspondence D̄i(p; r̃) has the feature that if (rΩi , rΩrΩi) ∈ D̄i(p; r̃), then (rΩi , řΩrΩi) ∈
D̄i(p; r̃) for all řΩrΩi such that 0 ≤ řΩrΩi ≤ rmax

ΩrΩi
; this allows us to define the demand

correspondence for the entire economy by

D̄(p; r̃) ≡
⋂
i∈I

D̄i(p; r̃).

In this context a competitive equilibrium is an arrangement [r; p] such that r ∈ D̄(p; r).
Our next theorem shows that competitive equilibria exist when agents’ valuation func-

tions are concave—even in the presence of externalities.

Theorem 10. Suppose that agents’ valuation functions vi(rΩi ; rΩrΩi) are concave (in rΩi).
Then a competitive equilibrium exists.

Unlike the proof of Theorem 33, the proof of Theorem 1010 relies on fixed-point methods.
In particular, we use Kakutani’s fixed point theorem to show that

F (r̃) ≡ arg max
0≤r≤rmax

{∑
i∈I

vi(rΩi ; r̃ΩrΩi)

}

has a fixed point r̂. Arguments analogous to the the proof of Theorem 22 show that there exist
prices that support r̂ in competitive equilibrium. Note, however, that competitive equilibria
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in the presence of externalities are generally not efficient.3838

While this approach allows us to find competitive equilibria in settings with externalities,
the added generality comes at a cost: we must use Kakutani’s fixed point theorem rather
than the differential (and easily computable) method used to prove Theorem 33.

Stable outcomes correspond to competitive equilibria in the presence of externalities if
agents, when considering whether to choose contracts in a blocking set Z, assume that no
other contracts will change.3939 If, however, agents are able to accurately predict that contracts
in ZrZi will transact, then competitive equilibria may not correspond to stable outcomes.4040

To see the difference between the two stability notions, suppose that I = {h, i, j, k},Ω =
{ψ, ω} where a(ψ) = {i, j}, a(ω) = {h, k}, and rmax = (1, 1). Let

vi(rψ; rω) = −rψ, vh(rω; rψ) = −rω,
vj(rψ; rω) = 3rψrω, vk(rω; rψ) = 3rωrψ.

These valuations may be interpreted as indicating that i and h sell raw materials to j and
k respectively, and that there is only a market for the product of j if k sells its product
and vice versa. In this setting, there are two competitive equilibrium allocations: (0, 0) and
(1, 1). For the allocation (0, 0), the only supporting price matrix is 0; each pair ({i, j} and
{h, k}) is unwilling to begin production without the other pair doing so as well, so the set
Z = {(ψ, 1, (2,−1, 0, 0)), (ω, 1, (0, 0, 2,−1))} blocks ∅ if and only if every agent expects all
of the other agents to choose their contracts in Z.4141

9. Conclusion

Our work shows that matching theory can incorporate certain forms of complementarity
so long as contracts are continuously divisible. In that case, when agents’ valuation functions
are concave, competitive equilibria exist, correspond to (strongly group) stable outcomes,
and yield core outcomes. Analogues of the first and second welfare theorems hold as well.
Even in the presence of externalities, competitive equilibria exist so long as agents’ valuations
are concave. Further work is needed, however, to identify the appropriate notion of stability
for matching models with externalities and to characterize the relationship between that
stability concept and the concept of competitive equilibrium.

Previous matching models have obtained conclusions similar to ours—existence and cor-
respondence results for competitive equilibria and stable outcomes (in the presence of quasi-
linear utility). However, these results have depended crucially on the presence of (full)
preference substitutability, which rules out complementarities of the types encoded in our
model’s multilateral contracts. The key distinction between the prior work and our model
is in the structure of the contractual space: whereas previous models have typically allowed
agents to contract over discrete participation levels, we require instead that agents be al-

38See Appendix FAppendix F for a simple example.
39It is clear that if [r; p] is a competitive equilibrium, then κ([r; p])i is individually rational for all i ∈ I.
40This distinction in the stability of competitive equilibrium outcomes is analogous to the distinction

between Cournot and consistent conjectures (Bresnahan [1111]) equilibria in oligopoly theory.
41When writing transfer vectors, we list transfers in the alphabetical order of agents.
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lowed to continuously adjust participation. Our work therefore reveals a tradeoff between
modeling assumptions: when contract participation levels are discrete, complementarities
must be assumed away, while when they are continuous, some complementarities can be
incorporated.

