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Abstract

We introduce a model in which agents in a network can trade via bilateral contracts.

We find that when continuous transfers are allowed and utilities are quasilinear, the full

substitutability of preferences is sufficient to guarantee the existence of stable outcomes

for any underlying network structure. Furthermore, the set of stable outcomes is

essentially equivalent to the set of competitive equilibria, and all stable outcomes are

in the core and are efficient. By contrast, for any domain of preferences strictly larger

than that of full substitutability, the existence of stable outcomes and competitive

equilibria cannot be guaranteed.
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1 Introduction

The analysis of markets with heterogeneous agents and personalized prices has a long tradi-

tion in economics, which began with the canonical one-to-one assignment model of Koopmans

and Beckmann (1957), Gale (1960), and Shapley and Shubik (1971). In this model, agents

on one side of the market are matched to objects (or agents) on the other side, and each

“match” generates a pair-specific surplus. Agents’ utilities are quasilinear in money, and

arbitrary monetary transfers between the two sides are allowed. In this case, the efficient

assignment—the one that maximizes the sum of all involved parties’ payoffs—can be sup-

ported by the price mechanism as a competitive equilibrium outcome. Moreover, several

solution concepts (competitive equilibrium, core, and pairwise stability) essentially coincide.

Crawford and Knoer (1981) extend the assignment model to a richer setting, in which

heterogeneous firms form matches with heterogeneous workers. In their setting, one firm

can be matched to multiple workers, but each worker can be matched to at most one firm.

Crawford and Knoer (1981) assume that preferences are separable across pairs, i.e., the

payoff from a particular firm–worker pair is independent of the other matches the firm

forms. Crawford and Knoer (1981) do not rely on the linear programming duality theory

used in previous work; instead, they use a modification of the deferred-acceptance algorithm

of Gale and Shapley (1962) to prove their results, thus demonstrating a close link between

the concepts of pairwise stability and competitive equilibrium. Kelso and Crawford (1982)

then extend the previous results, showing that the restrictive assumption of the separability

of preferences across pairs is inessential: it is enough that firms view workers as substitutes
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for each other.

In this paper, we show that the results from the two-sided models described above con-

tinue to hold in a much richer environment in which a network of heterogeneous agents can

trade indivisible goods or services via bilateral contracts. Some agents can be involved in

production, buying inputs from other agents, turning them into outputs at some cost, and

then selling the outputs. We find that if all agents’ preferences satisfy a suitably generalized

substitutability condition, then stable outcomes and competitive equilibria are guaranteed

to exist and are efficient. Moreover, in that case, the sets of competitive equilibria and stable

outcomes are in a sense equivalent. These results apply to arbitrary trading networks and

do not require any assumptions on the network structure such as two-sidedness or acyclicity.

In particular, our framework does not require a “vertical” network structure. Consider,

for example, the market for used cars—a $300 billion market in the United States alone.1

The participants in this market are the sellers, who no longer need their old cars; the buyers,

who want to purchase used cars; and the car dealers, who buy, refurbish, and resell used

cars. Sellers and buyers can trade directly with each other, or they can trade with dealers.

If all trade flowed in one direction (i.e., sellers sold cars only to dealers and buyers, and

dealers only sold cars to buyers), this market would fit naturally into the vertical network

model of Ostrovsky (2008). However, an important feature of the used car market is trade

among dealers. For instance, of the 15.6 million used cars sold by franchised dealers in

the United States in 2011, almost half (6.9 million) were sold “wholesale,” i.e., to dealers

rather than individual customers (NADA, 2012, p. 11).2 Among independent dealers, more

than two-thirds reported selling cars to other dealers (NIADA, 2011, p. 7).3 Such trades

1See http://www.census.gov/compendia/statab/2012/tables/12s1058.pdf, Table 1058.
2Some of these inter-dealer trades may comprise cycles. Consider, e.g., a BMW dealer who receives a

used Lexus as a trade-in. For this dealer, it may be more profitable to sell the car to a Lexus dealer instead
of an individual customer, because the Lexus dealer can have Lexus-trained mechanics inspect and refurbish
the car, assign it a “certified pre-owned” status, provide a Lexus-backed warranty, and offer other valuable
services and add-ons that the BMW dealer cannot provide. Likewise, a Lexus dealer may prefer to sell a
traded-in BMW to a BMW dealer instead of an individual customer.

3“Franchised” dealers are typically associated with a specific car manufacturer or a small number of
manufacturers, and sell both new and used cars. “Independent” dealers only sell used cars. Trade among
dealers includes transactions that take place at wholesale auctions, where only dealers are allowed to purchase
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are explicitly ruled out in the vertical network setting.4 By contrast, the generality of our

model—specifically, the accommodation of fully general trading network structures—makes

it possible to study stable outcomes and competitive equilibria in settings like the used car

market, where trade can flow not only “vertically” but also “horizontally.”5

The presence of continuously transferable utility is essential for our results. Hatfield and

Kominers (2012) show that without continuous transfers, in markets that lack a vertical

structure, stable outcomes may not exist. Even in vertical trading networks, without contin-

uously transferable utility, stable outcomes are not guaranteed to be Pareto efficient (Blair,

1988; Westkamp, 2010). Another key assumption, which is also essential for the existence

of stable outcomes in the previous matching literature, is the substitutability of preferences:

our last main result is a “maximal domain” theorem showing that if any agent’s preferences

are not substitutable, then substitutable preferences can be found for other agents such that

neither competitive equilibria nor stable outcomes exist. We discuss the economic content

of the substitutability assumption in Section 2.2, after formally defining it.6

In our model, contracts specify a buyer, a seller, provision of a good or service, and a

monetary transfer. An agent may be involved in some contracts as a seller, and in other

contracts as a buyer. Agents’ preferences are defined by cardinal utility functions over sets

of contracts and are quasilinear with respect to the numeraire. To incorporate technological

feasibility constraints (e.g., a baker cannot produce bread without buying any flour), we

allow agents’ utilities for certain production plans to be unboundedly negative. We say that

preferences are fully substitutable if contracts are substitutes for each other in a generalized

sense, i.e., whenever an agent gains a new purchase opportunity, he becomes both less

willing to make other purchases and more willing to make sales, and whenever he gains a

cars (Tadelis and Zettelmeyer, 2011; Larsen, 2013), and direct dealer-to-dealer transactions (NIADA, 2011).
4See Section 4.3 for a formal discussion of the restrictions imposed in the prior literature.
5Other examples of markets where horizontal trade and subcontracting are common include reinsurance

and securities underwriting, construction, and materials fabrication (Kamien, Li, and Samet, 1989; Spiegel,
1993; Baake, Oechssler, and Schenk, 1999; Gale, Hausch, and Stegeman, 2000; Patrik, 2001; Powers and
Shubik, 2001; Marion, 2012).

6In that section, we also argue that full substitutability is a natural assumption on the preferences of
sellers, buyers, and dealers in the used car setting.
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new sales opportunity, he becomes both less willing to make other sales and more willing to

make purchases. This intuitive substitutability condition has appeared in the literature on

matching in vertical networks (Ostrovsky, 2008; Westkamp, 2010; Hatfield and Kominers,

2012), and generalizes the classical notions of substitutability in two-sided settings (Kelso and

Crawford, 1982; Roth, 1984; Hatfield and Milgrom, 2005). Full substitutability is equivalent

to the gross substitutes and complements condition of the literature on competitive equilibria

in exchange economies with indivisible objects (Gul and Stacchetti, 1999, 2000; Sun and

Yang, 2006, 2009). Full substitutability is also equivalent to the submodularity of the indirect

utility function (Gul and Stacchetti, 1999; Ausubel and Milgrom, 2002).7

Our main results are as follows. We first show that when preferences are fully substi-

tutable, competitive equilibria are guaranteed to exist. Our proof is constructive. Its key

idea is to consider an associated two-sided many-to-one matching market, in which “firms”

are the agents and “workers” are the possible trades in the original economy. Fully sub-

stitutable utilities of the agents in the original economy give rise to substitutable (in the

Kelso–Crawford sense) preferences of the firms in the associated two-sided market, and the

equilibrium outcome in the associated market can be mapped back to a competitive equilib-

rium of the original economy.8 While the construction of the associated market is concep-

tually natural, it involves several additional steps that deal with the potentially unbounded

utilities in the original economy and ensure that the equilibrium of the associated economy is

“full employment” (as this is required for mapping it back into an equilibrium of the original

economy). Having established the existence of competitive equilibria, we then use standard

techniques to demonstrate analogues of the first and second welfare theorems, as well as the

lattice structure of the set of competitive equilibrium prices. While these properties are of

independent interest, we also use them to prove some of our subsequent results.

7The stated equivalences are shown in our companion paper (Hatfield et al., 2013).
8This technique is a generalization of the construction of Sun and Yang (2006), which maps an exchange

economy with two classes of goods (with preferences satisfying the gross substitutes and complements con-
dition over these two classes) to an exchange economy in which preferences satisfy the Kelso–Crawford
substitutability condition. In Sections 4.2 and 4.3 we discuss in more detail the connection of our results
with those of Sun and Yang (2006).
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We then turn to our key results establishing the connections between competitive equi-

libra and stable outcomes. First, we show that (even when preferences are not fully substi-

tutable) any competitive equilibrium induces a stable outcome. The proof of this result is

similar in spirit to the standard arguments showing that competitive equilibrium outcomes

are in the core, but it is more subtle: Unlike the core, stability also rules out the possibil-

ity that agents may profitably recontract while maintaining some of their prior contractual

relationships with other agents. Second, we prove a converse: under fully substitutable pref-

erences, any stable outcome corresponds to a competitive equilibrium. These two results

establish an essential equivalence between the two solution concepts under full substitutabil-

ity. While this equivalence is analogous to a similar finding of Kelso and Crawford (1982)

for two-sided many-to-one matching markets, it is more complex. In the setting of Kelso

and Crawford (1982), one can construct “missing” prices for unrealized trades simply by

considering those trades one by one, because in that setting each worker can be employed

by at most one firm. In our setting, that simple procedure would not work, because each

agent can be involved in multiple trades. To get around this difficulty, for a given stable

outcome, we consider a new economy consisting of trades that are not part of the stable

outcome and modified utilities that assume that the agents have access to the trades that

are part of the stable outcome. We then show that preferences in this modified economy

are fully substitutable and use our earlier results to establish the existence of a competitive

equilibrium in this modified economy. Finally, we use the prices for all trades in the com-

petitive equilibrium of the modified economy to construct a competitive equilibrium in the

original economy.

Thus, fully substitutable preferences are sufficient for the existence of stable outcomes and

competitive equilibria and for the essential equivalence of these two concepts. Our final main

result establishes that full substitutability is also, in the maximal domain sense, necessary:

if any agent’s preferences are not fully substitutable, then fully substitutable preferences can
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be found for other agents such that no stable outcome exists.9,10

After presenting our main results, we analyze the relationship between stability as defined

in this paper and several other solution concepts. Generalizing the results of Shapley and

Shubik (1971) and Sotomayor (2007), we show that all stable outcomes are in the core

(although, unlike in the basic one-to-one assignment model, the converse is not true here).

We then consider the strong group stability solution concept and show that, in contrast

to the results of Echenique and Oviedo (2006) and Klaus and Walzl (2009) for matching

markets without transfers, in our setting the set of stable outcomes coincides with the set of

strongly group stable outcomes.11

Finally, we show that our model embeds the more common setting in which agents are

indifferent over their trading partners. We introduce a condition on utilities formalizing this

idea, and show that under this condition, a competitive equilibrium with “anonymous”—

rather than personalized—prices always exists. Our framework also allows for a hybrid case,

in which prices are personalized for some goods and anonymous for others.

The rest of this paper is organized as follows. In Section 2, we formalize our model. In

Section 3, we present our main results. In Section 4, we study the relationships among com-

9In the setting of two-sided many-to-one matching with transfers, Kelso and Crawford (1982) show that
substitutability is sufficient for the existence of stable outcomes and competitive equilibria; Gul and Stacchetti
(1999) and Hatfield and Kojima (2008) prove corresponding necessity results.

