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Abstract

We develop a model of many-to-many matching with contracts that subsumes as special cases many-to-
many matching markets and buyer–seller markets with heterogeneous and indivisible goods. In our setting,
substitutable preferences are sufficient to guarantee the existence of stable outcomes; moreover, in contrast to
results for the setting of many-to-one matching with contracts, if any agent’s preferences are not substitutable,
then the existence of a stable outcome cannot be guaranteed.

In many-to-many matching with contracts, a new market design issue arises: The design of the contract
language can impact the set of stable outcomes. Bundling contractual primitives encourages substitutability
of agents’ preferences over contracts and makes stable outcomes more likely to exist; however, bundling
also makes the contractual language less expressive. Consequently, in choosing contract language, market
designers face a tradeoff between expressiveness and stability.
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1. Introduction

We develop a model of many-to-many matching in which agents on two opposing sides of a market
negotiate over contractual relationships, possibly signing multiple contracts. This setting models several
real-world matching markets, such as the United Kingdom Medical Intern match (see Roth and SotomayorRoth and Sotomayor
(19901990)), the market used to allocate blood from blood banks to hospitals (see Jaume et al.Jaume et al. (20122012)), and the
market for advertising within mobile applications (see Lee et al.Lee et al. (20142014)). One important special case of
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our model is matching with couples, in which pairs of individuals may choose to act as a single agent that
receives (at most) two assignments (see Klaus and KlijnKlaus and Klijn (20052005) and Klaus et al.Klaus et al. (20072007)).11 Our model includes
as special cases many-to-one matching with contracts (Kelso and CrawfordKelso and Crawford (19821982); Hatfield and MilgromHatfield and Milgrom
(20052005)), many-to-many matching (SotomayorSotomayor (19991999, 20042004); Echenique and OviedoEchenique and Oviedo (20062006); Konishi and ÜnverKonishi and Ünver
(20062006)), many-to-many matching with wages (RothRoth (19851985); BlairBlair (19881988)), and buyer–seller markets with
heterogeneous and indivisible goods.22

We show that stable outcomes are guaranteed to exist in the setting of many-to-many matching with
contracts when preferences are substitutable in the sense that no contract becomes desirable when some other
contract becomes available.33 Moreover, substitutability is necessary for the existence of stable outcomes
in the maximal domain sense: if any one agent has preferences that are not substitutable, then there exist
substitutable preferences for the other agents such that no stable outcome exists. Our maximal domain result
is particularly surprising because no analogous result holds in the Hatfield and MilgromHatfield and Milgrom (20052005) model of
many-to-one matching with contracts (see Hatfield and KojimaHatfield and Kojima (20082008, 20102010), Hatfield and KominersHatfield and Kominers (20162016),
and Hatfield et al.Hatfield et al. (20152015)).

We discuss the structure of the set of stable outcomes, noting extensions of standard lattice structure
and rural hospitals results. We then show that when hospital preferences satisfy a more stringent condition
than substitutability (so-called strong substitutability) and doctor preferences are substitutable, stability is
equivalent to a more stringent solution concept: strong stability.44

Modeling many-to-many matching with contracts raises a subtle conceptual issue: Whereas in many-to-one
matching with contracts the entire relationship between two agents must be specified by a single contract,
this requirement—which KominersKominers (20122012) calls unitarity—is not necessary in many-to-many matching with
contracts. Non-unitarity is present in many important applications. For instance, in the United Kingdom
Medical Intern match, a student must find both a surgical and a medical position, and hospitals typically hire
multiple students. In that context, students are assigned two separate contracts by the match, even if they
end up at the same hospital; that is, the United Kingdom Medical Intern match as practiced is non-unitary.
In principle, however, one could bundle contractual terms for any application to impose unitarity—i.e., to
represent every possible relationship between a doctor–hospital pair as a single contractual relationship—from
the designer’s perspective. One key contribution of our work is to show that such bundling may not be
optimal: for some applications, including the United Kingdom Medical Intern match, market designers may
not want to require unitarity and would prefer to leave contracts unbundled.55

Allowing multiple contracts between a doctor–hospital pair highlights the importance of contract language
design, where by contract language we mean the set of possible relationships between a doctor and a hospital
that can be expressed as part of a contractual outcome. More generally, however, the choice of a particular
contract language is crucial in determining the set of stable outcomes. For example, consider a setting with
a doctor d and a hospital h. Contracts can specify one or two of the following terms: the doctor works in

1In the United States National Resident Matching Program (NRMP), doctors may apply to as a couple, submitting a
preference list over pairs of job assignments, and potentially being assigned to two jobs (see Roth and PeransonRoth and Peranson (19991999)).

2Our model is substantively different from the only previous model of many-to-many matching with contracts—that of
Klaus and WalzlKlaus and Walzl (20092009)—as we allow a given doctor and hospital to sign multiple contracts with each other. This distinction is
material to our results, as we discuss in Section 3.43.4.

3We show that this substitutability concept has a natural interpretation in terms of utility theory: preferences over contracts
are substitutable if and only if they can be represented by a submodular indirect utility function over sets of offered contracts
(see Section 2.12.1).

4Unlike in many-to-one matching, the set of core many-to-many matchings does not generally correspond to the set of stable
many-to-many matchings (BlairBlair (19881988); see also Echenique and OviedoEchenique and Oviedo (20062006) and Konishi and ÜnverKonishi and Ünver (20062006)). This problem is
still extant in the more general setting of many-to-many matching with contracts; hence, we follow Echenique and OviedoEchenique and Oviedo (20062006)
and Klaus and WalzlKlaus and Walzl (20092009) in studying a solution concept alternative to and stronger than stability. Our strengthened stability
concept, strong stability, is stronger than the similar concept of setwise stability studied by Echenique and OviedoEchenique and Oviedo (20062006) and
Klaus and WalzlKlaus and Walzl (20092009).

5Unitarity is sometimes problematic for technical reasons, as well (see Section 3.43.4). Nevertheless, imposing unitarity can
sometimes be beneficial because of the additional structure it adds: As EcheniqueEchenique (20122012) showed, the many-to-one matching with
contracts model with substitutable preferences embeds into the seemingly simpler matching with salaries (and gross substitutes)
framework of Kelso and CrawfordKelso and Crawford (19821982); this allows efficient proofs of the main existence and lattice results for matching
with contracts, by appeal to the analogous results for the Kelso and CrawfordKelso and Crawford (19821982) framework. The EcheniqueEchenique (20122012) result
carries over to many-to-one matching with contracts settings with unilaterally substitutable preferences (although via a different
embedding; see SchlegelSchlegel (20152015)) and to unitary many-to-many matching with contracts models (KominersKominers (20122012)).
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the morning (m); the doctor works in the afternoon (a). The doctor would most prefer to work in both the
morning and the afternoon, but would be willing to work just the afternoon shift; he is unwilling to work only
the morning shift. The hospital would hire the doctor for any shift—and for both shifts—but would most
prefer that the doctor work only in the morning, and would rather hire the doctor full-time than for just the
afternoon. We denote by xΓ the contract with terms Γ ⊆ {m, a}. When morning and afternoon shifts are
contracted separately, the doctor’s preferences over contracts are given by

Pd :
{
x{m}, x{a}

}
�
{
x{a}

}
� ∅ �

{
x{m}

}
,

while the hospital’s preferences are given by

Ph :
{
x{m}

}
�
{
x{m}, x{a}

}
�
{
x{a}

}
� ∅.

There is no stable contracting outcome: for the set
{
x{m}, x{a}

}
, the hospital will not be willing to sign x{a};

for the set
{
x{a}

}
, both parties prefer that the doctor work full time; the set

{
x{m}

}
is not individually

rational for the doctor; and finally both parties agree that
{
x{a}

}
is better than no relationship at all. This

lack of agreement derives from the fact that the preferences of doctor d are not substitutable—there are two
contracts (x{m} and x{a}) that exhibit “complementarity” for d, in the sense that d wants one (x{m}) only if
he has the other (x{a}).

By contrast, if the parties are to negotiate over a single contract x{m,a} that encodes both the morning
and afternoon shifts, the agents’ preferences become

Pd :
{
x{m,a}

}
∼
{
x{m}, x{a}

}
�
{
x{a}

}
� ∅ �

{
x{m}

}
,

Ph :
{
x{m}

}
�
{
x{m,a}

}
∼
{
x{m}, x{a}

}
�
{
x{a}

}
� ∅.

There now exists a unique stable outcome,
{
x{m,a}

}
.

In Section 33, we introduce a theory of contract language and consider how the choice of language affects
the substitutability of preferences over contracts and the stability of contract outcomes. Our theory of
contract language accommodates not only the setting described above, but also other natural examples
such as settings with fixed costs of production (e.g., manufacturing and electricity markets). We show that
market designers, when constructing the contract language for a matching market, face a trade-off between
expressiveness (i.e., the number of different contractual relationships the language can describe) and stability:
the more expressive the language, the less likely it is that preferences are substitutable, and the less likely it
is that a stable outcome exists.

The remainder of this paper is organized as follows. In Section 22, we present our basic model and review
the standard terminology and solution concepts of matching with contracts. We present our approach to
contract language in Section 33, where we also discuss the relationship between language, stability, and
substitutability. In Section 44, we study many-to-many matching with contracts, proving the sufficiency and
necessity of substitutable preferences for the existence of stable contract outcomes. We conclude in Section 55.

Our discussion of many-to-many matching in Section 44 is essentially self-contained, so that a reader only
interested in the discussion of many-to-many matching with contracts may choose to skip Section 33.

2. Model

There are finite sets D and H of doctors and hospitals; we denote the set of all agents by F ≡ D ∪H.
There is a set X of contracts specifying relationships between doctor–hospital pairs. We elaborate upon the
structure of the contract set X in Section 33, but for concreteness one may think of the special case in which X
takes the form X = D×H × T , for some finite set T of contractual terms. Each contract x ∈ X is associated
with a doctor xD ∈ D and a hospital xH ∈ H. For a set of contracts Y ⊆ X, we let YD ≡

⋃
y∈Y {yD} and

YH ≡
⋃
y∈Y {yH}. We let xF ≡ {xD, xH} be the set of agents associated with contract x, and let

Yf ≡ {y ∈ Y : f ∈ yF }
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be the set of contracts in Y associated with agent f ∈ F .
Each f ∈ F has a strict preference relation PXf over subsets of Xf . For now, we take the preferences

PXf of the agent f as given, and, when the contract language X is clear from context, we abuse notation by
suppressing the superscript and writing Pf for the preference relation of f over sets of contracts in Xf . In
Section 33, we elaborate upon the preference relation structure, deriving PXf from a preference relation over
contractual primitives. We often write Y �f Z to indicate that f prefers Y to Z under Pf .