Assuming contractual divisibility seems reasonable in a number of industrial settings,
such as chemical synthesis, assembly of durable goods, and automobile manufacturing (Fox
[1717, 1818]). It also seems appropriate in the context of online advertising, where billions
of impressions are sold. Multilateral matching models allow us to understand the market
outcomes in these settings; they may also prove useful for both empirical work and market
design applications in settings with complementarities. Moreover, contactual divisibility can
be used to model markets with a continuum of agents, as Section 77 demonstrates.

Meanwhile, divisibility may not be a reasonable assumption for markets where each
individual product is unique and of a discretely specified size. In those markets, other
analytical tools are needed; there, “large market” effects may facilitate analysis (Kojima
et al. [2727], Ashlagi et al. [77], Azevedo et al. [99], Azevedo and Hatfield [88]).

Appendix A. Relationship with General Equilibrium

In this appendix, we show that there is a natural embedding of the multilateral match-
ing framework into the standard model of general equilibrium when agents’ valuations are
monotonic with respect to participation in each venture. We also provide an example that
shows that this correspondence does not extend naturally to economies where valuation
monotonicity fails.

For simplicity, we consider the case where valuation functions are differentiable and
strictly concave; we also assume that rmax is large enough that r̂ < rmax at any efficient
allocation r̂.

Definition. We say that valuation function vi is monotonic if for each ω ∈ Ω and r ∈ RΩ

such that 0 ≤ r ≤ rmax, either

∂vi(r)

∂rω
> 0 or

∂vi(r)

∂rω
< 0.

Suppose that all valuation functions are monotonic.4242 For each venture ω ∈ Ω and agent
i ∈ a(ω), let

a−(ω) ≡
{
i ∈ a(ω) :

∂vi(r)

∂rω
< 0

}
,

a+(ω) ≡
{
i ∈ a(ω) :

∂vi(r)

∂rω
> 0

}
.

We define a set of goods G ≡ {n}∪{giω : ω ∈ Ω and i ∈ a(ω)}, where n is a numeraire good.
We let ci ∈ RG denote the consumption of agent i.

42In particular, combined with our assumption that any efficent allocation r < rmax, this implies that for
each venture ω there is at least one agent for whom ω is costly.
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The initial endowment of goods in the economy is given by

eig =


rmax
ω g = giω and i ∈ a−(ω)

K g = n

0 otherwise,

where K is chosen to be greater than the maximum total value created by all ventures in the
economy. The consumption vector c induced by an arrangement [r; p] is given by

cig([r; p]) ≡


rω g = giω and i ∈ a+(ω)

rmax
ω − rω g = giω and i ∈ a−(ω)

K− pi · r g = n

0 otherwise.

The preferences of agent i over goods are given by

ui(ci) ≡ vi((cigiω)ω∈Ω+
i
, (rmax

ω − cigiω)ω∈Ω−i
, (0)ω∈ΩrΩi) + cin,

where Ω+
i = {ω ∈ Ω : i ∈ a+(ω)} and Ω−i = {ω ∈ Ω : i ∈ a−(ω)}; note that this utility

function is weakly increasing over the consumption space Γ ≡ (×ω∈Ω[0, rmax
ω ]Gω) × [0, |I|K]

where Gω ≡ {giψ ∈ G : ψ = ω}. This utility function over goods induces a demand
correspondence

Ei((qg)g∈G) ≡ arg max
ci∈Γ

ci·q≤ei·q

{ui(ci)}.

For each venture ω ∈ Ω, we define a firm fω with production technology

Y ω ≡ {((−y)g∈{giω :i∈a−(ω)}, (y)g∈{giω :i∈a+(ω)}, (0)g∈Gr{giω :i∈a(ω)}) : y ∈ [0, rmax
ω ]}.

This induces a production correspondence

Rω((qg)g∈G) = arg max
y∈Y ω

{q · y}

for firm fω. We assume that the shares of each firm are evenly distributed amongst all agents
in the economy.4343

Unfortunately, the existence of a competitive equilibrium in our setting does not follow
from standard results in general equilibrium theory, as agents’ utilities are not strongly mono-
tone. Nevertheless, we can prove the existence of general equilibrium in our setting using an
argument modified from the standard existence proof (given, for instance, in Chapter 17 of
Mas-Colell et al. [3030]).