In a setting in which two types of indivisible objects need to be allocated to consumers, Sun and Yang
(2006) show that competitive equilibria are guaranteed to exist if consumers view objects of the same type
as substitutes and view objects of different types as complements (see also Section 4.2).

Sufficiency and necessity of fully substitutable preferences also obtains in settings of many-to-many match-
ing with and without contracts (Roth (1984), Echenique and Oviedo (2006), Klaus and Walzl (2009), and
Hatfield and Kominers (2010) prove sufficiency results; Hatfield and Kojima (2008) and Hatfield and Komin-
ers (2010) prove necessity results) and matching in vertical networks (Ostrovsky (2008) and Hatfield and
Kominers (2012) prove sufficiency; Hatfield and Kominers (2012) prove necessity). Substitutable preferences
are sufficient for the existence of a stable outcome in the setting of many-to-one matching with contracts
(Hatfield and Milgrom, 2005), but are not necessary (Hatfield and Kojima, 2008, 2010; Hatfield and Komin-
ers, 2010).

10In subsequent work, Baldwin and Klemperer (2013) use the techniques of tropical geometry to obtain
alternative proofs of the sufficiency and necessity of full substitutability for the existence of competitive
equilibria. They also use these techniques to explore more general classes of preferences.

11In the companion paper (Hatfield et al., 2013), we also consider chain stability, extending the definition
of Ostrovsky (2008). While chain stability is logically weaker than stability, we show that the two concepts
are equivalent when agents’ preferences are fully substitutable. Hatfield and Kominers (2012) prove an
analogous result for the setting of Ostrovsky (2008).
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petitive equilibria, stable outcomes, and other solution concepts. We conclude in Section 5.

Except where mentioned otherwise, the proofs of all results are presented in the Appendix.

2 Model

There is a finite set I of agents in the economy. These agents can participate in bilateral

trades. Each trade ω is associated with a buyer b(ω) ∈ I and a seller s(ω) ∈ I, with

b(ω) 6= s(ω). The set of possible trades, denoted Ω, is finite and exogenously given. The set

Ω may contain multiple trades that have the same buyer and the same seller. For instance,

a worker (seller) may be hired by a firm (buyer) in a variety of capacities with different

job conditions and characteristics, and each possible type of job may be represented by a

different trade. One firm may sell multiple units of a good (or several different goods) to

another firm, with each unit represented by a separate trade. Furthermore, a firm may be

the seller in one trade and the buyer in another trade with the same partner; formally, the

set Ω can contain trades ω and ψ such that s(ω) = b(ψ) and s(ψ) = b(ω).12

It is convenient to think of a trade as representing the nonpecuniary aspects of a trans-

action between a seller and a buyer (although in principle it could include some “financial”

terms and conditions as well). The purely financial aspect of a transaction associated with

a trade ω is represented by a price pω; the complete vector of prices for all trades in the

economy is denoted by p ∈ R|Ω|. Formally, a contract x is a pair (ω, pω), with ω ∈ Ω denoting

the trade and pω ∈ R denoting the price at which the trade occurs. The set of available

contracts is X ≡ Ω × R. For any set of contracts Y , we denote by τ(Y ) the set of trades

involved in contracts in Y : τ(Y ) ≡ {ω ∈ Ω : (ω, pω) ∈ Y for some pω ∈ R}.

For a contract x = (ω, pω), we denote b(x) ≡ b(ω) and s(x) ≡ s(ω) the buyer and seller

associated with the trade ω of contract x. Consider any set of contracts Y ⊆ X. We denote

12Such a pair of trades constitutes a cycle of length 2; since the model places no restrictions on the structure
of the set of trades, longer cycles may also be present in the economy. The incorporation of cycles into the
model is what allows us to accommodate markets with horizontal trading relationships such as the used car
market discussed in the Introduction.
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by Y→i the set of “upstream” contracts for i in Y , that is, the set of contracts in Y in which

agent i is the buyer: Y→i ≡ {y ∈ Y : i = b(y)}. Similarly, we denote by Yi→ the set of

“downstream” contracts for i in Y , that is, the set of contracts in Y in which agent i is

the seller: Yi→ ≡ {y ∈ Y : i = s(y)}. We denote by Yi the set of contracts in Y in which

agent i is involved as the buyer or the seller: Yi ≡ Y→i ∪ Yi→. We use analogous notation

to denote the subsets of trades associated with some agent i for sets of trades Ψ ⊆ Ω. We

let a(Y ) ≡ ∪y∈Y {b(y), s(y)} denote the set of agents involved in contracts in Y as buyers or

sellers.

We say that the set of contracts Y is feasible if there is no trade ω and prices pω and p̂ω

with pω 6= p̂ω such that both contracts (ω, pω) and (ω, p̂ω) are in Y ; i.e., a set of contracts is

feasible if each trade is associated with at most one contract in that set. An outcome A ⊆ X

is a feasible set of contracts.13 Thus, an outcome specifies which trades are executed and

what the associated prices are, but does not specify prices for trades that do not take place.

An arrangement is a pair [Ψ; p], where Ψ ⊆ Ω is a set of trades and p ∈ R|Ω| is a vector

of prices for all trades in the economy. We denote by κ([Ψ; p]) ≡ ∪ψ∈Ψ{(ψ, pψ)} the set of

contracts induced by the arrangement [Ψ; p]. Note that κ([Ψ; p]) is an outcome, and that

τ(κ([Ψ; p])) = Ψ.

2.1 Preferences

Each agent i has a valuation function ui over sets of trades Ψ ⊆ Ωi; we extend ui to Ω by

taking ui(Ψ) ≡ ui(Ψi) for any Ψ ⊆ Ω. The valuation ui gives rise to a quasilinear utility

function Ui over sets of trades and the associated transfers. We formalize this in two different

13In the literature on matching with contracts, the term “allocation” has been used to refer to a set of
contracts. Unfortunately, the term “allocation” is also used in the competitive equilibrium literature to
denote an assignment of goods, without specifying transfers. For this reason, to avoid confusion, we use the
term “outcome” to refer to a feasible set of contracts.
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ways. First, for any outcome Y , we say that

Ui(Y ) ≡ ui(τ(Y )) +
∑

(ω,pω)∈Yi→

pω −
∑

(ω,pω)∈Y→i

pω.

Second, for any arrangement [Ψ; p], we say that

Ui([Ψ; p]) ≡ ui(Ψ) +
∑

ψ∈Ψi→

pψ −
∑

ψ∈Ψ→i

pψ.

Note that, by construction, Ui([Ψ; p]) = Ui(κ([Ψ; p])).

We allow ui(Ψ) to take the value −∞ for some sets of trades Ψ in order to incorporate

various technological constraints.14 However, we also assume that for all i, the outside

option is finite: ui(∅) ∈ R. That is, no agent is “forced” to sign any contracts at extremely

unfavorable prices—he always has an outside option of completely withdrawing from the

market at some potentially high but finite price.

The utility function Ui gives rise to both demand and choice correspondences. The choice

correspondence of agent i from the set of contracts Y ⊆ X is defined as the collection of sets

of contracts maximizing the utility of agent i:

Ci(Y ) ≡ argmax
Z⊆Yi; Z is feasible

Ui(Z).

The demand correspondence of agent i given a price vector p ∈ R|Ω| is defined as the collection

of sets of trades maximizing agent the utility of agent i under prices p:

Di(p) ≡ argmax
Ψ⊆Ωi

Ui([Ψ; p]).

14For instance, if agent i requires an input to produce the output associated with trade ω, and cannot
produce that output without that input, then ui({ω}) = −∞. Incorporating such constraints is essential
for modeling economies with intermediate production. Note that such constraints are ruled out in the
literature on exchange economies with indivisible goods (see, e.g., Bikhchandani and Mamer, 1997, and Gul
and Stacchetti, 1999), which assumes that every bundle of goods is acceptable to every agent.
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Note that while the demand correspondence always contains at least one (possibly empty)

set of trades, the choice correspondence may be empty-valued (e.g., if Y consists of all

contracts with prices strictly between 0 and 1). If the set Y is finite, then the choice

correspondence is also guaranteed to contain at least one set of contracts.

We can now introduce the full substitutability15 concept for our setting: When presented

with additional contractual opportunities to purchase, an agent both rejects any previously

rejected purchase opportunities and continues to choose any previously chosen sale oppor-

tunities. Analogously, when presented with additional contractual opportunities to sell, an

agent rejects any previously rejected sale opportunities and continues to choose any previ-

ously chosen purchase opportunities. Formally, we define full substitutability in the language

of sets and choices, adapting and merging the same-side substitutability and cross-side com-

plementarity conditions of Ostrovsky (2008).

Definition 1. The preferences of agent i are fully substitutable if:

1. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Yi→ = Zi→, and

Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have Y→i \Y ∗→i ⊆ Z→i \Z∗→i

and Y ∗i→ ⊆ Z∗i→;

2. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Y→i = Z→i, and

Yi→ ⊆ Zi→, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have Yi→ \Y ∗i→ ⊆ Zi→ \Z∗i→

and Y ∗→i ⊆ Z∗→i.

In other words, the choice correspondence Ci is fully substitutable if (once attention is

restricted to sets for which Ci is single-valued), when the set of opportunities available to i

on one side expands, i both rejects a larger set of contracts on that side and selects a larger

set of contracts on the other side.

15Since preferences are quasilinear in our setting, there is no distinction between gross and net substitutes.
Therefore, we drop the “gross” specification.
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2.2 Discussion of the Full Substitutability Condition

While Definition 1 is natural and intuitive, it does rule out some economically important

cases. First, it rules out the possibility of large fixed costs which, e.g., may make an agent

willing to sell several units of its product at a particular price p but unwilling to sell just

one such unit at the same price. More generally, it rules out economies of scale and com-

plementarities in production or consumption. (Of course, these cases are also ruled out by

the usual Kelso–Crawford substitutability condition in two-sided markets.) In addition, the

full substitutability condition rules out the possibility that an intermediary has aggregate

capacity constraints while able to produce multiple types of output, each requiring a differ-

ent type of input. For instance, suppose agent i (a bakery) can make white or brown bread

from white or brown flour, respectively. Suppose i is profitably producing and selling white

bread, and gains an opportunity to sell brown bread profitably. If i is capacity constrained,

he may shift some of his capacity from producing white bread to producing brown bread,

thus buying less white flour (or perhaps not buying it at all). In this case, the preferences

of agent i are not fully substitutable, as the expansion of the set of options available to i

on one side leads i to drop some of his contracts on the other side.16 Note that our domain

maximality result (Theorem 7) implies that in all of the cases in which preferences are not

fully substitutable, the existence of stable outcomes and competitive equilibria cannot be

guaranteed.

At the same time, the full substitutability condition holds for a variety of important

classes of production and utility functions. The most straightforward case in which full

substitutability holds is the case of homogeneous goods, with diminishing marginal utilities

of consumption and increasing marginal costs of production. For example, suppose some

agents in the market participate only as consumers (they do not sell anything in the market),

and their payoffs depend only on the number of units of the good that they purchase, with

each additional unit being less valuable than the previous one. Some agents participate

16We thank a referee for this example.
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only as sellers (they do not buy anything in the market), and their production costs depend

only on the number of units that they sell, with each additional unit being more expensive

to produce than the previous one. Finally, some agents are intermediaries who both buy

units of an input good and produce units of an output good. They require one unit of

input to produce one unit of output, and incur a manufacturing cost, which depends only

on the number of units “transformed,” with each additional unit being more expensive to

“transform” than the previous one. In this economy, all preferences are fully substitutable.

Full substitutability also holds in various generalizations of this model, incorporating, e.g.,

heterogeneous transportation costs or the possibility that some intermediaries may derive

utility from consuming some of the inputs or have the capability to produce some outputs

without buying the corresponding inputs.

For a richer class of fully substitutable preferences that involves “substantively” hetero-

geneous goods, we return to the used car setting discussed in the Introduction. Buyers and

sellers of used cars typically want to trade at most one car; thus, their preferences trivially

satisfy the full substitutability condition.17 The preferences of dealers are more complex.