For any f ∈ F and offer set Y ⊆ X, we let

Cf (Y ) ≡ maxPf
{Z ⊆ X : Z ⊆ Yf}

be the set of contracts f chooses from Y .66,77,88 We let

Rf (Y ) ≡ Y r Cf (Y )

denote the set of contracts f rejects from Y .
Let CD(Y ) ≡

⋃
d∈D Cd(Y ) be the set of contracts chosen from Y by doctors. The remaining contracts,

rejected by all the doctors, comprise the rejected set RD(Y ) ≡ Y rCD(Y ). Similarly, let CH(Y ) ≡
⋃
h∈H Ch(Y )

be the set of contracts chosen from Y by hospitals, and let RH(Y ) ≡ Y r CH(Y ).99
An outcome is a set of contracts Y ⊆ X. Preference relations are naturally extended to outcomes: for two

outcomes Y,Z ⊆ X, we say that Y �f Z when Yf �f Zf .

2.1. Substitutability
In matching theory, the key restriction on agents’ preferences is substitutability, defined directly from the

choice function. Intuitively, contracts x and z are substitutes for f ∈ F if they are not complements; that is,
there are no two contracts x, z ∈ Xf such that being offered x makes z more desirable for f .

Definition 1. The preferences of f ∈ F are substitutable if, for all x, z ∈ X and Y ⊆ X, if z /∈ Cf (Y ∪ {z}),
then z /∈ Cf ({x} ∪ Y ∪ {z}).

Substitutability can be rephrased in terms of the rejection function: The preferences of f are substitutable
if and only if the rejection function Rf is isotone, i.e., if for any Y ′ ⊆ Y ⊆ X, we have Rf (Y ′) ⊆ Rf (Y ).

An alternative characterization of substitutability can be obtained in terms of submodularity of the
indirect utility function. We say that an indirect utility function V over offer sets represents preference
relation Pf if

V (Y ) > V (Z)⇔ Cf (Y ) �f Cf (Z) for all Y, Z ⊆ X.

That is, under V , an offer set Y provides more utility to f than another offer set Z if f prefers his choice
from Y to his choice from Z. In this context, an agent’s preferences over contracts are substitutable if an
additional offer is more valuable when the agent’s original offer set is small.

Proposition 1. The preferences of f ∈ F are substitutable if and only if they can be represented by a
submodular indirect utility function over offer sets.

2.2. Stability
Definition 2. An outcome A ⊆ X is stable (with respect to X) if it is

6Here, agents may choose any subset of the set of contracts offered. We use the term “offer set” instead of “budget set” or “set
of alternatives,” as agents may choose multiple contracts from an offer set, whereas agents are typically allowed to choose only
one option from a budget set. (See the defintion given on the first page of Chapter 1 of Mas-Colell et al.Mas-Colell et al. (19951995), for instance.)

7We use the notation maxPf
to indicate that the maximization is taken with respect to the preferences of agent f .

8We have assumed that the choice function is induced by an underlying preference relation in order to facilitate the analysis
of contract language. An alternative approach treats the choice functions as primitives; under this convention, an additional
irrelevance of rejected contracts assumption is required for key results such as those in Section 44 (see Aygün and SönmezAygün and Sönmez (20132013,
20142014)). In either case, the assumed structure on preferences implies a revealed preference property that is needed for the analysis
(see the presentation by Aygün and SönmezAygün and Sönmez (20122012)).

9Note that RD(Y ) =
⋃
d∈D Rd(Yd) 6=

⋃
d∈D Rd(Y ) and similarly RH(Y ) =

⋃
h∈H Rh(Yh) 6=

⋃
h∈H Rh(Y ).
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1. Individually rational: for all f ∈ F , Cf (A) = Af .
2. Unblocked: There does not exist a nonempty blocking set Z ⊆ X such that Z ∩ A = ∅ and, for all
f ∈ ZF , Zf ⊆ Cf (A ∪ Z).

This concept generalizes the stability concepts of the one-to-one and many-to-one matching literatures.1010,1111

In the one-to-one matching literature, the standard definition of a stable outcome A requires that A be
individually rational and that there be no blocking set Z such that |Z| = 1; we call this pairwise stability.
Similarly, in the many-to-one matching literature, where only hospitals are allowed to sign multiple contracts,
the standard definition of a stable outcome A requires that A be individually rational and that there be no
blocking set Z such that |ZH | = 1. If A is individually rational and there is no blocking set Z such that
|ZH | = 1 or |ZD| = 1, we say that A is many-to-one stable. It is immediate that any stable outcome is
many-to-one stable and that any many-to-one stable outcome is pairwise stable. Our next result shows a
partial converse: all three stability concepts are equivalent in the presence of substitutable preferences.

Proposition 2. If all agents’ preferences are substitutable, then stability, many-to-one stability, and pairwise
stability are equivalent.

To show Proposition 22 we show that if A is blocked by Z, then for any z ∈ Z, the set {z} blocks A on its
own. This fact, in turn, follows from the fact that if z ∈ Cf (A ∪ Z) for each f ∈ zF , and if the preferences of
each f ∈ zF are substitutable, then z ∈ Cf (A ∪ {z}) for each f ∈ zF .1212

3. Contract Language

We now develop a theory of the contract set X as a language for expressing sets of underlying primitive
contract terms. Throughout this section, we allow the contract set to vary, and discuss the effects of varying
contract language on stability and the substitutability of preferences.

3.1. Basic Theory of Language
For each doctor–hospital pair (d, h) ∈ D ×H, there is a set of contractual primitives π(d, h) that defines

the set of possible contractual relationships between d and h. We write

Πd ≡
⋃
h∈H

π(d, h)

for the set of primitives associated to doctor d ∈ D and

Πh ≡
⋃
d∈D

π(d, h)

for the set of primitives associated to hospital h ∈ H. We require that π(d, h) ∩ π(d′, h′) = ∅ for all
(d, h) 6= (d′, h′) so that each primitive uniquely identifies a doctor and hospital. A primitive outcome is a
collection of primitives

Λ ⊆
⋃

(d,h)∈D×H

π(d, h).

10In particular, this definition is equivalent to that of Hatfield and MilgromHatfield and Milgrom (20052005) in the context of many-to-one matching
with contracts.

11Our stability concept allows agents associated with a blocking set to disagree as to whether a contract in the original outcome
is maintained while deviating, but requires deviating agents to agree on the set of new contracts established in the deviation.
Thus, our stability concept is slightly stronger than the weak setwise stability concept of Echenique and OviedoEchenique and Oviedo (20062006) and
Klaus and WalzlKlaus and Walzl (20092009), which is nearly the same as our stability concept but requires that agents within the blocking coalition
agree as to which contracts are maintained from the pre-deviation outcome. Meanwhile, our stability concept is not directly
comparable to the setwise stability concept of SotomayorSotomayor (19991999), Echenique and OviedoEchenique and Oviedo (20062006), and Klaus and WalzlKlaus and Walzl (20092009)
or the group stability concept of Konishi and ÜnverKonishi and Ünver (20062006) (which Klaus and WalzlKlaus and Walzl (20092009) call strong setwise stability). The
strong stability concept we examine in Section 4.34.3 is stronger than setwise stability and weaker than group stability.

12Hatfield et al.Hatfield et al. (20162016) provide a generalization of this result to arbitary trading networks.
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A contract between d and h is a collection of primitives in π(d, h). Denoting the power set of π(d, h) by
P(π(d, h)), a contract between d and h is just a nonempty element of P(π(d, h)). For example, π(d, h) might
consist of all the distinct work hours available at hospital h in a given week; a contract between h and d is a
subset of π(d, h) corresponding to the work hours assigned to d by h.

A contract language X(d,h) for (d, h) ∈ D × H is a set of contracts between d and h, i.e., a subset of
P(π(d, h)) r {∅}. More generally, a contract language X is a union of contract languages for each agent pair:
X =

⋃
(d,h)∈D×H X(d,h) with X(d,h) ⊆ P(π(d, h)) r {∅} for each (d, h) ∈ D ×H.1313 We say that a primitive

outcome Λ is expressible in the contract language X if there exists some Y ⊆ X such that Λ =
⋃
y∈Y y. In

this case we say that Y expresses Λ.
Each f ∈ F has a strict preference relation Pf over the set P(Πf ) of sets of primitives involving f . For

any contract language X, this preference relation over primitives induces a preference relation, denoted PXf ,
over sets of contracts in Xf (i.e., subsets of P(X)); that is, Y ⊆ Xf is preferred to Z ⊆ Xf under PXf
if and only if ∪y∈Y y is preferred to ∪z∈Zz under Pf .1414 This induced preference relation is not strict, but
its only indifferences arise on sets of contracts Y, Y ′ ⊆ X that correspond to the same primitive outcome
(∪y∈Y y = ∪y′∈Y ′y′). When describing preferences in the sequel, despite indifference between these primitive-
equivalent sets of contracts, we typically assume that the preference relation PXf is strict, arbitrarily breaking
ties among primitive-equivalent contract sets.1515,1616 The choice function associated to PXf is denoted by CXf .
We say that Y is stable with respect to the contract language X if there is some tie-breaking rule for which Y is
stable under the induced choice functions. As before, when the contract language X is clear from context, we
abuse notation by suppressing the superscript and writing Pf for the preference relation of f over contracts
in X, and Cf for the associated choice function.

When π(d, h) is a singleton for each doctor–hospital pair (d, h) ∈ D ×H, and X ∼=
⋃
f∈F Πf , we recover

the many-to-many matching model considered by SotomayorSotomayor (19991999), Echenique and OviedoEchenique and Oviedo (20062006), and
Konishi and ÜnverKonishi and Ünver (20062006). In this case, each primitive outcome is exactly a (many-to-many) matching
between doctors and hospitals.

Although our model can recapture the familiar structure of many-to-many matching, its more general
structure exhibits a key distinction from classical matching models: depending upon the structure of the
contract language X, some primitive outcomes are not expressible at all, and others may only be expressible
if doctors d ∈ D and hospitals h ∈ H are allowed to sign multiple contracts with each other to describe their
mutual obligations. This latter feature stands in sharp contrast to the restriction adopted by Klaus and WalzlKlaus and Walzl
(20092009) that each doctor–hospital pair sign at most a single contract. As we illustrate in Section 3.43.4, the
ability of doctors to sign multiple contracts with the same hospital has subtle implications for the definition
of substitutability.