We introduce a Walrasian auctioneer who fixes the price of the numeraire good at 1 and

43Since production is linear and, by assumption, efficient allocations are interior, firms’ profits will be 0 in
equilibrium; hence, the ownership of shares does not affect the outcome.
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solves the following maximization problem:

A((ci)i∈I , (y
ω)ω∈Ω) ≡ arg max

q∈[0,q̄]G

{
q ·

(∑
i∈I

ci −

(∑
i∈I

ei +
∑
ω∈Ω

yω

))}
,

where

q̄ ≡ 2|G|

 max
i∈I,g∈G
ci∈Γ

{
∂ui(ci)

∂cig

} .

Now consider the correspondence

K ≡ (×i∈IEi)× (×ω∈ΩR
ω)× A

which maps (
(×ω∈Ω[0, rmax

ω ]Gω)× [0, |I|K]
)
× (Y ω)ω∈Ω × [0, q̄]G

to itself. It follows from Berge’s Theorem that the demand correspondence for each agent, the
production correspondence for each firm, and the correspondence induced by the problem of
the auctioneer are non-empty, compact-valued, and upper hemicontinuous; hence, K is non-
empty, compact-valued, and upper hemicontinuous. Moreover, each of these correspondences
is convex-valued, as each is defined by the maximization of a concave function. Therefore,
by Kakutani’s fixed point theorem, there must exist a fixed point of K, which we denote by
((c̃i)i∈I , (ỹ

ω)ω∈Ω, (q̃g)g∈G)
It is immediate that at ((c̃i)i∈I , (ỹ

ω)ω∈Ω, (q̃g)g∈G), each agent and firm is optimizing given
prices q̃. Moreover, the price q̃g of each good must be positive, as for each good there
is one agent whose utility in that good is strictly increasing (because of the monotonicity
assumption). Furthermore, q̃g 6= q̄ for all g ∈ G as otherwise some agent or firm is not
optimizing.4444 Hence, since ((c̃i)i∈I , (ỹ

ω)ω∈Ω, (q̃g)g∈G) is a fixed point, the fact that q̃g ∈ (0, q̄)
for all g ∈ G implies (from the auctioneer’s problem) that

∑
i∈I c

i−
(∑

i∈I e
i +
∑

ω∈Ω y
ω
)

= 0,
i.e., markets clear.

A competitive equilibrium of this economy induces a competitive equilibrium of the
original multilateral matching economy. We construct an arrangement [r̃; p̃] by, for each
ω ∈ Ω, letting

r̃ω = rmax
ω − c̃igiω

44Note that the price of every output must be no greater than

max
i∈I,g∈G
ci∈Γ

{
∂ui(ci)

∂cig

}
;

hence, the price of every input is bounded above by

|G|

 max
i∈I,g∈G
ci∈Γ

{
∂ui(ci)

∂cig

} < q̄.
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for some i ∈ a−(ω), and
p̃iω = q̃giω

for all i ∈ I. It is clear that r̃ ∈ Di(p̃) for each i ∈ I; hence, [r̃; p̃] is a competitive equilibrium.
The preceding discussion shows that in the presence of valuation monotonicity, our exis-

tence result can be re-derived through an appeal to general equilibrium. However, for multi-
lateral matching models in which valuation functions are not monotonic, it is not generally
possible to associate goods with ventures in a fashion which yields the utility monotonicity
assumptions that are standard in general equilibrium models. For instance, consider the
following non-monotonic valuation function:

vi(r) = rω −
1

2
(rω)2. (A.1)

If rω < 1, then i should be a “buyer” of an “output” associated with ω, but if rω > 1, then
i should be a “seller” of an “input” associated with ω. Thus, there is no natural general
equilibrium economy corresponding to a multilateral matching economy with vi as in (A.1A.1);
in such an economy, the good associated with the participation of i would change from being
an input to an output depending on the preferences of other agents in a(ω).

Appendix B. Proofs Omitted from the Main Text

Proof of Theorem 11

Consider any competitive equilibrium [r; p]. Theorem 77 shows that κ([r; p]) is strongly
group stable, hence by Theorem 66 it is in the core and efficient.

Proof of Theorem 22

We consider any efficient r̂. By definition, r̂ is a solution to the problem

arg max
0≤r≤rmax

{∑
i∈I

vi(r)

}
. (B.1)

For each agent i ∈ I, denote by ∂vi(r) the subgradient of vi at r. Since the vi are all
continuous, ∂vi(r) is nonempty for all r.