Consider a dealer d. The dealer’s goal is to maximize the difference between the prices at

which he sells used cars and the amounts he pays to acquire and refurbish them. Formally,

let Y be a set of contracts, representing the options available to dealer d. The set Y→d ⊆ Y

is the set of car offers available to dealer d, in which each element (ϕ, pϕ) specifies the char-

acteristics of the offered car and its price. The set Yd→ ⊆ Y is the set of requests for cars

available to dealer d, in which each element (ψ, pψ) specifies the characteristics of the re-

quested car and its price. Note that these offers and requests can come from other dealers

or from individual sellers or buyers.

Dealer d knows whether any given car offer ϕ and request ψ are compatible, i.e., whether

the characteristics of car offer ϕ match the characteristics of request ψ (ignoring prices).18

17Important exceptions are financial leasing companies selling off-lease vehicles and rental car agencies
selling fleet vehicles (Tadelis and Zettelmeyer, 2011; Larsen, 2013). In both of these cases, sellers’ payoffs
are essentially additive across cars; hence, their preferences satisfy the full substitutability condition.

18For instance, a blue Toyota Camry of a particular year and mileage would be compatible with a request
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The dealer also knows the cost, cϕ,ψ, of preparing a given car ϕ for resale to satisfy a

compatible request ψ.19 The dealer’s objective is to match some of the car offers in Y→d with

some of the requests in Yd→ in a way that maximizes his profit,
∑

(ϕ,ψ)∈µ(pψ − pϕ − cϕ,ψ),

where µ denotes the set of compatible car offer–request pairs that the dealer selects.

Formally, define a matching, µ, as a set of pairs of trades (ϕ, ψ) such that ϕ is an element

of Ω→d (i.e., a car available to dealer d), ψ is an element in Ωd→ (i.e., a car request received

by dealer d), ϕ and ψ are compatible, and each trade in Ωd belongs to at most one pair in µ.

Slightly abusing notation, let the cost of matching µ, c(µ), be equal to the sum of the costs

of pairs involved in µ (i.e., c(µ) =
∑

(ϕ,ψ)∈µ cϕ,ψ).

For a set of trades Ξ ⊆ Ωd, let M(Ξ) denote the set of matchings µ of elements of Ξ such

that every element of Ξ belongs to exactly one pair in µ.20 Then the valuation of dealer d

over sets of trades Ξ ⊆ Ωd is given by:

ud(Ξ) =


minµ∈M(Ξ) c(µ) if M(Ξ) 6= ∅

−∞ if M(Ξ) = ∅,

i.e., it is equal to the cost of the cheapest way of matching all car requests and offers in Ξ if

such a matching is possible, and is equal to −∞ otherwise.21 (Note that ud(∅) = 0.) The

for a Toyota Camry with matching year and mileage range, but would not be compatible with a request for a
blue Honda Accord or for a blue Camry with the “wrong” year or mileage range. Note that we do not require
a buyer of a used car to have demand only for a specific make-model-year-mileage-option combination; a
buyer’s preferences can specify, for example, that the value of a Toyota Camry to him is $2,000 higher
than the value of a Honda Accord with the same characteristics, or that each additional 1,000 miles on
the car’s odometer decreases that car’s value by $150. In other words, each request ψ is detailed enough
that the buyer has the same value for any car that matches the request ψ, and the buyer’s preferences are
represented by a set of requests that he is indifferent over (“I am willing to pay $15,000 for a Toyota Camry
with such-and-such characteristics or $14,500 for a Toyota Camry with so-and-so characteristics or $13,000
for a Honda Accord with such-and-such characteristics or . . . ”).

19This cost may involve inspecting the car, repairing it, detailing, and so on. Note that the cost may be
specific to request ψ: e.g., a car sold to an individual buyer may need to be repaired and detailed, while the
same car sold to another dealer may not require these extra costs.

20Of course, M(Ξ) can be empty; e.g., it is empty if the number of car offers in Ξ is not equal to the
number of car requests, or if there are some requests in Ξ that are not compatible with any car offers in Ξ.

21This assumption ensures that any set chosen by dealer d contains an equal number of car offers and car
requests. In principle, we could consider a more general (yet still fully substitutable) valuation function in
which a dealer has utility for a car that he does not resell. In that case, the dealer may end up choosing
more car offers than car requests.
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utility function of d over feasible sets of contracts is induced by valuation ud in the standard

way, formalized in the beginning of Section 2.1.

Proposition 1. The preferences of dealer d are fully substitutable.

For intuition, suppose a new request (ψ, pψ) is added to the set of options Y available to

dealer d (resulting in a new set of options Z = Y ∪ {(ψ, pψ)}), and the dealer reoptimizes;

denote the corresponding optimal choices Y ∗ and Z∗. If the new request (ψ, pψ) remains

unfilled after reoptimization ((ψ, pψ) /∈ Z∗), or it is satisfied by a car offer (ϕ, pϕ) that was

not previously a part of the optimal choice ((ϕ, pϕ) /∈ Y ∗), then all other car offers and

requests in the optimal solution remain unaffected and the conditions of Definition 1 are

immediately satisfied. If, on the other hand, this new request (ψ, pψ) is matched to a car

offer (ϕ, pϕ) that was previously a part of the optimal choice of dealer d ((ϕ, pϕ) ∈ Y ∗), then

the remaining contracts in the optimal solution are affected in exactly the same way as they

would be affected if contract (ϕ, pϕ) were simply removed from the set of options Y and the

dealer were asked to reoptimize. Thus, if the preferences of dealer d satisfy the requirements

of full substitutability for option sets of size k, they also satisfy these requirements for option

sets of size k+1. This observation is the key inductive step in the proof of Proposition 1.22,23

Concluding the discussion of full substitutability, we note that Definition 1 restricts at-

tention to sets of contracts for which choices are single-valued. In the companion paper

(Hatfield et al., 2013), we show that this definition is equivalent to more general versions

which explicitly deal with indifferences and multi-valued correspondences. In addition, this

definition is equivalent to several conditions, including a generalization of the “gross sub-

stitutes and complements” condition on demand functions (Sun and Yang, 2006) and the

submodularity of the indirect utility function Vi(p) ≡ maxΨ⊆Ωi
Ui([Ψ; p]). Our proofs rely

22Note that the definition of valuation function ud of dealer d implicitly rules out the complications listed
in the beginning of Section 2.2: fixed costs, economies of scale, and capacity constraints. In the presence of
such complications, the preferences of dealer d may not be fully substitutable.

23For another example of an intermediary with fully substitutable preferences over “substantively” hetero-
geneous goods, see the iron ore/scrap/steel plant example at the end of Section I.A of Ostrovsky (2008). For
a related class of rich substitutable preferences of agents who only form contracts on one side (i.e., only buy
or only sell), see the class of “endowed assignment valuations” discussed by Hatfield and Milgrom (2005).
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on several equivalent definitions of full substitutability developed in the companion paper;

we indicate in the Appendix wherever this is the case.

2.3 Stability and Competitive Equilibrium

The main solution concepts that we study are stability and competitive equilibrium. Both

concepts specify which trades are executed and what the associated prices are. Competitive

equilibria also specify prices for trades that are not formed.

Definition 2. An outcome A is stable if it is

1. Individually rational: Ai ∈ Ci(A) for all i;

2. Unblocked: There is no feasible nonempty blocking set Z ⊆ X such that

(a) Z ∩ A = ∅, and

(b) for all i ∈ a(Z), for all Y ∈ Ci(Z ∪ A), we have Zi ⊆ Y .

Individual rationality requires that no agent can become strictly better off by dropping

some of the contracts that he is involved in. This is a standard requirement in the matching

literature. The second condition states that when presented with a stable outcome A, one

cannot propose a new set of contracts Z such that for every agent i involved in these new

contracts, Zi is a subset of any optimal choice from Zi ∪ Ai. This requirement is a natural

adaptation of the stability condition of Hatfield and Kominers (2012) to the current setting.

We discuss the relationship between our concept of stability and several other stability

concepts considered in the matching literature, such as the core and strong stability, in

Section 4.1.

Our second solution concept is competitive equilibrium.

Definition 3. An arrangement [Ψ; p] is a competitive equilibrium if for all i ∈ I,

Ψi ∈ Di(p).
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This is the standard concept of competitive equilibrium, adapted to the current setting:

market-clearing is “built in,” because each trade in Ψ carries with it the corresponding buyer

and seller, and in competitive equilibrium each agent is (weakly) optimizing given market

prices. Note that here we implicitly allow for “personalized” prices: identical goods may

be sold by a seller to two different buyers at two different prices. In many settings, sellers

may not care whom they sell their goods to, and buyers may not care whom they buy from;

hence, it is natural to talk about “anonymous,” good-specific prices rather than personalized

prices. Indeed, this is how the classical models of competitive equilibrium are usually set up

and interpreted. In Section 4.2 we show how to embed the anonymous-price setting in our

framework.

3 Main Results

We now present our three main contributions. First, we show that when preferences are fully

substitutable, competitive equilibria are guaranteed to exist and have a number of interesting

properties, analogous to those of competitive equilibria in two-sided settings. We then show

that under full substitutability, the set of competitive equilibria essentially coincides with

the set of stable outcomes. Finally, we show that if preferences are not fully substitutable,

stable outcomes and competitive equilibria need not exist.

3.1 Existence and Properties of Competitive Equilibria

Theorem 1. Suppose that agents’ preferences are fully substitutable. Then there exists a

competitive equilibrium.

A key idea of the proof of Theorem 1 is to associate to the original market a two-sided

many-to-one matching market with transfers, in which each agent corresponds to a “firm”

and each trade corresponds to a “worker.” The valuation of firm i for hiring a set of workers
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Ψ ⊆ Ωi in the associated two-sided market is given by

vi(Ψ) ≡ ui (Ψ→i ∪ (Ω \Ψ)i→) . (1)

Intuitively, we think of the firm as employing all of the workers associated with trades that

the firm buys and with trades that the firm does not sell. We show that vi satisfies the gross

substitutes condition of Kelso and Crawford (1982) as long as ui is fully substitutable.24

Workers strongly prefer to work rather than being unemployed, and their utilities are mono-

tonically increasing in wages. Also, every worker ω has a strong preference for being employed

by b(ω) and s(ω) rather than some other firm i ∈ I \{b(ω), s(ω)}. With these definitions, we

have a two-sided market of the type studied by Kelso and Crawford (1982). In this market,

a competitive equilibrium is guaranteed to exist, and in every equilibrium, every worker ω

is matched to b(ω) or s(ω).

We then transform this competitive equilibrium back into a set of trades and prices

for the original economy as follows: Trade ω is included in the set of executed trades in

the original economy if the worker ω is hired by b(ω) in the associated market and is not

included if ω is hired by s(ω). We use the wages in the associated market as prices in the

original market. We thus obtain a competitive equilibrium of the original economy: Given

the prices generated, a trade ω is demanded by its buyer if and only if it is also demanded

by its seller (i.e., not demanded by the seller in the associated market).

This construction also provides an algorithm for finding a competitive equilibrium. For

instance, once we have transformed the original economy into an associated market, we can

use an ascending auction for workers to find the minimal-price competitive equilibrium of

the associated market; we may then map that competitive equilibrium back to a competitive

equilibrium of the original economy.

An important issue that we need to address in the above construction is that the modified

24This construction is analogous to the one Sun and Yang (2006) use to transform an exchange economy
with two types of goods, which are substitutable within each type and complementary across types, into an
economy in which preferences satisfy the gross substitutes condition of Kelso and Crawford (1982).
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valuation function in Equation (1) may in principle be unbounded and take the value −∞ for

some sets of trades, violating the assumptions of Kelso and Crawford (1982). To deal with

this issue, we further modify the valuation function by bounding it in a way that preserves

full substitutability and at the same time ensures that the equilibrium derived from the

“bounded” economy remains an equilibrium of the original economy. We also need to ensure

that the equilibrium in the associated two-sided market exhibits full employment, in order

to be able to map an equilibrium of the associated economy to an equilibrium of the original

one.