13Here, a contract language specifies the set of contracts allowed by the centralized clearinghouse. There is scope for one
further layer between the set of primitives and the contract language: the set of primitives that are legally contractible, i.e., the
set of primitives that agents can contract on both inside and outside the mechanism. In our work, we assume that agents can
only deviate to contracts within the contract language; this simplification is certainly not without loss. It would be interesting to
understand how the analysis changes if deviations within the full legally contractible set are allowed; at minimum, understanding
the structure of agents’ preferences over the legally contractible set seems essential for contract language choice (see further
discussion in Section 55 as well as Roth and ShorrerRoth and Shorrer (20152015)).

14Note that here we are explicitly assuming non-unitarity, in the sense that we allow for the possibility that an agent may desire
to hold multiple contracts with a single match partner simultaneously. This is in contrast to previous work (e.g., Klaus and WalzlKlaus and Walzl
(20092009)) where the complete relationship between a doctor–hospital pair for a given outcome was required to be codified in a
single contract. Indeed, under unitarity, preferences must be constructed differently, since each agent must deem unacceptable
any set of contracts that contains multiple contracts with any other individual agent.

15This choice is not entirely without loss of generality—it affects the set of stable outcomes. However, arbitrary tie-breaking is
not problematic, as if for a given tie-breaking of indifferences over primitive-equivalent expressions of a primitive outcome Λ, the
outcome Y ⊆ X expresses Λ and is stable with respect to X, then for any tie-breaking there is a (possibly distinct) outcome
Y ′ ⊆ X which expresses Λ and is stable with respect to X. For simplicity, when stating induced preferences over contracts, if
there are multiple contractual sets that are primitive-equivalent, we only list those contractual sets relevant for the exposition.

16On page 77, we discuss an example with two primitive-equivalent sets of contracts—{x{w,$}} and {x{w}, x{$}}, which both
correspond to the set of primitives {w, $}.
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3.2. Language and Stability
If a primitive outcome Λ is expressible in the contract language X by an outcome Y that is stable with

respect to X, then we say that Λ is stable with respect to the contract language X.1717

It is clear that primitive outcomes may be stable with respect to some contract languages and unstable
with respect to others. For example, the empty outcome is stable with respect to an empty contract language,
but is generally unstable once contracts with content are allowed. We now formalize and extend the structure
behind this observation.

To facilitate comparisons between languages, we introduce a partial order on contract languages.

Definition 3. A contract language X is finer than (or refines) another contract language X ′ if X ) X ′. In
this case, we also say that X ′ is coarser than (or coarsens) X and write X BX ′.1818

Refinement of a language X ′ corresponds to an increase in expressiveness: if X BX ′, then each agent
may express a richer preference relation over contracts in X than she can over contracts in X ′.1919 With the
ordering B, the set of contract languages forms a lattice, with least upper bound and greatest lower bound
operators respectively given by the (setwise) union and intersection operations.

We quickly observe a tradeoff between the expressiveness of a language and the stability of underlying
outcomes: finer languages allow more complex preference specification, which leads to (weakly) reduced
stability.

Proposition 3. Suppose that X BX ′ and that an outcome Y ⊆ X ′ is stable with respect to X. Then, Y is
stable with respect to X ′.

Proposition 33 shows the natural result that coarsening a contract language X preserves the stability of an
outcome Y , so long as Y is not eliminated from the language. However, this result applies only to outcomes,
not to primitive outcomes. To see this, consider a setting with a single doctor, a single hospital, and two
contractual primitives: the doctor working (w) and being compensated ($). Formally, we write D = {d},
H = {h}, and π(d, h) = {w, $}. We suppose that agents’ underlying preferences take the natural form

Pd : {$} � {w, $} � ∅, Ph : {w} � {w, $} � ∅.

Both agents want to contract, but the doctor would most prefer to be paid for nothing, and the hospital
would most prefer that the doctor work for free. As before, we denote xΠ ≡ Π for a set of primitives Π.
When all contracts are possible—X = {x{w}, x{$}, x{w,$}}—preferences over contracts are

PXd : {x{$}} � {x{w,$}} ∼ {x{w}, x{$}} � ∅,

PXh : {x{w}} � {x{w,$}} ∼ {x{w}, x{$}} � ∅,

and the unique stable outcome is {x{w,$}} (regardless of the tie-breaking rule used for indifferences in agents’
preferences (see Footnote 1515)). If we coarsen X to X ′ = {∅, x{w}, x{$}} by removing the contract x{w,$},
agents’ preferences reduce to

PX
′

d : {x{$}} � {x{w}, x{$}} � ∅,

PX
′

h : {x{w}} � {x{w}, x{$}} � ∅,

under which only ∅ is stable.2020 Thus, we see that the stability of the primitive outcome {w, $} is not
preserved under the coarsening of X to X ′.

17Unfortunately, although agents are indifferent over contract sets which express the same primitive outcomes, not all
expressions of a primitive outcome Λ that is stable with respect to X need be stable.

18Of course, any (strict) subset of a contract language X coarsens X. Although we could simply denote the refinement relation
by the (strict) setwise inclusion relation ), we use the distinguished notation B to help clarify when we are actively comparing
two contract languages.

19We need not have PXf 6= PX
′

f for all f ∈ F , since X might only differ from X′ by the addition of contracts disjoint from Πf .
20Note that ∅ is not blocked by {x{w}, x{$}}, as CX′

d ({x{w}, x{$}}) = {x{$}} 6= {x{w}, x{$}}.
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Figure 1: Diagram of contracts under language X.
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Figure 2: Diagram of contracts under language X̂.

A natural assumption when multiple contracts are allowed between a doctor and hospital is that if a
doctor chooses to abrogate one of his contracts with a particular hospital, then he must abrogate all contracts
with that hospital.2121 Hence, a natural question is whether a primitive outcome Λ stably expressed by Y with
respect to a contract language X must also be stable when we consider the language X ′ that codifies, for
each doctor-hospital pair, the entire relationship described by Λ into a single contract; that is, must Λ be
stable with respect to a new contract language

X ′ ≡ (X r Y ) ∪

w ∈ ⋃
(d,h)∈D×H

{∪z∈Y ∩Xd∩Xh
z} : w 6= ∅

?

Unfortunately, this is not the case, as the following example demonstrates.
Suppose that D = {d, d′} and H = {h, h′}, and let the set of contracts be given by X = {y, z, y′, z′, ŷ, ẑ},

with the associations of doctors and hospitals to contracts as pictured in Figure 11.2222

Suppose that the (substitutable) preferences of the agents are given by:

PXh : {y, ẑ} � {ŷ, ẑ} � {y, z} � {ŷ, z} � {ẑ} � {y} � {ŷ} � {z} � ∅,
PXh′ : {y′, z′} � {y′} � {z′} � ∅,
PXd : {y, z} � {y} � {z} � ∅,
PXd′ : {ŷ, z′} � {ŷ, ẑ} � {y′, z′} � {y′, ẑ} � {ŷ} � {z′} � {ẑ} � {y′} � ∅.

In this case, the only stable outcome is Y = {y, z, y′, z′}. However, if we consider the contractual language X ′
obtained by binding together y and z, and y′ and z′—that is, replacing y and z with the contract x = y ∪ z
and replacing y′ and z′ with the contract x′ = y′ ∪ z′, thus resulting in the language X ′ = {x, x′, ŷ, ẑ}—as

21Note that this transformation does not correspond to imposing unitarity. Indeed, imposing unitarity can not be implemented
by simply changing the contractual language as unitarity requires not just that there be a single contract that represents the
relationship between a doctor–hospital pair, but also that the hospital finds any set with two contracts with the same doctor
unacceptable (even if each individual contract, as well as the contract combining the primitives from those two contracts, are
acceptable).

22For expositional convenience, we present this example in terms of contracts, without explicitly stating the underlying
primitives. Nevertheless, it is clear how primitives and preferences over primitives could be chosen so as generate the preferences
in the example.
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shown in Figure 22, the preferences of the agents now take the form

P X̂h : {ŷ, ẑ} � {x} � {ẑ} � {ŷ} � ∅,

P X̂h′ : {x′} � ∅,

P X̂d : {x} � ∅,

P X̂d′ : {ŷ, ẑ} � {x′} � {ŷ} � {ẑ} � ∅.

For the contract language, X ′, the set {x, x′} (which is primitive-equivalent to Y ) is not stable, as
Z = {ŷ, ẑ} constitutes a blocking set.2323 For the language X, the set Y = {y, z, y′, z′} is stable since any
block requires agents to choose all of the blocking contracts, and h will never choose ŷ when y is available.
However, once y and z are encapsulated into one contract x, hospital h will drop x in order to obtain both ŷ
and ẑ. Similarly, d′ will never choose ẑ when z′ is available, but once y′ and z′ are encapsulated into one
contract x′, the doctor d′ will drop x′ in order to obtain both ŷ and ẑ.

3.3. Language and Substitutability
Substitutability is a stringent condition, in practice, and certainly need not be true of agents’ underlying

preferences over primitives. Nevertheless, clever contract language design can lead to substitutable preferences.
For example, consider a setting with a single doctor, a single hospital, and two contractual primitives:

working the morning shift (m) and working the afternoon shift (a). Formally, we write D = {d}, H = {h},
and π(d, h) = {m, a}. Suppose that the agents’ underlying preferences over primitives are

Pd : {m, a} � ∅, Ph : {m, a} � ∅.

Both agents want to contract over a full-time job, and neither will contract over a part-time position. If m
and a are split into separate “part-time job” contracts x{m} and x{a}, then the agents’ preferences are not
substitutable—x{m} and x{a} are complements in this language. This is true even if a single “full-time job”
contract x{m,a} is available in addition to the part-time contracts. By contrast, if only the full-time contract
x{m,a} is available, agents’ preferences are substitutably expressed as

P
{x{m,a}}
d : {x{m,a}} � ∅, P

{x{m,a}}
h : {x{m,a}} � ∅.

Every contract language X has a coarsening X ′ over which preferences are substitutable. Our next
result shows that once such a coarsening X ′ is found, any further coarsening of X ′ will induce substitutable
preferences as well.

Proposition 4. Suppose that X BX ′ and that the preference relation PXf of an agent f ∈ F is substitutable.
Then, PX′

f is substitutable, as well.

Just as Proposition 33 indicates a tradeoff between expressiveness and stability, Proposition 44 indicates
a tradeoff between expressiveness and substitutability. Our later results (Theorems 11 and 22) show that
substitutability of preferences is sufficient and necessary (in the maximal domain sense) for the existence of
stable outcomes; hence, Proposition 44 implies a direct tradeoff between expressiveness and the existence of
stable outcomes. However, selecting an effective language seems potentially difficult in practice, as it depends
upon parameters which the market designer must assess.