If pi ∈ ∂vi(r̂), then r̂ is a solution to

arg max
0≤r≤rmax

{vi(r)− pi · r},

as vi(r) is concave. Thus, to show the result it suffices to show that for each i ∈ I there
exists pi ∈ ∂vi(r̂) such that the matrix p is a valid price matrix (i.e., so that

∑
i∈I p

i
ω = 0 for
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all ω ∈ Ω). But this is immediate: Since r̂ maximizes (B.1B.1), we must have4545

0 ∈ ∂
∑
i∈I

vi(r̂) =
∑
i∈I

∂vi(r̂);

it follows that there exist pi ∈ ∂vi(r̂) such that
∑

i∈I p
i = 0.

Proof of Theorem 33

Let r̂ be a solution to (B.1B.1); such a solution is guaranteed to exist as the vi are all
continuous and the domain of the maximization problem (B.1B.1) is compact. The allocation r̂
is efficient and hence, by Theorem 22 (which makes use of our concavity assumption), there
exist prices p such that [r̂; p] is a competitive equilibrium.

The uniqueness of the competitive equilibrium in the case when the vi are strictly concave
and continuously differentiable is immediate: Strict concavity implies that there exists a
unique r̂ solving (B.1B.1). Furthermore, when the valuation functions vi are continuously
differentiable, the subgradients ∂vi are single-valued, and hence yield a unique price matrix
p in the proof of Theorem 22.

Proof of Theorem 44

We suppose that the function vi(r) is not concave at the point r̃ ∈ ×ω∈Ω[0, rmax
ω ].4646 For

each j 6= i, we set
vj(r) = −m‖rΩj − r̃Ωj‖,

where ‖ · ‖ is the Euclidean norm and m ∈ R≥0 is sufficiently large that r̃ is the unique
solution to the global maximization problem (B.1B.1).

By construction, r̃ is the only efficient allocation. However, there do not exist prices p
for which [r̃; p] is a competitive equilibrium. Indeed, for any choice of pi we have

r̃ 6∈ arg max
0≤r≤rmax

{vi(r)− pi · r},

as vi is not concave at r̃. Hence, r̃ 6∈ Di(p) ⊇ D(p) for any p. It then follows from Theorem 11
that no arrangement can be a competitive equilibrium.

Proof of Theorem 55

From Theorem 11, we know that

r̂(`) = arg max
0≤r≤rmax

{∑
i∈I

vi(r; `)

}
. (B.2)

45Here, for sets A ⊆ RΩ and B ⊆ RΩ, we denote by A+B the sumset

A+B = {a+ b : a ∈ A, b ∈ B}.

46Note that this implies that there is least one agent in addition to i who shares participation in some
venture in Ωi.
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Taking first-order conditions of the constrained maximization problem (B.2B.2) with respect to
rω for all ω ∈ Ω, we have ∑

i∈I

∂vi(r̂(`); `)

∂rω
+ λω − µω = 0

along with the constraint conditions

λω(0− rω) = 0,

µω(rω − rmax
ω ) = 0.

From the implicit function theorem, we have

∂r̂(`)

∂`
= −H−1 ∂

∂`



0
...
0∑

i∈I
∂vi(r̂(`);`)
∂rω1

...∑
i∈I

∂vi(r̂(`);`)
∂r
ω|Ω|−1∑

i∈I
∂vi(r̂(`);`)

∂rψ


,

where H is the bordered Hessian of our constrained maximization problem and we have
denoted Ω = {ω1, . . . , ω|Ω|−1, ψ}. Hence,

∂r̂(`)

∂`
= −H−1


0
...
0∑

i∈I
∂vi(r̂(`);`)

∂rψ


(

0 · · · 0 1
) ∂r̂(`)

∂`
= −

(
0 · · · 0 1

)
H−1


0
...
0∑

i∈I
∂vi(r̂(`);`)

∂rψ

 .

It follows immediately that
∂r̂ψ(`)

∂`
≥ 0, as H is negative semidefinite.