We now turn to the properties of competitive equilibria in this economy. While these

properties, as well as their proofs, are similar to those of competitive equilibria in two-sided

settings (Gul and Stacchetti, 1999; Sun and Yang, 2006), it is important to verify that they

continue to hold in this richer environment. We also rely on some of these properties in the

proofs of our subsequent results.

We first note an analogue of the first welfare theorem in our economy.

Theorem 2. Suppose that [Ψ; p] is a competitive equilibrium. Then Ψ is an efficient set of

trades, i.e.,
∑

i∈I ui(Ψ) ≥
∑

i∈I ui(Ψ
′) for any Ψ′ ⊆ Ω.

Our next result can be viewed as a strong version of the second welfare theorem for

our setting, providing a converse to Theorem 2: For any efficient set of trades Ψ and any

competitive equilibrium price vector p, the arrangement [Ψ; p] is a competitive equilibrium.

Generically, the efficient set of trades is unique, in which case this statement follows imme-

diately from Theorem 2. We show that it also holds when there are multiple efficient sets of

trades.

Theorem 3. Suppose that agents’ preferences are fully substitutable. Then for any compet-

itive equilibrium [Ξ; p] and efficient set of trades Ψ, [Ψ; p] is also a competitive equilibrium.

The result of Theorem 3 implies that the notion of a competitive equilibrium price vector

is well-defined. Our next result shows that the set of such vectors is a lattice.
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Theorem 4. Suppose that agents’ preferences are fully substitutable. Then the set of com-

petitive equilibrium price vectors is a lattice.

The lattice structure of the set of competitive equilibrium prices is analogous to the

lattice structure of the set of stable outcomes for economies without transferable utility. In

those models, there is a buyer-optimal and a seller-optimal stable outcome. In our model,

the lattice of equilibrium prices may in principle be unbounded. If the lattice is bounded,25

then there exist lowest-price and highest-price competitive equilibria.

3.2 The Relationship between Competitive Equilibria and Stable

Outcomes

We now show how the sets of stable outcomes and competitive equilibria are related. First,

we show that for every competitive equilibrium [Ψ; p], the associated outcome κ([Ψ; p]) is

stable.

Theorem 5. Suppose that [Ψ; p] is a competitive equilibrium. Then κ([Ψ; p]) is stable.

If for some competitive equilibrium [Ψ; p] the outcome κ([Ψ; p]) is not stable, then either

it is not individually rational or it is blocked. If it is not individually rational for some

agent i, then κ([Ψ; p])i /∈ Ci(κ([Ψ; p])). Hence, Ψi /∈ Di(p), and so [Ψ; p] is not a competitive

equilibrium. If κ([Ψ; p]) admits a blocking set Z, then all the agents with contracts in Z

are strictly better off after the deviation. It follows that at the original price vector p, there

exists an agent i ∈ a(Z) who is strictly better off combining trades from τ(Z) with (some

or all of) his holdings in τ(κ([Ψ; p])) = Ψ. Hence, Ψi /∈ Di(p), so [Ψ; p] is not a competitive

equilibrium. Note that this result does not rely on full substitutability.

However, it is not generally true that all stable outcomes correspond to competitive

equilibria. To see this, consider the following example.

25For example, if all valuations ui are bounded.
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Example 1. There are two agents, i and j, and two trades, χ and ϕ, where s(χ) = s(ϕ) = i

and b(χ) = b(ϕ) = j. Agents’ valuations are:

ui(∅) = uj(∅) = 0,

ui({χ}) = ui({ϕ}) = ui({χ, ϕ}) = −4,

uj({χ}) = uj({ϕ}) = uj({χ, ϕ}) = 3.

In this case, ∅ is stable. Since ∅ is the only efficient set of trades, by Theorem 3 any

competitive equilibrium must be of the form [∅; p]. However, we must then have pχ+pϕ ≤ 4,

as otherwise i will choose to sell at least one of ϕ or χ. Moreover, we must have pχ, pϕ ≥ 3,

as otherwise j will buy at least one of ϕ or χ. Clearly, all three inequalities cannot jointly

hold. Hence, while ∅ is stable, there is no corresponding competitive equilibrium.

The key issue is that an outcome A only specifies prices for the trades in τ(A), while a

competitive equilibrium must specify prices for all trades (including those trades that do not

transact). Hence, in the presence of complementarities, it is possible that, while an outcome

A is stable, one cannot assign prices to trades outside of τ(A) in such a way that τ(A)i is

an optimal set of trades for every agent i given those prices. Note that in Example 1, the

preferences of agent j are fully substitutable, but those of agent i are not.

If, however, the preferences of all agents are fully substitutable, then for any stable

outcome A we can in fact find a supporting set of prices p such that [τ(A); p] is a competitive

equilibrium and the prices of trades that transact are the same as in A.

Theorem 6. Suppose that agents’ preferences are fully substitutable and A is a stable out-

come. Then there exists a price vector p ∈ R|Ω| such that [τ(A); p] is a competitive equilibrium

and if (ω, p̄ω) ∈ A, then pω = p̄ω.

To construct a competitive equilibrium from a stable outcome A, we need to find appro-

priate prices for the trades that are not part of the stable outcome, i.e., trades ω ∈ Ω\τ(A).
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In the case of two-sided markets, this can be done on a trade-by-trade basis, because it is

sufficient to verify that the price assigned to a trade will not make this trade desirable for

either its buyer or its seller given the prices of the trades that those agents execute. In

our setting, this approach does not work, because the willingness of a buyer to make a new

purchase may also depend on the prices assigned to the trades in which he is a potential

seller. Thus, equilibrium prices for trades in Ω \ τ(A) are interdependent, and need to be

assigned simultaneously in a consistent manner.

To prove Theorem 6, we start with the original market and the stable outcome A, and

then construct a modified market. In this modified market, the set of available trades is

Ω \ τ(A), and the valuation of each player i for a set of trades Ψ ⊆ Ω \ τ(A) is equal to the

highest value that he can attain by combining the trades in Ψi with various subsets of Ai.

We first show that the corresponding preferences of each player i are fully substitutable;

the modified market thus has a competitive equilibrium by Theorem 1. We then show

that at least one such equilibrium has to be of the form [∅; p̂] for some vector p̂ ∈ R|Ω\τ(A)|;

otherwise, as we show, there must exist a nonempty set that blocks A in the original economy

(the proof of this statement relies on Theorems 2 and 3, our “first” and “second” welfare

theorems). Assigning the prices specified by p̂ to the trades that are not part of A, we obtain

a competitive equilibrium of the original economy.

3.3 Full Substitutability as a Maximal Domain

We now show a maximal domain result: if the preferences of any one agent are not fully

substitutable, then stable outcomes need not exist. In fact, in that case we can construct

simple preferences for other agents such that no stable outcome exists.

Definition 4. Consider an arbitrary agent i ∈ I.

1. Trades ψ and ω in Ωi are independent if for all Φ ⊆ Ωi \ {ψ, ω}, ui({ψ, ω} ∪ Φ) −

ui({ω} ∪ Φ) = ui({ψ} ∪ Φ)− ui(Φ).
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2. Trades ψ and ω in Ωi are incompatible if ψ, ω ∈ Ω→i or ψ, ω ∈ Ωi→ and for all

Φ ⊆ Ωi \ {ψ, ω}, ui({ψ, ω} ∪ Φ) = −∞.

3. Trades ψ and ω in Ωi are dependent if ψ ∈ Ω→i and ω ∈ Ωi→, or ψ ∈ Ωi→ and ω ∈ Ω→i,

and for all Φ ⊆ Ωi \ {ψ, ω}, ui({ψ} ∪ Φ) = −∞ or ui({ω} ∪ Φ) = −∞.

The preferences of agent i are simple if for all ψ, ω ∈ Ωi, ψ and ω are either independent,

incompatible, or dependent.

Two trades ψ and ω are independent for i if the marginal utility i obtains from performing

ψ does not affect the marginal utility that i obtains from performing ω. By contrast, the

trades ψ and ω are incompatible for i if i is unable to perform ψ and ω simultaneously;

for instance, if ψ and ω both denote the transfer of a particular object, but to different

individuals, then ui({ψ, ω}) = −∞. Finally, the trades ψ and ω are dependent for i if i can

perform one of them only while performing the other; for instance, if ψ denotes the transfer

from s(ψ) to i of a necessary input of a production process, and ω denotes the transfer of

the output of that process from i to b(ω), then ui({ω}) = −∞.

Simple preferences play a role similar to that of unit-demand preferences, used in the Gul

and Stacchetti (1999) result characterizing the maximal domain for the existence of compet-

itive equilibria in exchange economies. However, in our setting we must allow an individual

agent to act as a set of unit-demand consumers and unit-supply producers. This is necessary

as each contract specifies both a buyer and a seller, and the violation of substitutability may

only occur for an agent i when he holds multiple contracts with another agent.

Our maximal domain result also requires sufficient “richness” of the set of trades. Specif-

ically, we require that the set of trades Ω is exhaustive, i.e., that for each distinct i, j ∈ I

there exist ψ, ω ∈ Ω such that b(ψ) = s(ω) = i and b(ω) = s(ψ) = j.

Theorem 7. Suppose that there exist at least four agents and that the set of trades is

exhaustive. Then if the preferences of some agent are not fully substitutable, there exist

simple preferences for all other agents such that no stable outcome exists.26

26The proof of this result also shows that, for two-sided markets with transferable utility, if any agent’s
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To understand the intuition behind Theorem 7, consider the following example.

Example 2. Agent i is just a buyer, and has perfectly complementary preferences over the

trades χ and ϕ, and is not interested in other trades, i.e., ui({χ, ϕ}) = 1 and ui({χ}) =

ui({ϕ}) = ui(∅) = 0.

Suppose that s(χ) and s(ϕ) also have trades χ̂ and ϕ̂ (where s(χ̂) = s(χ) and s(ϕ̂) = s(ϕ))

with another agent j 6= i. Let the valuations of these agents be given by:

us(χ)({χ̂}) = us(χ)({χ}) = us(χ)(∅) = 0, us(χ)({χ, χ̂}) = −∞,

us(ϕ)({ϕ̂}) = us(ϕ)({ϕ}) = us(ϕ)(∅) = 0, us(ϕ)({ϕ, ϕ̂}) = −∞,

uj({χ̂, ϕ̂}) = uj({χ̂}) = uj({ϕ̂}) =
3

4
, uj(∅) = 0.

Then in any stable outcome, s(χ) will sell at most one of χ and χ̂, and s(ϕ) will sell at most

one of ϕ and ϕ̂. It cannot be that {χ, ϕ} is part of a stable outcome, as the total price of

χ and ϕ is at most 1; this means that at least one of these trades has a price less than or

equal to 1
2
. Suppose without loss of generality that pϕ ≤ 1

2
—we then have that {(ϕ̂, 5

8
)} is a

blocking set. It also cannot be the case that {(χ̂, pχ̂)} or {(ϕ̂, pϕ̂)} is stable: in the former

case, pχ̂ must be less than 3
4
, in which case {(χ, 7

8
), (ϕ, 1

16
)} is a blocking set. An analogous

construction addresses the latter case.

The proof of Theorem 7 essentially generalizes Example 2 and can be found in the Online

Appendix. As (for any preferences) all competitive equilibria generate stable outcomes (by

Theorem 5) and (by Theorem 7) stable outcomes may not exist when preferences are not

fully substitutable, we have the following corollary.

Corollary 1. Suppose that there exist at least four agents and that the set of trades is

exhaustive. Then, if the preferences of some agent are not fully substitutable, there exist

simple preferences for all other agents such that no competitive equilibrium exists.

preferences are not fully substitutable, then if there exists at least one other agent on the same side of the
market, simple preferences can be constructed such that no stable outcome exists.
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4 Other Solution Concepts and Frameworks

In this section, we describe the relationships between competitive equilibrium, stability, and

other solution concepts that have played important roles in the literature, and discuss the

connections between our setting and several earlier frameworks.

4.1 The Core and Strong Group Stability

We start by introducing a classical solution concept: the core.

Definition 5. An outcome A is in the core if it is core unblocked : there does not exist a set

of contracts Z such that, for all i ∈ a(Z), Ui(Z) > Ui(A).