3.4. Allowing Multiple Contracts Between a Doctor–Hospital Pair
It is clear that we could theoretically require that every possible relationship between a doctor and a

hospital be codified into a single contract; in the language of KominersKominers (20122012), this would correspond to
imposing unitarity. A unitary contract structure is in fact required by Klaus and WalzlKlaus and Walzl (20092009). However,

23In fact, we can go further, binding ŷ and ẑ into a single contract x̂, resulting in the language X′′ = {x̂, x′, x}, which
corresponds to a unitary model; again, in that setting, the outcome {x, x′} is no longer stable, as it is blocked by {x̂}.
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imposing unitarity may obscure substitutable structure within agents’ preferences, as the following example
shows.2424

Consider a hospital h with two positions, a medical position (µ) and a surgical position (σ). We suppose
that

• doctor d can take either or both of the positions µ and σ; and

• doctor d′ can only take the surgical position σ.

The hospital would like to assign a doctor to the medical position µ, but would prefer that d′, rather than d,
take the surgical position σ. These are natural preferences, and intuitively they should be substitutable, as d′
“substitutes” for d in the surgical position σ. But if we allow at most one contract per doctor–hospital pair,
then the possible assignments of doctor d take the form of three possible contracts between d and h:

• x{(d,µ)}, where d takes only the the medical position µ,

• x{(d,σ)}, where d takes only the the surgical position σ, and

• x{(d,µ),(d,σ)}, where d takes both positions.2525

Using similar notation, we let x{(d′,σ)} be the contract between d′ and h that specifies that d′ takes the
surgical position σ. Hence, the set of contracts is given by

X =
{
x{(d,µ)}, x{(d,σ)}, x{(d,µ),(d,σ)}, x{(d

′,σ)}}.
Under the assumption that a hospital can sign at most one contract with a given doctor, as in the

framework of Klaus and WalzlKlaus and Walzl (20092009),2626 the preferences of h would take the form{
x{(d,µ)}, x{(d

′,σ)}} � {x{(d,µ),(d,σ)}} � {x{(d,µ)}} � {x{(d′,σ)}} � {x{(d,σ)}} � ∅,

which are not substitutable, as

Rh

({
x{(d,µ),(d,σ)}, x{(d,µ)}}) =

{
x{(d,µ)}} *

{
x{(d,µ),(d,σ)}} = Rh

({
x{(d,µ),(d,σ)}, x{(d,µ)}, x{(d

′,σ)}}) .
However, in our model, where we allow multiple contracts between agent pairs, if we work in the coarser

contract language X ′ = X r {x{(d,µ),(d,σ)}}, the preferences of h can be written in the substitutable form

PX
′

h :
{
x{(d,µ)}, x{(d

′,σ)}} � {x{(d,µ)}, x{(d,σ)}} � {x{(d,µ)}} � {x{(d′,σ)}} � {x{(d,σ)}} � ∅.

This rewritten preference relation makes clear the intuitive fact that d′ substitutes for d in the surgical
position σ. Without the presence of multiple contracts between the doctor–hospital pair (d, h) ∈ D ×H, this
intuition is obscured, as is the fact (implied by our existence result, Theorem 11) that stable outcomes exist
under Ph so long as the preferences of d and d′ are substitutable.

In fact, the structure of the example parallels that of the United Kingdom Medical Intern match, in which
students must take on both medical and surgical positions in order to become eligible for full registration
with the General Medical Council. Hence, this example shows that allowing multiple contracts between a
doctor–hospital pair can uncover the substitutable structure of preferences in a real-world setting.

In our subsequent discussion, we assume the possibility of multiple contracts between doctor–hospital
pairs.2727 As the example just presented suggests, the class of substitutable preferences in our framework

24In this example, to highlight the impact of unitarity, we are changing both the contractual language and the way preferences
are constructed, as specified in Footnote 1414.

25Here, we add the contract x{(d,µ),(d,σ)} so that it is still possible the agents can obtain the primitive outcome {µ, σ} even
after unitarity has been imposed.

26Note that the preferences do not take the form used in our framework, as the set
{
x{(d,µ),(d,σ)}

}
is primitive-equivalent to

{x{(d,µ), x(d,σ)}
}
, and so in our model the hospital h should be indifferent between these two sets of contracts.

27This is a substantive assumption on the contract set X, but a very weak one.
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therefore includes many sets of preferences that are naturally substitutable but are not considered substitutable
in unitary many-to-many matching with contracts models.

4. Many-to-Many Matching with Contracts

We show in this section that substitutability is crucial for the existence of stable outcomes: it is both
sufficient and necessary (in the maximal domain sense).

To show existence of stable outcomes under substitutable preferences, we follow an approach similar to that
of Hatfield and MilgromHatfield and Milgrom (20052005): We construct a generalized deferred acceptance operator Φ; we show that fixed
points of Φ correspond to stable outcomes; and finally, we use Tarski’s fixed point theorem to show the existence
of a nonempty lattice of fixed points. However, we introduce here a new generalized deferred acceptance
operator which ensures that the correspondence between fixed points and stable outcomes is one-to-one—
unlike under the operators of Hatfield and MilgromHatfield and Milgrom (20052005), OstrovskyOstrovsky (20082008) and Hatfield and KominersHatfield and Kominers
(20122012).2828 We let

Φ(XD, XH) ≡ (ΦD(XH),ΦH(XD)), where
ΦD(XH) ≡ {x ∈ X : x ∈ CH(XH ∪ {x})} and
ΦH(XD) ≡ {x ∈ X : x ∈ CD(XD ∪ {x})}.

Under this operator, the sets XD and XH represent the sets of contracts “available” to the doctors and
hospitals, respectively. After an iteration of the operator Φ, the offer set ΦD(XH) made available to the
doctors is the set of contracts that the hospitals would be willing to take given offer set XH . Analogously,
the offer set ΦH(XD) made available to the hospitals is the set of contracts that the doctors would be willing
to take given their current offer set XD.

Now suppose the preferences of all agents are substitutable. If (XD, XH) is a fixed point of Φ, then
each x ∈ XD ∩XH ≡ A is chosen by xD from XD; since the preferences of xD are substitutable, xD must
then also choose x from A ⊆ XD. Analogously, each x ∈ A is chosen by xH from the set XH ; since the
preferences of xH are substitutable, xH must then also choose x from A ⊆ XH . Hence, A is individually
rational. Moreover, if A were blocked, then by Proposition 22 there would be a blocking set of the form {z}.
As z would be chosen by zD from A ∪ {z}, the contract z would also be chosen from XD ∪ {z}. Analogous
reasoning shows that z ∈ ΦD(XH) = XD. Hence, we would have z ∈ A = XD ∩XH—so {z} could not be a
blocking set.

Lemma 1. For any fixed point (XD, XH) of Φ, the outcome XD ∩XH is a stable outcome. Conversely, for
any stable outcome A, there exists a unique fixed point (XD, XH) of Φ such that XD ∩XH = A; moreover,
(XD, XH) = Φ(A,A).

Keeping track of the offer sets XD and XH also allows us to determine the “desirability” of a given contract
at a fixed point (XD, XH): If x ∈ XD ∩XH = A, then x is part of the stable outcome. If x ∈ XD rXH ,
then x is desired by xH but not by xD. If x ∈ XH rXD, then x is desired by xD but not by xH . Finally if
x ∈ X r (XD ∪XH), then x is desired by neither xD nor xH .

When all agents’ preferences are substitutable, the operator Φ is isotone in the sense that if XD ⊆ X̃D

and XH ⊇ X̃H , then ΦD(XH) ⊆ ΦD(X̃H) and ΦH(XD) ⊇ ΦH(X̃D). Hence, by Tarski’s fixed-point theorem,
there exists a nonempty lattice of fixed points of Φ. Moreover, this lattice corresponds to a lattice of stable
outcomes with the ordering �D, where A �D Ā if and only if A �d Ā for all d ∈ D.

Theorem 1. If all agents’ preferences are substitutable, then there exists at least one stable outcome; moreover,
the set of stable outcomes forms a lattice with respect to the operator �D.

The lattice structure identified in Theorem 11 also leads to the standard “opposition of interests” result,
that is, for any stable outcomes A and Ā, if A is preferred by all the doctors to Ā (i.e., A �D Ā), then all the

28The specific operator we use here is inspired by an operator introduced by Azevedo and HatfieldAzevedo and Hatfield (20152015) for a continuum
matching setting.
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hospitals prefer Ā to A. In particular, doctor-optimal and doctor-pessimal stable outcomes exist, and they
are the hospital-pessimal and hospital-optimal stable outcomes, respectively.2929

In the model of many-to-one matching with contracts, conditions on preferences weaker than substi-
tutability can be found that guarantee the existence of stable outcomes (see Hatfield and KojimaHatfield and Kojima (20102010),
Hatfield and KominersHatfield and Kominers (20162016), and Hatfield et al.Hatfield et al. (20152015)).3030 Our next result shows that these results for
weakened substitutability conditions do not carry over to the many-to-many matching with contracts model.
In particular, we show that if there are at least two agents of each type and some agent’s preferences are
not substitutable, then substitutable preferences for the other agents can be constructed such that no stable
outcome exists.
Theorem 2. If the preferences of some agent f ∈ F are not substitutable, there are at least two other
agents of each type, and X contains at least one contract between every doctor–hospital pair, then there exist
substitutable preferences for the doctors and hospitals in F r {f} such that no (many-to-one) stable outcome
exists.3131

If the preferences of a hospital h are not substitutable, then there exist contracts x, z ∈ X and a set of
contracts Y ⊆ X such that z /∈ Ch(Y ∪ {z}) but z ∈ Ch({x} ∪ Y ∪ {z}). The proof of Theorem 22 proceeds in
two cases, depending on whether xD 6= zD or xD = zD. In the first case, we let xD have a contract x′ with a
hospital h′ 6= h, and let zD have a contract z′ with that same hospital h′; we further let xD prefer {x′} to
{x} (and find {x} acceptable but {x, x′} unacceptable), while letting zD prefer {z} to {z′} (and find {z′}
acceptable but {z, z′} unacceptable). Hospital h′ has unit demand, and prefers {z′} to {x′}. Finally, we let
all the doctors demand all their contracts in Y , regardless of their other opportunities. Suppose that A is a
stable outcome: Then zD obtains z or z′, as h′ will always take z′ if it is available. If zD obtains z′, then
x′ /∈ A, and so Ch({x, z} ∪ Y ) is a blocking set. But if zD obtains z, then x ∈ A, and so {x′} is a blocking
set. Intuitively, hospital h′ prefers z′, so that whenever zD accepts the contract z′ with h′, he blocks xD from
working at h′; then, xD consents to work for h, who in turn now wishes to take on contract z. However, this
opens up the position at h′, and now xD no longer wishes to work at h but instead at h′. The logic for the
second case is similar although the technical details differ.