Proof of Theorem 77

Since [r; p] is a competitive equilibrium, we have that for all i ∈ I,

r ∈ Di(p) = arg max
0≤r≤rmax

(vi(r)− pi · r),

κ([r; p])i ∈ arg max
Z⊆Yi

(vi(Z)− pi · ρ(Z)),

κ([r; p])i ∈ Ci(κ([r; p])i),
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where Y ≡ {(ω, r̃ω, s̃ω) ∈ X : ω ∈ Ω, r̃ω ∈ [0, rmax
ω ], s̃ω = pω · r̃ω}. The last line follows as

κ([r; p]) ⊆ Y . Hence, κ([r; p]) is individually rational.
Now suppose that κ([r; p]) is not strongly unblocked, and let Z be a set such that for all

i ∈ a(Z) there exists a Y i ⊆ Z ∪ κ([r; p]) such that Zi ⊆ Y i and ui(Y i) > ui(κ([r; p])). For
each i ∈ a(Z), fix a Y i ∈ Ci(Z ∪ κ([r; p])) such that Zi ⊆ Y i. For all i ∈ a(Z), we have that

ui(Y i) > ui(κ([r; p]))

vi(ρ(Y i))− πi(Y i) · ρ(Y i) > vi(ρ(κ([r; p])))− πi(κ([r; p])) · ρ(κ([r; p])). (B.3)

Summing (B.3B.3) over agents i ∈ a(Z), we obtain∑
i∈a(Z)

(
vi(ρ(Y i))− πi(Y i) · ρ(Y i)

)
>
∑
i∈a(Z)

(
vi(ρ(κ([r; p])))− πi(κ([r; p])) · ρ(κ([r; p]))

)
,

∑
i∈a(Z)

(
vi(ρ(Y i))− pi · ρ(Y i)

)
>
∑
i∈a(Z)

(
vi(ρ(κ([r; p])))− pi · ρ(κ([r; p]))

)
, (B.4)

where the second inequality follows as

1. πi(κ([r; p])) · ρ(κ([r; p])) = pi · ρ(κ([r; p]));

2. if (ω, r̂ω, ŝω) ∈ Z, then a(ω) ⊆ a(Z), hence, as as (ω, r̂ω, ŝω) ∈ Y i for all i ∈ a(Z), we
have

∑
i∈a(Z) π

i
ω(Y i) = 0 =

∑
i∈a(Z) p

i
ω; and

3. if (ω, r̂ω, ŝω) ∈ Y i r Z for some i ∈ a(Z), then ŝω = piωrω.

But the inequality (B.4B.4) implies that for at least one j ∈ a(Z),

vj(ρ(Y j))− pj · ρ(Y j) > vj(ρ(κ([r; p])))− pj · ρ(κ([r; p])) = vj(r)− pj · r

so that r /∈ Dj(p) and, hence, [r; p] is not a competitive equilibrium.
Thus, κ([r; p]) is strongly unblocked and, hence, is strongly group stable. That κ([r; p])

is stable and in the core then follows from Theorem 66.

Proof of Theorem 88

Consider any stable outcome A. Let r = ρ(A) and p = π(A). Let siω = piωrω be the
transfer payment from agent i associated with the contract (ω, rω, sω) ∈ A. Suppose that r
is not efficient. Then as the vi are concave, we know that 0 /∈ ∂

∑
i∈I v

i(r). It follows that
there exists ψ ∈ Ω such that 0 6= r̆ψ for all r̆ ∈ ∂

∑
i∈I v

i(r). Choose some r̊ ∈ ∂
∑

i∈I v
i(r),

let

řω =

{
r̊ψ ω = ψ

0 otherwise,

and let r̃ ≡ r + εř, with ε 6= 0 chosen so that
∑

i∈I v
i(r̃) >

∑
i∈I v

i(r) and 0 ≤ r̃ ≤ rmax.4747

47Note that since 0 /∈ ∂
∑
i∈I v

i(r), r is not a global maximum, and in particular since 0 /∈ [∂
∑
i∈I v

i(r)]ψ,
there exists some ε such that

∑
i∈I v

i(r) <
∑
i∈I v

i(r̃); it is clear that r̃ψ ∈ [0, rmax
ψ ].
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Now consider the set {(ψ, r̃ψ, s̃ψ)} where

s̃jψ ≡

{
sjψ + (vj(r̃)− vj(r))−

∑
i∈a(ψ)[v

i(r̃)−vi(r)]
|a(ψ)| j ∈ a(ψ)

0 otherwise.

Each agent j ∈ a(ψ) strictly prefers {(ψ, r̃ψ, s̃ψ)}∪ (Ar {(ψ, rψ, sψ)}) to A.4848 It follows that
(ψ, r̃ψ, s̃ψ) ∈ Y for each Y ∈ Cj({(ψ, r̃ψ, s̃ψ)} ∪ A, and so {(ψ, r̃ψ, s̃ψ)} blocks A.