The definition of the core differs from that of stability in two ways. First, a core block

requires all the agents with contracts in the blocking set to drop their contracts with other

agents; this is a more stringent restriction than that of stability, which allows agents with

contracts in the blocking set to retain previous relationships. Second, a core block does

not require that Zi ∈ Ci(Z ∪ A) for all i ∈ a(Z); rather, it requires only the less stringent

condition that Ui(Z) > Ui(A).

Definition 6. An outcome A is strongly group stable if it is

1. Individually rational;

2. Strongly unblocked: There does not exist a nonempty feasible Z ⊆ X such that

(a) Z ∩ A = ∅, and

(b) for all i ∈ a(Z), there exists a Y i ⊆ Z ∪A such that Z ⊆ Y i and Ui(Y
i) > Ui(A).

Strong group stability is more stringent than both stability and core as strong unblocked-

ness (1) allows for the possibility that when considering a block Z, agents may retain previ-

ously held contracts (as in the definition of stability, but not in the definition of the core),

and (2) requires only that the new set of contracts for each agent be an improvement (as
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in the definition of the core, but not in the definition of stability, it does not have to be

optimal).

Strong group stability is more stringent than the strong stability concept of Hatfield and

Kominers (2010), as strong stability imposes the additional requirement that each Y i must be

individually rational. Strong group stability is also more stringent than the group stability

concept introduced by Roth and Sotomayor (1990) and extended to the setting of many-

to-many matching by Konishi and Ünver (2006), as group stability imposes the additional

requirement that if y ∈ Y b(y), then y ∈ Y s(y), i.e., that the deviating agents agree on the

contracts from the original allocation kept after the deviation. Strong stability and group

stability themselves strengthen the concept of setwise stability introduced by Echenique and

Oviedo (2006) and Klaus and Walzl (2009), which imposes both of the above requirements.27

Given these definitions, the following result is immediate.

Theorem 8. Any strongly group stable outcome is stable and in the core. Furthermore, any

core outcome is efficient.

Without additional assumptions on preferences, no additional structure need be present.28

For models without continuously transferable utility (see e.g., Sotomayor, 1999; Echenique

and Oviedo, 2006; Klaus and Walzl, 2009; Hatfield and Kominers, 2010; and Westkamp,

2010), strong group stability is strictly more stringent than stability. However, in the pres-

ence of continuously transferable utility and fully substitutable preferences, these solution

concepts coincide.

Theorem 9. If preferences are fully substitutable and A is a stable outcome, then A is

strongly group stable and in the core. Moreover, for any core outcome A, there exists a

stable outcome Â such that τ(A) = τ(Â).29

27The setwise stability concept used in these works is slightly stronger than the definition of setwise
stability introduced by Sotomayor (1999); Klaus and Walzl (2009) discuss the subtle differences between
these two definitions.

28In the Online Appendix, we present examples showing (i) that it may be the case that both stable and
core outcomes exist for a given set of preferences, while no outcome is both stable and core, and (ii) an
outcome that is both stable and in the core need not be strongly group stable.

29This result is in a sense sharp: In the Online Appendix, we present an example that shows that even for
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4.2 Competitive Equilibria without Personalized Prices

The competitive equilibrium concept studied in this paper treats trades as the basic unit of

analysis; a price vector specifies one price for each trade. For example, if agent i has one

object to sell, a competitive equilibrium price vector generally specifies a different price for

each possible buyer, allowing for personalized pricing. Personalized prices arise naturally

in decentralized markets, reflecting the idea that agents have access to different trading

opportunities.

By contrast, for markets in which all trading opportunities can be thought of as being

universally available, it is natural to assume that the identity of the trading partner is

irrelevant; in that case, the convention is to study notions of competitive equilibrium that

assign a single, uniform price to each object (see, e.g., Gul and Stacchetti, 1999, and Sun

and Yang, 2006). Our next result shows that the standard uniform pricing model studied in

the prior literature embeds into our model.

Definition 7. Consider an arbitrary agent i ∈ I.

1. The trades in some set Ψ ⊆ Ωi are mutually incompatible for i if for all Ξ ⊆ Ωi such

that |Ξ ∩Ψ| ≥ 2, ui(Ξ) = −∞;

2. The trades in some set Ψ ⊆ Ωi are perfect substitutes for i if for all Ξ ⊆ Ωi \Ψ and all

ω, ω′ ∈ Ψ, ui(Ξ ∪ {ω}) = ui(Ξ ∪ {ω′}).

Theorem 10. Suppose that agents’ preferences are fully substitutable. Suppose further that

for agent i, trades in Ψ ⊆ Ωi are mutually incompatible and perfect substitutes, and let [Ξ; p]

be an arbitrary competitive equilibrium.

(a) If Ψ ⊆ Ωi→, define q by qϕ = maxχ∈Ψ pχ for all ϕ ∈ Ψ and qϕ = pϕ for all ϕ ∈ Ω \Ψ.

Then, [Ξ; q] is a competitive equilibrium.

(b) If Ψ ⊆ Ω→i, define q by qϕ = minχ∈Ψ pχ for all ϕ ∈ Ψ and qϕ = pϕ for all ϕ ∈ Ω \ Ψ.

Then, [Ξ; q] is a competitive equilibrium.

fully substitutable preferences, the core may be strictly larger than the set of stable outcomes.
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As the preferences of agent i are fully substitutable, a trade ω ∈ Ωi→ cannot perfectly

substitute for a trade ω′ ∈ Ω→i. Hence, the two cases in the theorem are exhaustive.

This result allows us to embed the more standard competitive equilibrium frameworks

of Gul and Stacchetti (1999) and Sun and Yang (2006) as special cases of our model. In an

economy in the sense of Sun and Yang (2006), a finite set S of indivisible objects needs to

be allocated among a finite set J of agents with quasilinear utilities. Objects are partitioned

into two groups, S1 and S2. Agents’ preferences satisfy the gross substitutes and complements

(GSC) condition: Objects in the same group are substitutes and objects belonging to different

groups are complements. The setting of Gul and Stacchetti (1999) can be interpreted as the

special case in which S2 = ∅. To embed a Sun and Yang (2006) economy into our model, one

can view each object in S1 as an agent who can “sell” trades to agents in J , and each object

in S2 as an agent who can “buy” trades from agents in J .30 Each agent in S = S1 ∪ S2 has

reservation utility of 0 from not trading, is allowed to form at most one contract, and only

cares about the price of that contract.31 Agents in J can form multiple contracts, and the

valuation uj of agent j ∈ J from a set of trades with agents in set S ⊆ S1∪S2 is equal to the

valuation of agent j in the original economy from the set of objects S. Note that an agent

j forming a contract with agent o ∈ S1 at price p in the network economy corresponds to

agent j buying object o at price p in the original economy, while agent j forming a contract

with agent o ∈ S2 at price p corresponds to agent j buying object o at price −p in the

original economy. With this embedding, (GSC) in the original economy is equivalent to full

substitutability in the network economy, and thus all our results apply immediately. Since for

every agent in S, all trades are mutually incompatible and are perfect substitutes, Theorem 1

and Theorem 10 together imply the existence result of Sun and Yang (2006) for uniform-

30Thus, the set I of agents in the constructed economy is equal to J ∪ S1 ∪ S2. The set of possible trades
Ω consists of |S1|× |J |+ |J |× |S2| trades: those in which agents in S1 are sellers and agents in J are buyers,
and those in which agents in J are sellers and agents in S2 are buyers. Each pair (j, o) ∈ J × (S1 ∪ S2) is
involved in exactly one possible trade in Ω, and so we can identify set Ω with the set J × (S1 ∪ S2).

31Thus, agents in S1 will only be willing to participate in contracts with non-negative prices, while agents
in S2 will only be willing to participate in contracts with non-positive prices. In any equilibrium, all prices
paid by agents in J to agents in S1 will be non-negative, while all prices “paid” by agents in S2 to agents in
J will be non-positive.

29



price competitive equilibria. Note also that this embedding makes it transparent why the

construction of Sun and Yang (2006) works for markets with two groups of complementary

goods, but does not work for markets with three or more groups: the former case can be

reinterpreted in our framework, by making one group of objects “sellers” in the market and

the other group of objects “buyers,” while the latter case cannot.

4.3 Relation to Previous Models

In this section, we discuss how our model extends the frameworks considered in the earlier

literature. To make the discussion concrete, we focus on the used car market example we

discussed in the Introduction and Section 2.2.

First, recall that the set of possible trades among dealers can contain cycles. Because of

this possibility, such a market cannot be modeled using the vertical supply chain matching

framework of Ostrovsky (2008), which explicitly rules out cycles. More generally, if the set

of contractual opportunities is finite, i.e., if prices are not allowed to vary continuously, as

in the frameworks of Ostrovsky (2008) and Hatfield and Kominers (2012), stable outcomes

may fail to exist when cycles are present (see Theorem 5 of Hatfield and Kominers (2012)).

Thus, the earlier models of matching in networks are not suitable for studying markets such

as the used car market, in which horizontal trading relationships are allowed.

Second, note that used cars can be traded directly from a seller to a buyer as well as

indirectly through a dealer. Because of this possibility, such a market cannot be modeled

using the framework of Sun and Yang (2006). To see this, consider the following example.

The market consists of one seller, i, one dealer, j, and one buyer, k. The set Ω of possible

trades consists of three trades: trade ωi→j from seller i to dealer j, trade ωi→k from seller i to

buyer k, and trade ωj→k from dealer j to buyer k. The seller i cares only about the price he

receives for the car. The dealer j cares only about the difference between the price he has to

pay i to acquire the car and the price at which he can resell the car to k. The buyer k cares

about the quality of the car and additional services provided by the dealer and the price he
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has to pay. All agents’ preferences are fully substitutable, and thus satisfy the conditions

of our model. However, there is no partition of the three trades into two groups such that

all agents view trades in the same group as substitutes and trades in different groups as

complements, as required by Sun and Yang (2006). To see this, suppose there exists such

a partition: Ω = Ω1 ∪ Ω2. From the perspective of i, selling the car to j (trade ωi→j) is a

substitute for selling the car to k (trade ωi→k). Therefore, these two trades have to be in

the same element of the partition; without loss of generality, suppose that element is Ω1.

Similarly, since for k, buying from j (trade ωj→k) is a substitute for buying from i (trade

ωi→k), these two trades also have to be in the same element of the partition. Hence, Ω1 = Ω

and Ω2 = ∅. But then the (GSC) condition of Sun and Yang (2006) requires dealer j to

view trades ωi→j and ωj→k as substitutes, violating the assumptions of the example. Thus,

in order to model the used car market (or other intermediated markets) in the framework of

Sun and Yang (2006), one would have to either rule out intermediated trade through dealers

or exclude direct trade between individual sellers and buyers.

Finally, note that features such as the presence of cycles and the possibility of interme-

diated trade make the frameworks of Kelso and Crawford (1982), Bikhchandani and Mamer

(1997), and Gul and Stacchetti (1999) inapplicable to the analysis of the used car market

and other markets with those features. Furthermore, Kelso and Crawford (1982) assume

that every firm finds every set of workers acceptable, and, analogously, Bikhchandani and

Mamer (1997) and Gul and Stacchetti (1999) assume that all possible bundles of trades are

acceptable to every agent (at least at sufficiently low prices). By contrast, by allowing the

valuations of bundles of trades to take the value −∞, our framework makes it possible to

incorporate production feasibility constraints. Of course, a key construction in our existence

proof, just like in the proof of the existence result of Sun and Yang (2006), is the reduction

from our richer setting to the framework of Kelso and Crawford (1982), with suitable mod-

ifications and adaptations. Hence, while the results and techniques of these earlier papers

are not directly applicable to our framework, they play an important role in our analysis of
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matching in trading networks.

5 Conclusion

We have introduced a general model in which a network of agents can trade via bilateral

contracts. In this setting, when continuous transfers are allowed and agents’ preferences are

quasilinear, full substitutability of preferences is sufficient and (in the maximal domain sense)

necessary for the guaranteed existence of stable outcomes. Furthermore, full substitutability

implies that the set of stable outcomes is equivalent to the set of competitive equilibria, and

that all stable outcomes are in the core and efficient.