The viability of outcomes with multiple contracts between the same doctor–hospital pair is crucial to the
proof of Theorem 22, as the proof requires that doctors in YD (other than xD and zD) be willing to accept any
and all contracts offered to them. Since in principle X can contain multiple contracts with each doctor, the
doctors in YD must in general be willing to accept multiple contracts. Thus, the distinction of our model from
that of Klaus and WalzlKlaus and Walzl (20092009)—that a doctor may sign multiple contracts with a given hospital—is directly
relevant. In fact, as Klaus and WalzlKlaus and Walzl (20092009) and YenmezYenmez (20142014) have demonstrated, conditions weaker than
substitutability are sufficient to ensure existence of equilibria in unitary matching models.3232

Weakening the solution concept beyond many-to-one stability may assuage the difficulty presented in
Theorem 22, but may be otherwise unsatisfactory. For example, it is well-understood that pairwise stability is
an inappropriate solution concept in many-to-many matching with contracts, as there are many pairwise
stable outcomes that we would not expect to be stable in practice (see, e.g., Echenique and OviedoEchenique and Oviedo (20062006)
and Hatfield and KominersHatfield and Kominers (20122012)).3333

29Analogous opposition of interests results have been identified in most matching settings, including those of RothRoth (1984b1984b),
BlairBlair (19881988), Hatfield and MilgromHatfield and Milgrom (20052005), and Echenique and OviedoEchenique and Oviedo (20062006).

30This exception holds only in models with contracts. In particular, if there is a unique contract between each doctor–hospital
pair, then substitutability is required (in the maximal domain sense) for the existence of stable outcomes (Hatfield and KojimaHatfield and Kojima
(20082008)). Moreover, Hatfield and KojimaHatfield and Kojima (20082008) show that in the Kelso and CrawfordKelso and Crawford (19821982) model of many-to-one matching with
wages substitutability is required (in the maximal domain sense) for the existence of stable outcomes, implying that substitutability
is also required for the existence of stable outcomes in models of many-to-many matching with wages. Substitutability is also
required for the existence of stable outcomes in the more general setting of trading networks with transferable utility (see
Hatfield et al.Hatfield et al. (20132013)).

31Our maximal domain result is stronger than the specialization of the analogous result of Hatfield and KominersHatfield and Kominers (20122012) to
our setting.

32In particular, there is no direct analogue of Theorem 22 for unitary matching models. How imposing unitarity affects the set
of stable primitive outcomes is unclear.

33For a simple example, consider the following preferences:

Ph : {x, z} � ∅, PxD : {x′} � {x} � ∅,

Ph′ : {z′} � {x′} � ∅, PzD : {z} � {z′} � ∅;
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4.1. Couples Matching
There is a great deal of interest in the question of when stable matches are guaranteed to exist in the

presence of couples (see, e.g., Klaus et al.Klaus et al. (20072007), Klaus and KlijnKlaus and Klijn (20072007), KojimaKojima (20152015)). The answer to
this question is of practical importance for real world applications such as the NRMP (Roth and PeransonRoth and Peranson
(19991999)). Many previous studies of matching with couples have, for simplicity, assumed that the hospitals have
singleton preferences while couples may desire two positions. However, for applications such as the NRMP,
hospitals typically desire to fill multiple positions.

Theorem 22 shows that the previous literature understates the difficulty of finding stable couples matchings,
as if hospitals are given more realistic, substitutable preferences, the class of substitutable preferences is the
most general class of preferences for couples of doctors under which a stable match is guaranteed to exist.
Furthermore, substitutability is an extremely restrictive (and unrealistic) condition on the preferences of
couples: it requires that the members of the couple do not find any two jobs “complementary”, e.g., if the
wife receives a job offer in New York, it does not make jobs in New York more desirable for the husband.
Hence, substitutability effectively requires that the couple behaves as two separate doctors, with each member
of the couple taking the best option available to him or her regardless of the set of positions available to the
other member of the couple.3434

4.2. The Structure of the Set of Stable Outcomes
The preferences of f satisfy the law of aggregate demand if for all X ′′ ⊆ X ′ ⊆ X, |Cf (X ′′)| ≤ |Cf (X ′)|.3535

Under this condition, we obtain an analogue of the rural hospitals theorem of RothRoth (1984a1984a): each agent
signs the same number of contracts at every stable outcome (see Appendix BB).3636 However, depending on
how contractual primitives are assembled into contracts (as discussed in Section 33), the implications of this
result can be unclear. Consider the example in which D = {d}, H = {h} and contracts denote work shifts
of different lengths: X =

{
x{20}, x{40}} where x{t} encodes a t-hour work shift for doctor d at hospital

h. In this case, even if the total number of contracts signed by h is invariant across stable outcomes, the
total number of hours worked at h may nevertheless change.3737 In the terminology of contract language,
this problem occurs because the contracts represent different numbers of primitive work-units (in this case,
twenty-hour shifts). When all contracts are denoted in a fixed unit, however, the rural hospitals result has
the natural interpretation that each agent receives the same amount of work at every stable outcome.

The law of aggregate demand is also the key condition for two other additional results in the many-to-one
matching literature: one-sided (group) strategy-proofness and weak Pareto optimality (Hatfield and MilgromHatfield and Milgrom
(20052005); KojimaKojima (20072007); Hatfield and KojimaHatfield and Kojima (20102010)). The standard one-sided (group) strategy-proofness
result states that when doctors have unit demand, the mechanism that chooses the doctor-optimal stable
outcome is strategy-proof for the doctors. The standard weak Pareto optimality result for doctors states
that, again when doctors have unit demand, there does not exist an individually rational matching that all
doctors strictly prefer to the doctor-optimal stable match. Unfortunately, these results do not carry over
to the context of many-to-many matching—even without contracts. Indeed, the proof of Theorem 5.10 of
Roth and SotomayorRoth and Sotomayor (19901990) provides an example in which the unique stable outcome is not weakly Pareto
optimal for the hospitals, and the proof of Theorem 5.14 of Roth and SotomayorRoth and Sotomayor (19901990) provides an example

for these preferences, {z′} is a pairwise stable outcome, as any block involving h must include contracts with both xD and zD.
Nevertheless, we would not expect such an outcome to be stable in practice, as a deviation to {x, z} seems quite likely. And
indeed, there are no (many-to-one) stable outcomes for the preferences just described.

34Our results expand upon an earlier insight of CantalaCantala (20042004), who showed that when couples’ preferences have a specific
form of non-substitutability—in particular, a preference for colocation—stable matchings do not exist in general.

35This condition was introduced by Hatfield and MilgromHatfield and Milgrom (20052005). Alkan and GaleAlkan and Gale (20032003) introduced a related condition called
“size monotonocity.”

36Our proof of this rural hospitals theorem requires just lattice structure and the law of aggregate demand.
37To see this, suppose that the agents’ preferences are given by

Ph : {x{20}} � {x{40}} � ∅,

Pd : {x{40}} � {x{20}} � ∅.

Then {x{20}} and {x{40}} are both stable but correspond to distinct numbers of total work-hours.
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in which one hospital has an incentive to misstate its preferences to a mechanism choosing the hospital-optimal
stable outcome.3838

The stable outcome correspondence in our context is Nash implementable whenever it is nonempty and
there are at least three agents (see Appendix CC). Informally, this means that all stable outcomes can be
achieved non-cooperatively, through strategic interactions in equilibrium.3939

4.3. Strong Substitutability and Strong Stability
Echenique and OviedoEchenique and Oviedo (20062006) introduced a condition, strong substitutability, that is more restrictive than

substitutability; Klaus and WalzlKlaus and Walzl (20092009) extended this condition to the setting of many-to-many matching
with contracts.

Definition 4. The preferences of f ∈ F are strongly substitutable if for all X ′′, X ′ ⊆ X such that Cf (X ′′) �f
Cf (X ′), we have (X ′ ∩ Cf (X ′′)) ⊆ Cf (X ′).

Intuitively, strong substitutability means that if an agent f chooses contract x from a set of contracts X ′′,
and if x ∈ X ′ and X ′′ is a “better” offer set for f than X ′ is, then f still chooses x from X ′.

There is also a more restrictive stability concept for many-to-many matching problems.

Definition 5. An outcome A is strongly stable if it is

1. Individually rational and
2. Strongly unblocked: There does not exist a nonempty set Z ⊆ X such that Z ∩ A = ∅ and, for all
f ∈ ZF , there exists an individually rational Y f such that Zf ⊆ Y f ⊆ Z ∪A and Y f �f A.

The key difference between stability and strong stability is that strong stability does not require deviations
to be self-enforcing—they need only be individually rational. Strong stability is stronger than the setwise
stability condition of SotomayorSotomayor (19991999), Echenique and OviedoEchenique and Oviedo (20062006), and Klaus and WalzlKlaus and Walzl (20092009), a similar
concept that imposes the additional requirement that the deviating agents agree on which contracts in the
original outcome A to drop (i.e., for all y ∈ A, y ∈ Y yD if and only if y ∈ Y yH ). Strong stability is weaker
than the group stability concept of Konishi and ÜnverKonishi and Ünver (20062006), which does not require that the deviation sets
Y f be individually rational.

For many-to-one (and one-to-one) matching, an outcome A is stable if and only if it is strongly stable,
and both of these conditions are equivalent to A being in the core. However, this is no longer true in the
many-to-many matching context.4040

We now show that if preferences on one side of the market are strongly substitutable, and if those on the
other side are substitutable, then any stable outcome is strongly stable. This result generalizes the analogous
results of Echenique and OviedoEchenique and Oviedo (20062006) and Klaus and WalzlKlaus and Walzl (20092009).

Theorem 3. If all agents’ preferences are substitutable, and if furthermore the preferences of all agents of
one type (doctors or hospitals) are strongly substitutable, then an outcome is stable if and only if it is strongly
stable.

Theorem 33 implies that if all agents’ preferences are substitutable, and if the preferences of all agents of
one type are strongly substitutable, then

• strongly stable outcomes exist, and

38However, when all agents’ preferences satisfy the law of aggregate demand, the hospital-optimal stable mechanism is (group)
strategy-proof and the hospital-optimal stable outcome is weakly Pareto optimal for the set of hospitals that have unit demand
(Hatfield and KominersHatfield and Kominers (20122012)).

39This extends the analogous results of Kara and SönmezKara and Sönmez (19961996, 19971997) and Haake and KlausHaake and Klaus (2009a2009a,bb) for less-general
matching settings. The requirement of three agents is as sharp as possible, since Kara and SönmezKara and Sönmez (19961996) have already proven
that the stable matching correspondence is not Nash implementable in the setting of one-to-one matching when there are fewer
than three agents.