Proof of Corollary 22

Given Theorem 88, the result follows immediately from Theorem 22, as for any efficient
allocation r, we can find prices p such that [r; p] is a competitive equilibrium.

Proof of Lemma 11

We first show that each actor of type j ∈ J obtains an optimal bundle given t. Suppose
not; then there exists a bundle Ḡ such that wj

Ḡ
−
∑

g∈Ḡ tg > wj
G̃
−
∑

g∈G̃ tg for some bundle

G̃ such that Aj
G̃
> 0. But then rωj

G̃

> 0, and hence

r̃ω =


rωj

Ḡ
+ rωj

G̃

ω = ωj
Ḡ

0 ω = ωj
G̃

rω otherwise

provides a higher utility than r for agent j under prices p̄, contradicting the assumption
that [r; p̄] is a competitive equilibrium. Thus, we see that, under A, each actor obtains an
optimal bundle t.

Finally, we show that A is a feasible allocation. First, we note that since r ≥ 0, Aj
Ḡ
≥ 0

for all Ḡ 6= ∅ for each j ∈ J . Second, we observe that Aj∅ ≥ 0, as
∑

ω∈Ωj
rω ≤ mj follows

from (33).4949 Lastly, we conclude that, for each good g ∈ G,

∑
j∈J

mj

 ∑
{g}⊆Ḡ⊆G

Aj
Ḡ

 =
∑
j∈J

mj

 ∑
{g}⊆Ḡ⊆G

rωj
Ḡ

mj


=
∑
j∈J

∑
{g}⊆Ḡ⊆G

rωj
Ḡ

=
∑
ω∈Ωg

rω

= qg,

where the last equality follows from (22).

48It may be the case that there does note exist a contract (ψ, rψ, sψ) ∈ A; in that case, we have that
j ∈ a(ψ) strictly prefers {(ψ, r̃ψ, s̃ψ)} ∪A) to A.

49Note that this also implies that Aj
Ḡ
≤ 1 for all j ∈ J and Ḡ ⊆ G.
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Proof of Theorem 1010

We let

F (r̃) ≡ arg max
0≤r≤rmax

{∑
i∈I

vi(rΩi ; r̃Ω−Ωi)

}
.

Note that by the Theorem of the Maximum, F is non-empty, compact-valued, and upper
hemicontinuous. Moreover, each of these correspondences is convex-valued, as each is defined
by the maximization of a concave function. As ×ω∈Ω[0, rmax

ω ] is non-empty, compact, and
convex, Kakutani’s fixed point theorem implies that there exists an r̂ such that F (r̂) = r̂.

An argument exactly analogous to the proof of Theorem 22 then shows that there exists
a price matrix p such that

r̂ ∈ D̄i(p; r̂);

hence, [r̂; p] is a competitive equilibrium.

Appendix C. A Fixed-Point Approach to Theorem 33

In this appendix, we provide an alternative proof of our competitive equilibrium existence
result using a technique similar to that used in proving the existence of competitive equilibria
in general equilibrium theory. For simplicity, we assume in this section that, for each i ∈ I,
the valuation function vi is differentiable.

We let

p̄ ≡ 2 max

{∣∣∣∣∂vi(r)∂rω

∣∣∣∣ : i ∈ I, ω ∈ Ω, and 0 ≤ r ≤ rmax

}
,

be a price so high that no agent will demand any venture at that price. We now introduce
an “auctioneer” who maximizes the cost of under-demanded and over-demanded venture
participation. First, we define the price space as

∆ ≡

p ∈ [−p̄, p̄]I×Ω : For all ω ∈ Ω,
∑
j∈a(ω)

pjω = 0 and piω = 0 for all i ∈ I r a(ω)

 .

The optimization problem A of the auctioneer is

Aiω({rk}k∈I) ≡ arg max
p∈∆

piω
riω − 1

|I|
∑
j∈a(ω)

rjω

 .