Viewing these results in light of the previous matching literature leads to two additional

observations.

First, stability may be a natural extension of the notion of competitive equilibrium for

some economically important settings in which competitive equilibria do not exist. If the

underlying network structure of a market does not contain cycles, then stable outcomes exist

even if there are restrictions on which contracts the agents are allowed to form, as long as

agents’ preferences are fully substitutable (Ostrovsky, 2008). For instance, a price floor (or

ceiling) may prevent markets from clearing and thus lead to the non-existence of competitive

equilibria. When studying a market for a single good, the classical supply–demand diagram

may be sufficient for reasoning about the effects of the price floor. However, in more com-

plicated cases, such as supply chain networks or two-sided markets with multiple goods, a

simple diagram is no longer sufficient. The results of this paper suggest that stability may

be an appropriate extension of competitive equilibrium for those cases: When contractual

arrangements are not restricted, the notions of stability and competitive equilibrium are

equivalent, while when contracting restrictions exist, stability continues to make predictions.

Recent evidence suggests that these predictions are experimentally supported in multi-good

markets in which competitive equilibria do not exist when price floors are present (Hatfield,
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Plott, and Tanaka, 2012a,b).

Second, contrasting our results for general networks with previous findings presents a

puzzle. Typically, in the matching literature, there are strong parallels between the existence

and properties of stable outcomes in markets with fully transferable utility and those in

which transfers are either not allowed or restricted. (This similarity was first observed by

Shapley and Shubik (1971) for the basic one-to-one matching model, and continues to hold

for increasingly complex environments, up to the case of vertical networks.) Our results show

that this relationship breaks down for networks with cycles (in which agents’ preferences are

fully substitutable): with continuous transfers, stable outcomes are guaranteed to exist, while

without them, the set of stable outcomes may be empty (Hatfield and Kominers, 2012). It

is an open question why the presence of a continuous numeraire can replace the assumption

of supply chain structure in ensuring the existence of stable outcomes in trading networks.

33



Appendix: Proofs

Proof of Proposition 1

Consider a dealer d, a set of trades Φ in which d can be involved as a buyer, and a set of

trades Ψ in which d can be involved as a seller. For every trade ϕ ∈ Φ and trade ψ ∈ Ψ,

dealer d knows whether ϕ and ψ are compatible. The payoff of dealer d from a feasible set

of contracts (trades and associated prices) is as given in Section 2.2.

We first introduce an auxiliary definition. We say that a set of contracts Y ⊆ Xd is

generic if (a) it is finite (i.e., it contains a finite number of elements) and (b) for every subset

Y ′ ⊆ Y , |Cd(Y ′)| = 1 (i.e., the choice of d from any subset of Y is single-valued). For a

generic set of contracts Y , we denote by Y ∗ the (unique) choice of d from Y .

Next, we prove the following lemma (by induction on m):

Lemma A.1. For every positive integer m:

1. For all generic sets of contracts Y, Z ⊆ Xd such that |Y | + 1 = |Z| ≤ m, Yd→ = Zd→,

and Y→d ( Z→d, we have Y→d \ Y ∗→d ⊆ Z→d \ Z∗→d and Y ∗d→ ⊆ Z∗d→.

2. For all generic sets of contracts Y, Z ⊆ Xd such that |Y | + 1 = |Z| ≤ m, Y→d = Z→d,

and Yd→ ( Zd→, we have Yd→ \ Y ∗d→ ⊆ Zd→ \ Z∗d→ and Y ∗→d ⊆ Z∗→d.

(In other words, the lemma says that the choice function of a dealer satisfies the require-

ments of the full substitutability condition when it is applied to generic sets of size at most

m and just one new contract is added to the choice set.)

Proof. For m = 1, Statements 1 and 2 are both clearly true, since both Y ∗ and Z∗ are empty.

Suppose Statements 1 and 2 are true for all m ≤ k. We prove them for m = k + 1.

Specifically, we prove Statement 2; the proof of Statement 1 is completely analogous.

Consider sets Y and Z satisfying the conditions of Statement 2. (In the language of the

used car example, Z has one additional request for a used car relative to Y , and both sets
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contain the same offers of cars.) If Y ∗ = Z∗ (i.e., the optimal choice of dealer d is unaffected

by the new request), then the conclusion of Statement 2 is clearly true.

Otherwise (i.e., if Y ∗ 6= Z∗), let (ψ, pψ) be the new request in Z (i.e., the unique element

in Z \ Y ). It must be the case that (ψ, pψ) ∈ Z∗ (because otherwise this new request could

not have affected the optimal choice of d).

We now consider two cases: (1) Y ∗ contains a contract that involves trade ψ, at some

price p′ψ 6= pψ; and (2) Y ∗ does not contain such a contract.

Case 1: It must be the case that p′ψ < pψ, as if p′ψ > pψ, then request (ψ, pψ) is never

chosen by dealer d when (ψ, p′ψ) is also available. If when choosing from Z, dealer d simply

replaces (ψ, p′ψ) in Y ∗ with (ψ, pψ), his payoff goes up by pψ − p′ψ (relative to that from Y ∗).

Note that there cannot be a subset of Z containing (ψ, pψ) that gives dealer d a strictly higher

payoff than that because otherwise replacing (ψ, pψ) in that subset with (ψ, p′ψ) would result

in a subset of Y that gives dealer d a higher payoff than Y ∗. Finally, since by assumption

sets Y and Z are generic, all choice functions are single-valued, and thus we must have

Z∗ = (Y ∗ \ {(ψ, p′ψ)}) ∪ {(ψ, pψ)}. It is now immediate that the conclusion of Statement 2

holds.

Case 2: Consider the input contract (ϕ, pϕ) to which request (ψ, pψ) is matched when d is

choosing from Z. If (ϕ, pϕ) /∈ Y ∗ (i.e., the car to which request ψ is matched was not involved

in the optimal choice from set Y ), then it must be the case that the remaining matches are

unaffected; hence, Z∗ = Y ∗ ∪{(ϕ, pϕ)}∪ {(ψ, pψ)}, and the conclusion of Statement 2 holds.

Suppose instead that (ϕ, qϕ) was matched to some request when dealer d was choosing

from Y . (This subcase is the heart of the proof of Lemma A.1 and Proposition 1—this is the

part that relies on the use of the inductive hypothesis.) Let W ∗ be the choice of dealer d from

set W = Y \ {(ϕ, pϕ)}. Crucially, it must be the case that Z∗ = W ∗ ∪ {(ϕ, pϕ)} ∪ {(ψ, pψ)}:

by assumption, in the optimal choice Z∗, contract (ϕ, pϕ) is matched to request (ψ, pψ), and

thus the remaining chosen contracts are simply those that maximize the payoff of dealer d
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when choosing from the remaining set of options, Y \ {(ϕ, pϕ)}. Now, we can apply the

inductive hypothesis to sets W and Y (which are, respectively, one element smaller than sets

Y and Z). By Statement 1 of the inductive hypothesis (which is now the relevant statement),

W→d \W ∗
→d ⊆ Y→d \ Y ∗→d and W ∗

d→ ⊆ Y ∗d→. Combining these two set inclusions with the

relationships identified above, we now have:

Y ∗→d = Y→d \ (Y→d \ Y ∗→d) ⊆ Y→d \ (W→d \W ∗
→d) = W ∗

→d ∪ {(ϕ, pϕ)} = Z∗→d

and

Yd→ \ Y ∗d→ = Wd→ \ Y ∗d→ ⊆ Wd→ \W ∗
d→ = Zd→ \ Z∗d→ ,

concluding the proof of Lemma A.1.

We now use Lemma A.1 to prove that the preferences of dealer d are fully substitutable.

Consider dealer d and sets Y, Z ⊆ Xd satisfying the assumptions of Part 2 of Definition 1.

(The proof for Part 1 is completely analogous.) Let Ŷ = Y ∩(Y ∗∪Z∗) and Ẑ = Z∩(Y ∗∪Z∗);

i.e., Ŷ and Ẑ are the subsets of Y and Z that contain all possible contracts relevant for choices

of d from Y and Z. Clearly, Ŷ→d = Ẑ→d, Ŷd→ ⊆ Ẑd→, and sets Ŷ and Ẑ are finite and inherit

the property of Y and Z that the choices of d from those sets are single-valued (and those

choices are Y ∗ and Z∗, respectively). Sets Ŷ and Ẑ are not necessarily generic; however,

we can slightly perturb prices in contracts in Ŷ and Ẑ in such a way that the resulting sets

Ỹ and Z̃ are generic, the relationships Ỹ→d = Z̃→d and Ỹd→ ⊆ Z̃d→ are preserved, and the

optimal choices of dealer d from those sets, Ỹ ∗ and Z̃∗, are the perturbed original choices

Y ∗ and Z∗ (i.e., they involve the same trades, along with the perturbed prices).32

32To formally construct such a perturbation, let ∆ be the smallest positive difference between the utilities
of dealer d from two different feasible subsets of Ẑ. Let k = |Ẑ|. Randomly order contracts in Ẑ, and add
∆/2 to the price in the first contract, ∆/4 to the price in the second contract, . . . , ∆/2k to the price in the
last contract. Let Z̃ be the resulting set of contracts with perturbed prices. Since Ŷ is a subset of Ẑ (and
Ỹ must be a subset of Z̃), prices in the perturbed set Ỹ are automatically pinned down. To see that set
Z̃ is generic, consider any two distinct sets Z̃1, Z̃2 ⊆ Z̃, such that Ud(Z̃1) > −∞ and Ud(Z̃2) > −∞, and
also consider the corresponding distinct sets Ẑ1, Ẑ2 ⊆ Ẑ (the utilities from which are therefore also finite).
If Ud(Ẑ1) 6= Ud(Ẑ2), then by construction |Ud(Ẑ1)−Ud(Ẑ2)| ≥ ∆, and thus we also have Ud(Z̃1) 6= Ud(Z̃2),
because by construction, the sum of perturbations of any set of prices is less than or equal to

∑k
i=1 ∆/2i,
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We now show that Ỹd→ \ Ỹ ∗d→ ⊆ Z̃d→ \ Z̃∗d→ and Ỹ ∗→d ⊆ Z̃∗→d, which imply the same

relationships for sets Ŷ , Ẑ, Y ∗, and Z∗, which in turn imply the same relationships for

sets Y , Z, Y ∗, and Z∗—and those relationships are precisely the conclusions in Part 2 of

Definition 1 that we need to prove.

If Ỹ = Z̃, then it is immediate that Ỹd→ \ Ỹ ∗d→ ⊆ Z̃d→ \ Z̃∗d→ and Ỹ ∗→d ⊆ Z̃∗→d. Otherwise,

let n = |Z̃ \ Ỹ | and consider an increasing sequence of sets

Ỹ = Y 0 ( Y 1 ( · · · ( Y n = Z̃,

in which each set contains exactly one extra contract relative to the previous set in the

sequence. By Lemma A.1, for every i = 0, . . . , n − 1, we have Y i
d→ \ Y

i,∗
d→ ⊆ Y i+1

d→ \ Y
i+1,∗
d→

and Y i,∗
→d ⊆ Y i+1,∗

→d . This implies that Ỹd→ \ Ỹ ∗d→ = Y 0
d→ \ Y

0,∗
d→ ⊆ Y n

d→ \ Y
n,∗
d→ = Z̃d→ \ Z̃∗d→ and

Ỹ ∗→d = Y 0,∗
→d ⊆ Y n,∗

→d = Z̃∗→d.