40BlairBlair (19881988) provides an example of a match that is stable but not strongly stable according to our definitions. This example
is in a many-to-many matching (without contracts) context, and hence allows only one possible relationship between each pair of
agents; therefore, the distinction between stability and strong stability does not hinge on the availability of multiple contracts
between pairs of agents.
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• the strongly stable outcome correspondence is Nash implementable.

Unfortunately, in contrast to our results for substitutable preferences and stable outcomes, strongly
substitutable preferences are not necessary (in the maximal domain sense) for the existence of strongly stable
outcomes. To see this, consider the setting where D = {i, j, k}, H = {h}, and X = {x, y, z} where xD = i,
yD = j, zD = k, and xH = yH = zH = h. Let the preferences of hospital h be given by

Ph : {x, y} � {x, z} � {x} � {y} � {z}.

It is not possible to give substitutable preferences for the doctors and strongly substitutable preferences for
hospitals other than h such that no strongly stable match exists.

However, without strongly substitutable preferences, the existence of strongly stable outcomes is not
guaranteed. Consider the setting where D = {i, j}, H = {h, h′}, and X = {x, x̂, x′, y} where xD = x̂D =
x′D = i, yD = j, xH = x̂H = yH = h, and x′H = h′. Let the preferences of the agents be given by

Ph : {x̂, y} � {x̂, x} � {x̂} � {y} � {x},
Ph′ : {x′},
Pi : {x′, x} � {x̂, x} � {x} � {x′} � {x̂},
Pj : {y}.

Here, only the preferences of h and i are not strongly substitutable, but the only stable outcome—{x′, y}—is
not strongly unblocked.4141

5. Conclusion

Many-to-many matching with contracts is a general framework that can be used to describe buyer–seller
markets with heterogeneous goods, labor market equilibria between firms and workers, the allocation of
consulting work between firms and consultants, and a variety of other important economic settings. In our
framework, substitutable preferences are sufficient and necessary (in the maximal domain sense) for the
existence of stable outcomes.

In related work (Hatfield and KominersHatfield and Kominers, 20162016), we apply the results obtained here in the context of
many-to-one matching with contracts: We identify a class of preferences that are not substitutable in the
context of many-to-one-matching with contracts, but are projections of substitutable many-to-many matching
with contracts preferences. Hence, the present results for many-to-many matching with contracts imply
the existence of a new weakened substitutability condition sufficient to guarantee the existence of stable
outcomes in the context of many-to-one matching with contracts; this is relevant to a broad array of
applications including military cadet–branch matching (Sönmez and SwitzerSönmez and Switzer (20132013); SönmezSönmez (20132013)), the
design of affirmative action mechanisms (Kominers and SönmezKominers and Sönmez (20132013, forthcomingforthcoming)), and teacher allocation
((Hatfield and KominersHatfield and Kominers, 20162016)).

Our results imply that careful selection of the contract language is essential for functioning matching
markets. Contract design can determine which—and even more importantly, if—stable relationships can be
found. Moreover, when the language is chosen effectively, many key results of matching theory apply.

Throughout, we have assumed that the market designer has complete control of the scope of possible
contract language, but no power to prevent “blocks” that arise when parties deviate by recontracting within
the provided language. In this setting, the stable outcomes essential for applications of matching4242 are
obtained only up to blocking deviations using contracts within the available language. This approach is
admittedly limited, as in practice agents who circumvent centralized clearinghouses contract outside of (and
typically before) the matching mechanism. Clearly, there is no a priori reason why those agents should deal
within the match’s contract language—they could contract over any primitives that are legally contractible.
Nevertheless, we believe that a centralized matching mechanism is likely to see continued participation

41To see this, take Z = {x̂, x} in the definition of strong unblockedness.
42RothRoth (1984a1984a, 19911991), and Roth and XingRoth and Xing (19941994) provided empirical evidence that the stability of the outcome recommended

by a centralized match is essential to the long-run success of the matching system.
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if its contractual language is both expressive and guarantees the existence of stable outcomes (see also
Roth and ShorrerRoth and Shorrer (20152015)).

If market participants have substitutable preferences over the set of primitives that are legally contractible,
then the clearinghouse is well-advised to admit all feasible contracts, as using a coarser language may not
sacrifice stability but could reduce efficiency. However, when both participants’ preferences over primitives
and participants’ preferences over legally contractible primitives are nonsubstitutable, there is scope for
nontrivial contract language design within the market clearinghouse; in such cases, optimal selection of the
contract language depends upon application-specific parameters which the market designer must assess.4343,4444

Hence, our work leaves substantial room for market design.
Our work also suggests a number of avenues for future research: For the problem of matching couples

to hospitals with multiple positions, we now know that a stable match is only theoretically guaranteed if
both hospitals’ and couples’ preferences are substitutable. However, although one would not expect couples’
preferences to be substitutable for practical applications such as the NRMP, stable couples matches appear
to exist in practice (see RothRoth (20082008)). Since it is now clear that substitutability is a necessary condition for
stability, the infrequency of instabilities in the NRMP is puzzling.4545 Of course, these issues are magnified
when more complicated complementarities in preferences are present, as in the case of combinatorial package
auctions (see, e.g., Ausubel and MilgromAusubel and Milgrom (20022002), MilgromMilgrom (20042004), Kwasnica et al.Kwasnica et al. (20052005), and Brunner et al.Brunner et al.
(20102010)). Finally, although we have identified and examined tradeoffs in the design of contract languages,
it is neither clear when languages induce substitutable preferences (and hence induce stability), nor how a
putative language should be judged in practice. We leave these questions for future research.

43Additionally, the choice of contract language may matter even when participants’ preferences over legally contractible
primitives are substitutable, as some contract languages may not uncover that substitutable structure (see Section 3.43.4 and
Hatfield and KominersHatfield and Kominers (20162016)).

44We thank a referee for pointing out these observations.
45Recent work by Kojima et al.Kojima et al. (20132013) and Ashlagi et al.Ashlagi et al. (20142014) has argued that large-market effects may explain this

phenomenon.
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A. Proofs Omitted from the Main Text

Proof of Proposition 11
Suppose that the preferences of f are not substitutable. Then there exist contracts x, z ∈ X and Y ⊆ X

such that
z /∈ Cf (Y ∪ {z}) and z ∈ Cf ({x} ∪ Y ∪ {z}).

Now consider any indirect utility function V which represents these preferences. Clearly, V (Y ) = V (Y ∪ {z})
and V ({x} ∪ Y ∪ {z}) > V ({x} ∪ Y ), and so

V (Y ∪ {z})− V (Y ) = 0 < V ({x} ∪ Y ∪ {z})− V ({x} ∪ Y );

hence, V is not submodular.
Suppose that the preferences of f are substitutable. Suppose there are N sets of contracts that are

individually rational for f , and that the preferences of f are given by

Pf : ZN � ZN−1 � · · · � Z2 � Z1 � ∅.

Let V (Zn) = 1− 2−n.4646 Now consider any Z ⊆ Y ⊆ X and x ∈ X. If x ∈ Y , then Cf (Y ) = Cf ({x} ∪ Y )
and we are done; if x /∈ Cf ({x} ∪ Y ), then the same conclusion holds. Now, if x /∈ Y and x ∈ Cf ({x} ∪ Y ),
then, as the preferences of f are substitutable, x ∈ Cf ({x} ∪ Z). Let Zn = Cf (Z) and Zn′ = Cf (Y ) where
n ≤ n′ as Z ⊆ Y . Hence V ({x} ∪ Z)− V (Z) ≥ 2−n−1 ≥ 2−n′−1 ≥ V ({x} ∪ Y )− V (Y ) and so

V ({x} ∪ Z)− V (Z) ≥ V ({x} ∪ Y )− V (Y ),

so that V is submodular.

Proof of Proposition 22
We prove a lemma which directly implies the result.

Lemma 2. Suppose that Z is a blocking set for Y , and that the preferences of all agents are substitutable.
Then for any z ∈ Z, the set {z} is a blocking set for Y .

Proof. If Z is a blocking set for Y , then

Z ⊆ CH(Y ∪ Z) (1)

by definition.
We fix any z ∈ Z. By (11), we have z ∈ CzH

(Y ∪ Z); as the preferences of zH are substitutable, we must
then have z ∈ CzH

(Y ∪ {z}). Similarly, we find that z ∈ CzD
(Y ∪ {z}). It follows that {z} is a blocking set

for Y .

Lemma 22 implies the result, as it shows that if there exists some Z blocking Y , then there is some Z ′
with |Z ′| = 1 which blocks Y , as well—indeed, taking Z ′ = {z} for any z ∈ Z suffices. Thus, any Y which is
not blocked in the sense of Definition 22 cannot be pairwise stable (and hence cannot be many-to-one stable).

Proof of Proposition 33
Suppose that Y is blocked in X ′ by some set of contracts Z ′ ⊆ X ′.4747 Since XBX ′, we have Z ′ ⊆ X ′ ⊆ X.

But Z ′ 6⊆ Y and by construction we must have Z ′f ⊆ CXf (Z ′ ∪ Y ) for each f ∈ F , contradicting the stability
of Y with respect to X.

46A similar method is used by Chambers and EcheniqueChambers and Echenique (20092009) to prove that for any increasing quasisupermodular function,
there exists a monotonic transformation such that the transformed function is supermodular.

47It is clear that Y is individually rational, so Y can only be unstable if it is blocked.
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Proof of Proposition 44
If PX′

f is not substitutable for some f ∈ F , then there exist z, x ∈ X ′ and Y ⊆ X ′ such that z 6∈
CX

′

f (Y ∪ {z}) but z ∈ CX′

f (Y ∪ {z, x}). But PX′

f is just the restriction of PXf to sets of contracts wholly
contained in X ′, so in particular z, x ∈ X ′ and Y ⊆ X ′ comprise a counterexample to the substitutability of
PXf .

Proof of Lemma 11
Throughout the proof, we use the fact that all choice functions we consider satisfy the following irrelevance

of rejected contracts condition.4848

Definition 6. A choice function Cf satisfies the irrelevance of rejected contracts condition if for all Y ⊆ X
and z ∈ X r Y , if z /∈ Cf (Y ∪ {z}), then Cf (Y ∪ {z}) = Cf (Y ).

If (XD, XH) is a fixed point of Φ, then for any x ∈ XD ∩XH ⊆ XD, we have XD = ΦH(XD) = {x ∈
X : x ∈ CD(XD ∪ {x})}, so that

x ∈ CD(XD ∪ {x}) = CD(XD). (2)

As each doctor has substitutable preferences, (22) implies that x ∈ CD(XD ∩XH). By analogous reasoning,
we see that x ∈ CH(XD ∩XH). Hence, we see that XD ∩XH is individually rational.