It follows from Berge’s Theorem that A is a non-empty, compact-valued, and upper hemi-
continuous correspondence. Furthermore, it also follows from Berge’s Theorem that the
demand correspondence for each agent is non-empty, compact-valued, and upper hemicon-
tinuous. Moreover, each of these correspondences is convex-valued, as each is defined by the
maximization of a concave function. Hence, the correspondence

(×i∈IDi)× A : (×ω∈Ω[0, rmax
ω ])I × [−p̄, p̄]I×Ω ⇒ (×ω∈Ω[0, rmax

ω ])I × [−p̄, p̄]I×Ω (C.1)
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has a fixed point ({ri}i∈I , p) by Kakutani’s fixed point theorem. Furthermore, since (Dk(p))ω =
[0, rmax

ω ] for all k ∈ I r a(ω), the point ({r̃i}i∈I , p) where r̃jω = rjω for all j ∈ a(ω) and
r̃jω = 1

|I|
∑

i∈a(ω) r
i
ω for all j ∈ I r a(ω) is also a fixed point of (C.1C.1).

It follows from the definition of A that riω = rjω for all i, j ∈ a(ω), since |piω| < p̄ for all
i ∈ I and ω ∈ Ω.5050 Hence r̃iω = r̃jω ≡ r̃ω for all i, j ∈ I and ω ∈ Ω. Hence, the arrangement
[r̃; p] is a competitive equilibrium, as each agent is demanding an optimal participation vector
given prices and each agent demands the same level of participation for each venture.

Appendix D. Example of a Core and Stable Outcome That Is Not Strongly
Group Stable

We present an example of an outcome that is in the core and stable, but is not strongly
group stable. Let I = {i, j}, Ω = {χ, ψ, ω}, a(χ) = a(ψ) = a(ω) = I, rmax

χ = rmax
ψ = rmax

ω =
1, and

vi(r) = −2rψ − 2rω − 5 min{rψ, rω} − 11 min{rχ, rψ, rω},
vj(r) = 2rχ + rψ + rω + 11 min{rχ, rψ, rω}.

Any outcome of the form A = {(χ, 1, (−q, q))} such that 0 ≤ q ≤ 2 is both stable and in the
core. However, no such A is strongly group stable, as no such A is strongly unblocked—to
see this, take Z = {(ψ, 1, (−6, 6)), (ω, 1, (−6, 6))}.

Appendix E. The Illustrative Example Revisited

In this appendix, we provide the underlying production economy for the example of Sec-
tion 22, under the additional assumption that (rmax

ω , rmax
ψ ) = (400, 210). Let I = {c, s, g, k, b},

G = {c, g, s, k}, and Ω = {ω, ψ} where the production processes are defined by

ωih =



−1
5

i = c and h = c

−2
5

i = g and h = g

−2
5

i = s and h = s

1 i = k and h = k

0 otherwise,

ψih =


−1 i = g and h = g

1 i = b and h = g

0 otherwise,

50If for some i ∈ I and ω ∈ Ω, piω = p̄, then, by assumption on the size of p̄, the demand of i for venture
ω by i must be 0. But then p must not be an optimal solution to the problem of the auctioneer, implying
that ({riω}i∈I , p) is not a fixed point. Analogous reasoning holds if piω = −p̄.
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consumption valuations are given by

v̇c(cc) = 80ccc ,
v̇g(cg) = 25cgg ,

v̇s(cs) = 25css −
1

16
(css )2,

v̇k(ck) = 60ckk −
7

100
(ckk )2,

v̇b(cb) = 32 max{cbg, 50},

and initial endowments are

ec = (80, 0, 0, 0),

eg = (0, 210, 0, 0),

es = (0, 0, 160, 0),

ek = (0, 0, 0, 0),

eb = (0, 0, 0, 0).

(We use the convention that the elements of vector ei = (eic, eig, eis, eik) are given in the order
cement, gravel, sand, concrete.) It is clear that the production economy thus illustrated
yields the multilateral matching economy presented in Section 22.

Appendix F. Example of an Inefficient Competitive Equilibrium in the Presence
of Externalities

We present an example of an inefficient competitive equilibrium in the presence of ex-
ternalities. Let I = {i, j, k}, Ω = {ψ, ω}, a(ψ) = {i, j}, a(ω) = {i, k}, rmax

ψ = rmax
ω = 1,

and

vi(r) = −r2
ψ − r2

ω,

vj(r) = (1− rψ − rω)rψ,

vk(r) = (1− rψ − rω)rω.

The unique efficient allocation is (1
6
, 1

6
), with total surplus 1

6
. However, the unique competi-

tive equilibrium is [(
1

5
,
1

5

)
;

(
−2

5
2
5

0
−2

5
0 2

5

)]
,

with total surplus 4
25
< 1

6
.
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