Proof of Theorem 1

The proof consists of four steps: (1) transforming the original valuations into bounded ones;

(2) constructing a two-sided many-to-one matching market with transfers, based on the net-

work market with bounded valuations; (3) picking a full-employment competitive equilibrium

in the two-sided market; and (4) using that equilibrium to construct a competitive equilib-

rium in the original market. Throughout the proof, we will refer to valuation functions and

utility functions that give rise to fully substitutable preferences as fully substitutable.

which is strictly less than ∆. If Ud(Ẑ1) = Ud(Ẑ2), then, since the two sets are distinct, it must also be
the case that Ud(Z̃1) 6= Ud(Z̃2). To see that, consider the first contract (according to the random order
constructed above, using which the perturbations were constructed) that belongs to one of these sets but
not to the other, and consider the size of its perturbation. Again, by construction, any sum of the remaining
perturbations is less than this first one, and thus Ud(Z̃1) 6= Ud(Z̃2). Hence, no two subsets of Z̃ give the
same finite utility to dealer d, which implies that Z̃ is generic, as required. Since Ỹ ⊆ Z̃, it immediately
follows that set Ỹ is also generic. Note that the above argument also implies that, as required, the optimal
choices of dealer d from sets Ỹ and Z̃ are the perturbed optimal choices of dealer d from sets Ŷ and Ẑ,
respectively.
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Step 1: We first transform a fully substitutable but potentially unbounded-from-below

valuation function ui into a fully substitutable and bounded valuation function ûi. For

this purpose, we now introduce a very high price Π. Specifically, for each agent i, let

ui be the highest possible absolute valuation of agent i from a combination of trades, i.e.,

ui = max{Ψ⊆Ωi:|ui(Ψ)|<∞} |ui(Ψ)|. Then set Π = 2
∑

i∈I ui+1. Consider the following modified

economy. Assume that for every trade, the buyer of that trade can always purchase a perfect

substitute for that trade for Π and the seller of that trade can always produce this trade at

the cost of Π with no inputs needed. Formally, for each agent i, for a set of trades Ψ ⊆ Ωi,

let

ûi(Ψ) = max
Ψ′⊆Ψ

[ui(Ψ
′)− Π · |Ψ \Ψ′|] .

For the economy with valuations ûi, let Ûi denote the utility function of agent i and let D̂i

denote the resulting demand correspondence. Note that by the choice of Π, for any Ψ ⊆ Ωi,

ui ≥ ûi(Ψ) ≥ max{ui(∅)− Π · |Ψ| , ui(Ψ)}, and that ûi(Ψ) = ui(Ψ) whenever ui(Ψ) 6= −∞.

We use these facts throughout the proof.

The rest of Step 1 consists of proving the following lemma.

Lemma A.2. The utility function Ûi is fully substitutable.

Proof. Take any fully substitutable valuation function ui. Take any trade ϕ ∈ Ωi→. Consider

a modified valuation function uϕi :

uϕi (Ψ) = max[ui(Ψ), ui(Ψ \ {ϕ})− Π].

I.e., this valuation function allows (but does not require) agent i to pay Π instead of forming

one particular trade, ϕ. With this definition, the valuation function uϕi is fully substitutable.

To see this, consider utility Uϕ
i and demand Dϕ

i corresponding to valuation uϕi . We

show that Dϕ
i satisfies the (IFS) condition of Hatfield et al. (2013)—one of the equivalent

definitions of full substitutability presented in that paper.33 Fix two price vectors p and p′

33The definition of the (IFS) condition is as follows. For agent i and any set of trades Ψ ⊆ Ωi, define
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such that p ≤ p′ and |Dϕ
i (p)| = |Dϕ

i (p′)| = 1. Take Ψ ∈ Dϕ
i (p) and Ψ′ ∈ Dϕ

i (p′). We need to

show that for all ω ∈ Ωi such that pω = p′ω, eω(Ψ) ≤ eω(Ψ′).

Let price vector q coincide with p on all trades other than ϕ, and set qϕ = min{pϕ,Π}.

Note that if pϕ < Π, then p = q and Dϕ
i (p) = Di(p). If pϕ > Π, then under utility Uϕ

i ,

agent i always wants to form trade ϕ at price pϕ, and the only decision is whether to “buy

it out” or not at the cost Π; i.e., the agent’s effective demand is the same as under price

vector q. Thus, Dϕ
i (p) = {Ξ ∪ {ϕ} : Ξ ∈ Di(q)}. Finally, if pϕ = Π, then p = q and

Dϕ
i (p) = Di(p) ∪ {Ξ ∪ {ϕ} : Ξ ∈ Di(p)}. Construct price vector q′ corresponding to p′

analogously.

Now, if pϕ ≤ p′ϕ < Π, then Dϕ
i (p) = Di(p), D

ϕ
i (p′) = Di(p

′), and thus eω(Ψ) ≤ eω(Ψ′)

follows directly from (IFS) for demand Di.

If Π ≤ pϕ ≤ p′ϕ, then (since we assumed that Dϕ
i was single-valued at p and p′) it has

to be the case that Di is single-valued at the corresponding price vectors q and q′. Let

Ξ ∈ Di(q) and Ξ′ ∈ Di(q
′). Then Ψ = Ξ ∪ {ϕ}, Ψ′ = Ξ′ ∪ {ϕ}, and the statement follows

from the (IFS) condition for demand Di, because q ≤ q′.

Finally, if pϕ < Π ≤ p′ϕ, then p = q, Ψ is the unique element in Di(p), and Ψ′ is equal to

Ξ′ ∪ {ϕ}, where Ξ′ is the unique element in Di(q
′). Then for ω 6= ϕ, the statement follows

from (IFS) for demand Di, because p ≤ q′. For ω = ϕ, the statement does not need to be

checked, because pϕ < p′ϕ.

Thus, in this case, valuation function uϕi is fully substitutable. The proof for the case

when ϕ ∈ Ω→i is completely analogous.

To complete the proof of the lemma, it is now enough to note that valuation function

ûi(Ψ) = maxΨ′⊆Ψ [ui(Ψ
′)− Π · |Ψ \Ψ′|] can be obtained from the original valuation ui by

the (generalized) indicator function e(Ψ) ∈ {−1, 0, 1}|Ωi| to be the vector with component eω(Ψ) = 1 for
each upstream trade ω ∈ Ψ→i, eω(Ψ) = −1 for each downstream trade ω ∈ Ψi→, and eω(Ψ) = 0 for each
trade ω /∈ Ψ. (The interpretation of e(Ψ) is that an agent buys a strictly positive amount of a good if he is
the buyer in a trade in Ψ, and “buys” a strictly negative amount if he is the seller of such a trade.) Then
we say that the preferences of agent i are indicator-language fully substitutable (IFS) if for all price vectors
p, p′ ∈ R|Ω| such that |Di(p)| = |Di(p′)| = 1 and p ≤ p′, for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have
eω(Ψ) ≤ eω(Ψ′) for each ω ∈ Ωi such that pω = p′ω.
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allowing agent i to “buy out” all of his trades, one by one, and since the preceding argument

shows that each such transformation preserves substitutability, ûi is substitutable as well.

Step 2: We now transform the modified economy with bounded and fully substitutable

valuations ûi into an associated two-sided many-to-one matching market with transfers,

which satisfies the assumptions of Kelso and Crawford (1982; subsequently KC). The set of

firms in this market is I, and the set of workers is Ω.

Worker ω can be matched to at most one firm. His utility is defined as follows. If he

is matched to firm i ∈ {b(ω), s(ω)}, then his utility is equal to the monetary transfer that

he receives from that firm, i.e., his salary pi,ω, which can in principle be negative. If he is

matched to any other firm i, his utility is equal to −Π − 1 + pi,ω, where Π is as defined in

Step 1 and pi,ω is the salary firm i pays him. If worker ω remains unmatched, his utility is

equal to −2Π− 2.

Firm i can be matched to any set of workers, but only its matches to workers ω ∈ Ωi have

an impact on its valuation. Formally, the valuation of firm i from hiring a set of workers

Ψ ⊆ Ω is given by

ũi(Ψ) = ûi(Ψ→i ∪ (Ω \Ψ)i→)− ûi(Ωi→),

where the second term in the difference is simply a constant, which ensures that ũi(∅) = 0, so

that valuation function ũi satisfies assumption (NFL) of KC. Hiring a set of workers Ψ ⊆ Ω

when the salary vector is p ∈ R|I|×|Ω| yields i a utility of

Ũi([Ψ; p]) ≡ ũi(Ψi)−
∑
ω∈Ψ

pi,ω.

The associated demand correspondence is denoted by

D̃i ≡ argmax
Ψ⊆Ωi

Ũi([Ψ; p]).

Assumption (MP) of KC requires that any firm’s change in valuation from adding a
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worker, ω, to any set of other workers is at least as large as the lowest salary worker ω would

be willing to accept from the firm when his only alternative is to remain unmatched. This

assumption is also satisfied in our market: A worker’s utility from remaining unmatched

is −2Π − 2, while his valuation, excluding salary, from matching with any firm is at least

−Π−1, and so he would strictly prefer to work for any firm for negative salary −Π instead of

remaining unmatched. At the same time, the change in valuation of any firm i from adding

worker ω to a set of workers Ψ is equal to ũi(Ψ ∪ {ω})− ũi(Ψ) ≥ −ūi − ūi > −Π, and thus

every firm i would also always strictly prefer to hire worker ω for the negative salary −Π.

Finally, we show that the preferences of i in this market satisfy the gross substitutes

(GS) condition of KC. Take two salary vectors p, p′ ∈ R|I|×|Ω| such that p ≤ p′ and |D̃i(p)| =

|D̃i(p
′)| = 1. Let Ψ ∈ D̃i(p) and Ψ′ ∈ D̃i(p

′). Denote by q = (pi,ω)ω∈Ω and q′ = (p′i,ω)ω∈Ω

the vectors of salaries that i faces under p and p′, respectively. Note that Ψ ∈ D̃i(p) if and

only if Ψ→i ∪ (Ω \ Ψ)i→ ∈ D̂i(q) and Ψ′ ∈ D̃i(p
′) if and only if Ψ′→i ∪ (Ω \ Ψ′)i→ ∈ D̂i(q

′).

In particular, |D̂i(q)| = |D̂i(q
′)| = 1. Since q ≤ q′ and D̂i is fully substitutable, the (IFS)

condition implies that for any ω ∈ Ψ→i such that qω = q′ω, we have ω ∈ Ψ′→i, and for any

ω /∈ Ωi→ \Ψi→ such that qω = q′ω, we have ω /∈ Ωi→ \Ψ′i→. In other words, for every ω ∈ Ψ

such that qω = q′ω, we have ω ∈ Ψ′, and thus the (GS) condition is satisfied for all salary

vectors for which demand D̃i is single-valued. As shown by Hatfield et al. (2013), this implies

that the (GS) condition is satisfied for all salary vectors.

Step 3: By the results of KC (Theorem 2 and the discussion in Section 2), there exists a

full-employment competitive equilibrium of the associated two-sided market constructed in

Step 2. Take one such equilibrium, and for every ω and i, let µ(ω) denote the firm matched

to ω in this equilibrium and let ri,ω denote equilibrium salary of ω at i.

Note that in this equilibrium, it must be the case that every worker ω is matched to

either b(ω) or s(ω). Indeed, suppose ω is matched to some other firm i /∈ {b(ω), s(ω)}. Since

by definition, for any Ψ ⊆ Ω, ũi(Ψ ∪ {ω}) − ũi(Ψ) = 0, it must be the case that ri,ω ≤ 0.
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Then, for worker ω to weakly prefer to work for i rather than b(ω), it must be the case that

rb(ω),ω ≤ −Π − 1. But at that salary, firm b(ω) strictly prefers to hire ω, contradicting the

assumption that ω is not matched to b(ω) in this equilibrium.

Note also that if µ(ω) = b(ω), then rb(ω),ω ≥ rs(ω),ω, and if µ(ω) = s(ω), then rs(ω),ω ≥

rb(ω),ω (otherwise, worker ω would strictly prefer to change his employer). Now, define

prices pi,ω as follows: if i 6= b(ω) and i 6= s(ω), then pi,ω = ri,ω. Otherwise, pi,ω =

max{rb(ω),ω, rs(ω),ω}. Note that matching µ and associated prices pi,ω also constitute a com-

petitive equilibrium of the two-sided market.