Now, we suppose that XD ∩XH is blocked. Then, by Proposition 22, there exists a blocking set {z} 6⊆
XD ∩XH . Then, either z /∈ XD or z /∈ XH . We assume the former case (z /∈ XD); the latter is analogous.
Now, again as (XD, XH) is a fixed point of Φ, we have XD = ΦH(XD) = {x ∈ X : x ∈ CD(XD∪{x})}; hence,
we have that z /∈ CH(XH ∪{z}). We suppose, by way of contradiction, that z ∈ CH((XD∩XH)∪{z}). Then,
by the irrelevance of rejected contracts condition, there exists at least one x ∈ (CH(XH ∪ {z}))∩ (XH rXD)
with x 6= z. But then substitutability of hospital preferences implies that x ∈ CH(XH) = CH(XH ∪ {x}).
Thus, we must have x ∈ XD = ΦH(XD) = {x ∈ X : x ∈ CD(XD ∪ {x})} by the definition of Φ—a
contradiction.

Now, we suppose that A is a stable outcome. We let (XD, XH) = Φ(A,A). If XD 6⊇ A, then CH(A) 6= A,
and so A is not individually rational for some hospital, contradicting the stability of A. Analogously, if
XH 6⊇ A, then CD(A) 6= A, and so A is not individually rational for some doctor, contradicting the stability
of A. If z ∈ (XD ∩XH) r A, then we have z ∈ CD(A ∪ {z}) and z ∈ CH(A ∪ {z}) (by the definition of Φ
and the substitutability of the choice functions of zD and zH). It follows that {z} blocks A, contradicting the
stability of A. Hence, we see that A = XD ∩XH .

Next we show that (XD, XH) = Φ(A,A) is a fixed point of Φ. First, we consider ΦD(XH) = {x ∈ X :
x ∈ CH(XH ∪ {x})}. There are two cases to consider:

1. Suppose that y ∈ ΦD(XH) r XD. Since y ∈ ΦD(XH), we have y ∈ CH(XH ∪ {y}), implying by
substitutability that y ∈ CH(A ∪ {y}); hence, we have y ∈ XD = ΦH(A), a contradiction.

2. Suppose that y ∈ XD r ΦD(XH). Then y ∈ CH(A ∪ {y}); hence, if y /∈ ΦD(XH), there exists a
z ∈ XH rA such that z ∈ CH(XH ∪ {y}) by the irrelevance of rejected contracts condition. Then, by
substitutability, we must have z ∈ CH(A∪ {z}). But XH = ΦH(A), so z ∈ CD(A∪ {z}), implying that
{z} blocks A, contradicting the stability of A.

The logic that ΦH(XD) = XH is analogous.
Finally, we show that there does not exist any fixed point (X̃D, X̃H) 6= (XD, XH) such that X̃D∩X̃H = A.

We first show that CD(X̃D) = A: If CD(X̃D) ( A, then A is not individually rational, contradicting the
stability of A. If y ∈ CD(X̃D) r A, then y ∈ X̃H = ΦH(X̃D) (as (X̃D, X̃H) is a fixed point of Φ), and so
y ∈ X̃H ∩ X̃D—a contradiction.

Now, CD(X̃D) = A, we have that (X̃D rA) ∩ CD(X̃D) = ∅. By substitutability, (X̃D rA) ∩ CD(X̃D ∪
{x}) = ∅ for all x ∈ X. Hence, by the irrelevance of rejected contracts condition,

X̃H = {x ∈ X : x ∈ CD(X̃D ∪ {x})} = {x ∈ X : x ∈ CD(A ∪ {x})} = ΦH(A) = XH .

An analogous argument shows that that X̃D = XD, so we cannot have (X̃D, X̃H) 6= (XD, XH).

48Our choice functions satisfy the irrelevance of rejected contracts condition because they are induced by strict preference
relations (see Aygün and SönmezAygün and Sönmez (20142014, 20122012, 20132013)).
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Proof of Theorem 11
We first verify that the operator Φ is isotone with the respect to the ordering `, where (XD, XH) `

(X̃D, X̃H) if XD ⊆ X̃D and XH ⊇ X̃H . In other words, we show that if (XD, XH) ` (X̃D, X̃H), then
(ΦD(XH),ΦH(XD)) ` (ΦD(X̃H),ΦH(X̃D)), i.e., ΦD(XH) ⊆ ΦD(X̃H) and ΦH(XD) ⊇ ΦH(X̃D). To see this,
we note that if x ∈ CH(XH ∪ {x}), then x ∈ CH(X̃H ∪ {x}), as each hospital has substitutable preferences.
Hence, we see that ΦD(X̃H) ⊇ ΦD(XH). The proof that ΦH(X̃D) ⊆ ΦH(XD) is analogous; hence, we see
that Φ is isotone.

As Φ is isotone on the offer set lattice, it follows from Tarski’s fixed-point theorem that there exists a
nonempty lattice of fixed points of the operator Φ. These correspond to stable outcomes by Lemma 11.

To prove the lattice structure result, we first show that that A = XD ∩XH is chosen by the doctors from
XD, i.e., A = CD(XD). There are two cases to check:

1. Suppose there exists z ∈ CD(XD) r A. Then z ∈ CD(XD ∪ {z}), and hence z ∈ ΦH(XD). But
then, since (XD, XH) is a fixed point of Φ, we have ΦH(XD) = XH , so that z ∈ ΦH(XD) = XH ,
contradicting the assumption that z /∈ A = XD ∩XH .

2. Suppose there exists z ∈ Ar CD(XD). Then there exists a z ∈ A = XD ∩XH such that z /∈ CD(XD)
and, hence, as z ∈ XD, we must have z /∈ CD(XD ∪ {z}). But then, we have z /∈ ΦH(XD), so that
ΦH(XD) 6= XH 3 z, so that (XD, XH) cannot be a fixed point of Φ.

Thus, we see that for any fixed point of the lattice (XD, XH), we have CD(XD) = XD ∩XH .
The preceding observation implies that for two fixed points (XD, XH) and (X̃D, X̃H) corresponding to

the outcomes A and Ã, respectively, if (X̃D, X̃H) ` (XD, XH), then X̃D ⊆ XD, and so A = CD(XD) �D
CD(X̃D) = Ã. Hence, since the set of fixed points is a lattice with respect to `, the set of stable outcomes
corresponding to those fixed points is a lattice with respect to �D.

Proof of Theorem 22
If the preferences of a hospital h are not substitutable, then there exist contracts x, z ∈ Xh and a set of

contracts Y ⊆ X r {x, z} such that YH = {h} and

z /∈ Ch(Y ∪ {z})
z ∈ Ch({x} ∪ Y ∪ {z}).

There are two cases to consider.

Case 1: xD 6= zD. By assumption, there must exist a hospital h′ 6= h. Furthermore, there must exist
contracts x′ and z′ with xD = x′D, zD = z′D and x′H = z′H = h′.
Let zD have preferences such that

CzD
(W ) =

{
(W ∩ (Y ∪ {z}))zD

{z, z′} ⊆W
(W ∩ (Y ∪ {z, z′}))zD

otherwise.

That is, zD is willing to accept any and all of the contracts he is associated with in Y , and zD wants
one of z and z′, preferring z, and rejects all other contracts.4949

Let xD have preferences such that

CxD
(W ) =

{
(W ∩ (Y ∪ {x′}))xD

{x, x′} ⊆W
(W ∩ ({x} ∪ Y ∪ {x′}))xD

otherwise.

49More precisely, CzD is induced by a preference relation �zD as follows: Let {y1, . . . , yN} ≡ YzD , and let the score of a set
W ⊆ XzD be given by

szD (W ) = 21{z∈W} + 1{z′∈W} +
N∑
n=1

1
2n

1{yn∈W} − 51{{z,z′}⊆W} − 10

 ∑
w∈XzD

r(YzD
∪{z,z′})

1{w∈W}

 .

We then let W �zD W ′ if szD (W ) > szD (W ′).
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That is, xD is willing to accept any and all of the contracts he is associated with in Y , and xD wants
one of x and x′, preferring x′, and rejects all other contracts.5050

Let h′ have preferences given by {z′} �h′ {x′} �h′ ∅, which induces the choice function

Ch′(W ) =


{z′} z′ ∈W
{x′} x′ ∈W and z′ /∈W
∅ otherwise.

Finally, let every doctor d ∈ D r {xD, zD} have preferences such that

Cd(W ) = (W ∩ Y )d.

That is, d is willing to accept any and all of the contracts he is associated with in Y , and rejects all
other contracts.5151

Consider any outcome A; we show A can not be stable.

1. Suppose Ch(Y ∪{z}) �h Ah. If A is individually rational for all hospitals, then Ch(Y ∪{z}) blocks
A, as all doctors choose their contracts in Ch(Y ).

2. Suppose Ah = Ch(Y ∪ {z}). Then z′ ∈ A, as otherwise {z′} blocks A. Hence, by the individual
rationality of h′, we have that x′ /∈ A. But then Ch({x} ∪ Y ∪ {z}) blocks A.

3. Suppose Ch({x} ∪ Y ∪ {z}) �h Ah �h Ch(Y ∪ {z}). In this case, if A is individually rational
for all hospitals, then A ⊆ {x, x′, z′} ∪ Y ∪ {z}; then x ∈ A as otherwise we could not have
Ah �h Ch(Y ∪ {z}). But then, Ch({x} ∪ Y ∪ {z}) blocks A.

4. Suppose Ch({x} ∪ Y ∪ {z}) = Ah. Then if z′ ∈ A, the outcome A is not individually rational for
zD, and if x′ ∈ A, the outcome A is not individually rational for xD; but this implies that {x′}
blocks A.

Case 2: xD = zD ≡ d. By assumption, there are two hospitals, h′ and h′′, such that h 6= h′ 6= h′′ 6= h and
one doctor d̂ 6= d. Now consider the contracts x′, x′′, x̂′, and x̂′′ such that x′D = x′′D = d, x̂′D = x̂′′D = d̂,
x′H = x̂′H = h′ and x′′H = x̂′′H = h′′, which exist by assumption.
Let d have preferences such that

Cd(W ) = (W ∩ Y )d ∪ C̃d(W ∩ {x, z, x′, x′′})

where C̃d(W̃ ) is the responsive choice function over {x, z, x′, x′′} with quota 2 and underlying preference
order x′′ � z � x � x′. That is, d is willing to accept any and all of the contracts he is associated with
in Y , and d wants two of x′′, z, x, and x′, preferring x′′ to z to x to x′, and rejects all other contracts.5252

50More precisely, CxD is induced by a preference relation �xD as follows: Let {y1, . . . , yN} ≡ YxD , and let the score of a set
W ⊆ XxD be given by

sxD (W ) = 21{x′∈W} + 1{x∈W} +
N∑
n=1

1
2n

1{yn∈W} − 51{{x,x′}⊆W} − 10

 ∑
w∈XxD

r(YxD
∪{x,x′})

1{w∈W}

 .

We then let W �xD W ′ if sxD (W ) > sxD (W ′).
51More precisely, for each d we have that Cd is induced by a preference relation �d as follows: Let {y1, . . . , yN} ≡ Yd, and let

the score of a set W ⊆ Xd be given by

sd(W ) =
N∑
n=1

1
2n

1{yn∈W} − 10

( ∑
w∈XdrYd

1{w∈W}

)
.

We then let W �d W ′ if sd(W ) > sd(W ′).
52More precisely, Cd is induced by a preference relation �d as follows: Let {y1, . . . , yN} ≡ Yd, and let the score of a set
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We let d̂ have preferences such that

Cd̂(W ) =
{

(W ∩ (Y ∪ {x̂′}))d̂ {x̂′, x̂′′} ⊆W
(W ∩ (Y ∪ Z ∪ {x̂′, x̂′′}))d̂ otherwise,

That is, d̂ is willing to accept any and all of the contracts he is associated with in Y , and d̂ wants one
of x̂′ and x̂′′, preferring x̂′, and rejects all other contracts.5353

We let h′ have preferences given by {x′} �h′ {x̂′} �h′ ∅, which induces the choice function

Ch′(W ) =


{x′} x′ ∈W
{x̂′} x̂′ ∈W and x′ /∈W
∅ otherwise.

We let h′′ have preferences given by {x̂′′} �h′′ {x′′} �h′′ ∅, which induces the choice function

Ch′(W ) =


{x̂′′} x̂′′ ∈W
{x′′} x′′ ∈W and x̂′′ /∈W
∅ otherwise.

Finally, let every doctor d̄ ∈ D r {d, d̂} have preferences such that

Cd̄(W ) = (W ∩ Y )d̄.

That is, d̄ is willing to accept any and all of the contracts he is associated with in Y , and rejects all
other contracts.5454

Consider any outcome A; we show that A can not be stable.

1. Suppose Ch(Y ∪{z}) �h Ah. Then Ch(Y ∪{z}) blocks A, as all the doctors choose their contracts
in Ch(Y ∪ {z}).

W ⊆ Xd be given by

sd(W ) = 81{x′′∈W} + 41{z∈W} + 21{x∈W} + 1{x′∈W} +
N∑
n=1

1
2n

1{yn∈W}

− 161{|{x,z,x′,x′′}∩W |≥3} − 32

 ∑
w∈Xdr(Yd∪{x,z,x′,x′′})

1{w∈W}

 .

We then let W �d W ′ if sd(W ) > sd(W ′).
53More precisely, Cd̂ is induced by a preference relation �d̂ as follows: Let {y1, . . . , yN} ≡ Yd̂, and let the score of a set

W ⊆ XxD be given by

sd̂(W ) = 21{x̂′∈W} + 1{x̂′′∈W} +
N∑
n=1

1
2n

1{yn∈W} − 51{{x̂′,x̂′′}⊆W} − 10

 ∑
w∈XxD

r(YxD
∪{x̂′,x̂′′})

1{w∈W}

 .

We then let W �d̂ W
′ if sd̂(W ) > sd̂(W ′).

54More precisely, for each d̄ we have that Cd̄ is induced by a preference relation �d̄ as follows: Let {y1, . . . , yN} ≡ Yd̄, and let
the score of a set W ⊆ Xd̄ be given by

sd̄(W ) =
N∑
n=1

1
2n

1{yn∈W} − 10

 ∑
w∈Xd̄rYd̄

1{w∈W}

 .

We then let W �d̄ W ′ if sd̄(W ) > sd̄(W ′).
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2. Suppose Ah = Ch(Y ∪{z}). Since d does not obtain x or z, he desires both x′ and x′′. Hence, if A
is stable, we must have that x′ ∈ A. Furthermore, since d̂ does not obtain x̂′ since A is individually
rational for h′. Hence, for A to be stable, we must have x̂′′ ∈ A. Hence, if A is stable, {x̂′′, x′} ⊆ A
and thus x′′ /∈ A by individual rationality for h′′. In that case, Ch({x} ∪ Y ∪ {z}) blocks A.

3. Suppose Ch({x} ∪ Y ∪ {z}) �h Ah �h Ch(Y ∪ {z}). Then x ∈ A, so Ch({x} ∪ Y ∪ {z}) r {x}
blocks A, as d will always choose z and the other doctors in Y will always accept offers of any and
all contracts in Y .

4. Suppose Ch({x} ∪ Y ∪ {z}) = Ah. If x̂′ /∈ A, then {x̂′} blocks A. (Note that if x′ ∈ A, then
{x, z, x′} ⊆ A, and so A is not individually rational for d.) But x̂′ ∈ A implies that x̂′′ /∈ A. Hence
{x′′} blocks A. (Note that x′′ /∈ A, as then {x′′, x, z} ⊆ A, and so A is not individually rational
for d.)

Proof of Theorem 33
The forwards direction is trivial, hence we show only the reverse direction. Without loss of generality, we

assume that all hospital preferences are strongly stable. Now, we fix preferences, and consider any stable
outcome A. If A is not strongly stable, then there exists a set Z such that for each f ∈ ZF there exists an
individually rational Y f such that Zf ⊆ Y f ⊆ Z ∪A and Y f �f A. Now, consider a doctor d ∈ ZD. Since
Y d �d Ad, Cd(Z ∪A) 6= Ad and hence, as Ad is individually rational for d, there exists x ∈ Cd(Z ∪A) such
that x ∈ Z rA. Hence, by substitutability, we have x ∈ Cd({x} ∪A). Now, if x ∈ CxH

({x} ∪A), then {x}
blocks A, contradicting the stability of A. Hence, x /∈ CxH

({x} ∪A), but x ∈ CxH
(Y xH ) and

CxH
(Y xH ) = Y xH �xH

CxH
(A) = CxH

({x} ∪A).

But x ∈ ((A ∪ {x}) ∩ CxH
(Y xH )) r CxH

(A ∪ {x}), so the preferences of xH are not strongly substitutable.

B. The Rural Hospitals Theorem, Strategy-Proofness, and the Weak Pareto Property

We show an analogue of the rural hospitals theorem of RothRoth (1984a1984a) and Hatfield and MilgromHatfield and Milgrom (20052005).

Theorem 4. If preferences are substitutable and satisfy the law of aggregate demand, then each agent signs
the same number of contracts at every stable outcome.

Proof. Consider any stable outcome A, and the doctor-optimal stable outcome A∗. Since every hospital
prefers A to A∗ from Theorem 11 and surrounding discussion, if follows from from the law of aggregate demand
that the number of contracts signed by each hospital is weakly smaller at A∗, hence |A∗| ≤ |A|. Hence, if any
doctor receives strictly more contracts at A∗ than at A, some doctor must receive strictly fewer contracts at
A∗ than at A. This cannot happen, as every doctor is weakly better off at A∗ than at A, and every doctor’s
preferences satisfy the law of aggregate demand. Thus every doctor receives the same number of contracts at
every stable outcome.

An analogous argument shows the result for hospitals.

Theorem 44 is an immediate consequence of the law of aggregate demand and the lattice structure obtained
in Theorem 11. Since for any stable outcome A, every hospital prefers A to the doctor-optimal stable outcome
A∗, the fact that hospitals’ preferences satisfy the law of aggregate demand guarantees that |A∗| ≤ |A|. But
no doctor can receive strictly more contracts at A∗ than at A unless some other doctor receives strictly fewer
contracts at A∗ than at A. This cannot happen because every doctor is weakly better off at A∗ than at A,
and every doctor’s preferences satisfy the law of aggregate demand as well.

C. Nash Implementability

We show that the stable outcome correspondence is Nash implementable whenever it is nonempty and there
are at least three agents. Informally, this means that all stable outcomes can be achieved non-cooperatively,
through strategic interactions in equilibrium. The requirement of three agents is as sharp as possible,
since Kara and SönmezKara and Sönmez (19961996) have already proven that the stable matching correspondence is not Nash
implementable in the setting of one-to-one matching when there are fewer than three agents.
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First, we review some standard terminology and notation. A generalized matching mechanism is a pair
(M, o), where M ≡

∏
f∈FMf denotes a set of strategy profiles and o is an outcome function mapping

strategy profiles into outcomes.5555 As is standard, we identify a mechanism (M, o) with its outcome function, o.
For a given profile P of agents’ true preferences, a mechanism o induces a non-cooperative strategic form game
Γo(P ), in which the outcome o(m) of a strategy profile m ∈M is evaluated using agents’ true preferences.

We write NE(·) for the Nash equilibrium correspondence. A mechanism o is said to Nash implement
solution ϕ if, for all possible profiles P ,

ϕ(P ) = o(NE(Γo(P ))).

That is, o Nash implements ϕ if the set of outcomes in ϕ(P ) are exactly those which are the outcomes
(under o) of Nash equilibria of Γo(P ).

Now, we state our implementability result.

Theorem 5. If |F | ≥ 3, then the stable outcome correspondence is Nash implementable whenever it is
nonempty.

Theorem 55 subsumes the analogous results of Kara and SönmezKara and Sönmez (19961996, 19971997) and Haake and KlausHaake and Klaus
(2009a2009a,bb) for less-general matching settings. The proof of Theorem 55 is a straightforward generalization of the
argument used by Haake and KlausHaake and Klaus (2009a2009a) in the setting of many-to-one matching with contracts; hence,
we omit it.5656

Combining Theorem 55 with Theorem 11 shows in particular that the stable outcome correspondence is
Nash implementable when all agents’ preferences are substitutable. An additional consequence of Theorem 55
is that the stable matching correspondence is monotonic in the sense of MaskinMaskin (19991999).

55We use the adjective “generalized” to indicate that, unlike in standard formulation of a matching mechanism, here we
consider as input a generalized space of strategies rather than the space of preference profiles.

56In fact, the argument follows that of Haake and KlausHaake and Klaus (2009a2009a) directly, but is slighlty simpler in our framework. Specifically,
the first subargument of Step 3 in the proof given by Haake and KlausHaake and Klaus (2009a2009a) can be omitted, since in our framework both
doctors and hospitals may accept multiple contracts.
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