Step 4: We can now construct a competitive equilibrium for the original economy. Let

p∗ ∈ R|Ω| be defined as p∗ω ≡ pµ(ω),ω for each ω ∈ Ω, i.e., the salary that ω actually receives

in the equilibrium of the two-sided market. Let Ψ∗ ≡ {ω ∈ Ω : µ(ω) = b(ω)}, i.e., the set of

trades/workers who in the equilibrium of the two-sided market are matched to their buyers

(and thus not matched to their sellers!).

We now claim that [Ψ∗; p∗] is a competitive equilibrium of the network economy with

bounded valuations ûi. Take any set of trades Ψ ∈ Ωi. We show that Ûi([Ψ
∗; p∗]) ≥

Ûi([Ψ; p∗]). By construction, for any ω ∈ Ω→i, we have ω ∈ Ψ∗ if and only if i = µ(ω), and

for any ω ∈ Ωi→, we have ω ∈ Ψ∗ if and only if i 6= µ(ω). Thus, in the equilibrium of the

two-sided market, firm i is matched to the set of workers Ψ∗→i ∪ (Ωi→ \Ψ∗i→), which implies

that

ũi(Ψ
∗
→i ∪ (Ωi→ \Ψ∗i→))−

∑
ω∈Ψ∗→i

pi,ω −
∑

ω∈Ωi→\Ψ∗i→

pi,ω

≥ ũi(Ψ→i ∪ (Ωi→ \Ψi→))−
∑
ω∈Ψ→i

pi,ω −
∑

ω∈Ωi→\Ψi→

pi,ω. (2)

Now, for any set Φ ⊆ Ωi→, we have

∑
ω∈Ωi→\Φ

pi,ω =

( ∑
ω∈Ωi→

pi,ω

)
−

(∑
ω∈Φ

pi,ω

)
.
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Using this fact and the definition of ũi, we can rewrite the inequality (2) as

ûi(Ψ
∗
→i ∪Ψ∗i→)−

∑
ω∈Ψ∗→i

pi,ω +
∑
ω∈Ψ∗i→

pi,ω ≥ ûi(Ψ→i ∪Ψi→)−
∑
ω∈Ψ→i

pi,ω +
∑
ω∈Ψi→

pi,ω,

which in turn can be rewritten as

Ûi([Ψ
∗; p∗]) = ûi(Ψ

∗
i )−

∑
ω∈Ψ∗→i

p∗ω +
∑
ω∈Ψ∗i→

p∗ω ≥ ûi(Ψ)−
∑
ω∈Ψ→i

p∗ω +
∑
ω∈Ψi→

p∗ω = Û([Ψ; p∗]).

We now show that [Ψ∗; p∗] is an equilibrium of the original economy with valuations ui.

Suppose to the contrary that there exists an agent i and a set of trades Ξ ⊆ Ωi, such that

Ui([Ξ; p∗]) > Ui([Ψ
∗; p∗]). Since Ûi([Ξ; p∗]) ≤ Ûi([Ψ

∗; p∗]), and by the construction of ûi,

Ûi([Ξ; p∗]) ≥ Ui([Ξ; p∗]), it follows that Ûi([Ψ
∗; p∗]) > Ui([Ψ

∗; p∗]). This, in turn, implies that

for some nonempty set Φ ⊆ Ψ∗i , we have ûi(Ψ
∗
i ) = ui(Ψ

∗
i \ Φ) − Π · |Φ| ≤ ui − Π. This

implies that
∑

j∈I ûj(Ψ
∗) = ûi(Ψ

∗) +
∑

j 6=i ûj(Ψ
∗) ≤ ui − Π +

∑
j 6=i uj =

∑
j∈I uj − Π =

−
∑

j∈I ui − 1 <
∑

j∈I uj(∅), contradicting Theorem 2. (The proof of Theorem 2 is entirely

self-contained.)

Proof of Theorem 2

If [Ψ; p] is a competitive equilibrium, then for any Ξ ⊆ Ω, we have

ui(Ψ) +
∑
ω∈Ψi→

pω −
∑
ω∈Ψ→i

pω = Ui([Ψ; p]) ≥ Ui([Ξ; p]) = ui(Ξ) +
∑
ω∈Ξi→

pω −
∑
ω∈Ξ→i

pω

for every i ∈ I. By summing these inequalities over all i ∈ I, we find that

∑
i∈I

ui(Ψ) ≥
∑
i∈I

ui(Ξ).
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Proof of Theorem 3

We use an approach analogous to the one Gul and Stacchetti (1999) use to prove their

Lemma 6. Suppose that [Ξ; p] is a competitive equilibrium and that Ψ ⊆ Ω is an efficient

set of trades. Since Ψ is efficient, we have

∑
i∈I

[
ui(Ψ) +

∑
ω∈Ψi→

pω −
∑
ω∈Ψ→i

pω

]
=
∑
i∈I

Ui([Ψ; p]) (3)

≥
∑
i∈I

Ui([Ξ; p]) =
∑
i∈I

[
ui(Ξ) +

∑
ω∈Ξi→

pω −
∑
ω∈Ξ→i

pω

]
.

As [Ξ; p] is a competitive equilibrium, we have for each i ∈ I that

ui(Ξ) +
∑
ω∈Ξi→

pω −
∑
ω∈Ξ→i

pω = Ui([Ξ; p])

≥ Ui([Ψ; p]) = ui(Ψ) +
∑
ω∈Ψi→

pω −
∑
ω∈Ψ→i

pω.

We therefore see that (3) can hold only if, for each i ∈ I, Ui([Ξ; p]) = Ui([Ψ; p]). Hence, for

all i ∈ I we have that Ξ ∈ Di(p). Therefore, for all i ∈ I, we have that Ψi ∈ Di(p); thus,

[Ψ; p] is a competitive equilibrium.

Proof of Theorem 4

Our approach extends the proof of Theorem 3 of Sun and Yang (2009) to the network

setting. Given a price vector p, let V (p) ≡
∑

i∈I Vi(p), where (as defined on page 16) Vi(p) ≡

maxΨ⊆Ωi
Ui([Ψ; p]). Let Ψ∗ ⊆ Ω be any efficient set of trades and let U∗ =

∑
i∈I ui(Ψ

∗).

Note that for any competitive equilibrium price vector p∗, V (p∗) = U∗.

We first prove an analogue of Lemma 1 of Sun and Yang (2009).

Lemma A.3. A price vector p′ ∈ R|Ω| is a competitive equilibrium price vector if and only

if p′ ∈ argminp V (p).
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Proof. To prove the first implication of the lemma, we let p′ be a competitive equilibrium

price vector and let p be an arbitrary price vector. For each agent i, consider some arbitrary

Ψi ∈ Di(p). By construction, we have

V (p) =
∑
i∈I

Vi(p) =
∑
i∈I

ui(Ψi) +
∑
ω∈Ψi

i→

pω −
∑
ω∈Ψi

→i

pω


≥
∑
i∈I

ui(Ψ∗) +
∑
ω∈Ψ∗i→

pω −
∑
ω∈Ψ∗→i

pω


=
∑
i∈I

ui(Ψ
∗) = U∗ = V (p′),

where the inequality follows from utility maximization. This proves that p′ ∈ argminp V (p).

Now, to prove the other implication of the lemma, let p′ be any price vector that minimizes

V (and thus satisfies V (p′) = U∗). We claim that [Ψ∗; p′] is a competitive equilibrium. To

see this, note that the definition of Vi implies that

Vi(p
′) ≥ ui(Ψ

∗) +
∑
ω∈Ψ∗i→

p′ω −
∑
ω∈Ψ∗→i

p′ω. (4)

Summing (4) across i ∈ I gives

∑
i∈I

Vi(p
′) ≥

∑
i∈I

ui(Ψ∗) +
∑
ω∈Ψ∗i→

p′ω −
∑
ω∈Ψ∗→i

p′ω

 =
∑
i∈I

ui(Ψ
∗) = U∗, (5)

with equality holding exactly when (4) holds with equality for every i. If (4) were strict for

any i, we would obtain V (p′) > U∗ from (5), contradicting the assumption that p′ minimizes

V and thus p′ satisfies V (p′) = U∗. Thus, for all i ∈ I, equality holds in (4), and thus [Ψ∗; p′]

is a competitive equilibrium.

Now, suppose p and q are two competitive equilibrium price vectors, and let p ∧ q and
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p ∨ q denote their meet and join, respectively. Note that

2U∗ ≤ V (p ∧ q) + V (p ∨ q)

≤ V (p) + V (q) = 2U∗,

where the first inequality follows because (by Lemma A.3) U∗ is the minimal value of V , the

second inequality follows from the submodularity of V (which holds because every agent’s

preferences are fully substitutable, implying that Vi is submodular for every i ∈ I), and the

equality follows from Lemma A.3, because p and q are competitive equilibrium price vectors.

Since we also know that V (p ∧ q) ≥ U∗ and V (p ∨ q) ≥ U∗, it has to be the case that

V (p∧ q) = V (p∨ q) = U∗, and so by Lemma A.3, p∧ q and p∨ q are competitive equilibrium

price vectors.

Proof of Theorem 5

Let A ≡ κ([Ψ; p]). Suppose that A is not stable; then either it is not individually rational

or there exists a blocking set.

If A is not individually rational, then Ai /∈ Ci(A) for some i ∈ I. Hence, Ai /∈

argmaxZ⊆Ai
Ui(Z), and therefore τ(Ai) = Ψi /∈ Di(p), contradicting the assumption that

[Ψ; p] is a competitive equilibrium.

Suppose now that there exists a set Z blocking A, and let J = a(Z) be the set of agents

involved in contracts in Z. For any trade ω involved in a contract in Z, let p̃ω be the price

for which (ω, p̃ω) ∈ Z. For each j ∈ J , pick a set Y j ∈ Cj(Z ∪ A). As Z blocks A, (by

definition) we have Zj ⊆ Y j. Since Z ∩ A = ∅, and Zj ⊆ Y for all Y ∈ Cj(Z ∪ A), we have
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that Aj /∈ Cj(Z ∪ A). Hence, for all j ∈ J ,

Uj(A) < Uj(Y
j) =


uj(τ(Y j))+∑

ω∈τ(Z)j→
p̃ω −

∑
ω∈τ(Z)→j

p̃ω+∑
ω∈τ(Y j\Z)j→

pω −
∑

ω∈τ(Y j\Z)→j
pω

 .

Summing these inequalities over all j ∈ J , we have

∑
j∈J

Uj(A) <
∑
j∈J

 uj(τ(Y j))+∑
ω∈τ(Y j\Z)j→

pω −
∑

ω∈τ(Y j\Z)→j
pω



=
∑
j∈J


uj(τ(Y j))+∑

ω∈τ(Z)j→
pω −

∑
ω∈τ(Z)→j

pω+∑
ω∈τ(Y j\Z)j→

pω −
∑

ω∈τ(Y j\Z)→j
pω


=
∑
j∈J

 uj(τ(Y j))+∑
ω∈τ(Y j)j→

pω −
∑

ω∈τ(Y j)→j
pω

 =
∑
j∈J

Uj(Y
j),

where we repeatedly apply the fact that for every trade ω in τ(Z), the price (first p̃ω and

then pω) of this trade is added exactly once and subtracted exactly once in the summation

over all agents.

Now, the preceding inequality says that the sum of the utilities of agents in J given prices

p would be strictly higher if each j ∈ J chose Y j instead of Aj. It therefore must be the case

that for some j ∈ J , we have Uj([τ(Y j); p]) > Uj([A; p]). It follows that Aj /∈ Dj(p); hence,

[Ψ; p] cannot be a competitive equilibrium.
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Proof of Theorem 6

Consider a stable outcome A ⊆ X. For every agent i ∈ I, define a modified valuation

function ûi, on sets of trades Ψ ⊆ Ω \ τ(A):

ûi(Ψ) = max
Y⊆Ai

ui(Ψ ∪ τ(Y )) +
∑

(ω,p̄ω)∈Yi→

p̄ω −
∑

(ω,p̄ω)∈Y→i

p̄ω

 .
In other words, the modified valuation ûi(Ψ) of Ψ is equal to the maximal value attainable

by agent i by combining the trades in Ψi with various subsets of Ai. We denote the utility

function associated to ûi by Ûi. Since the original utilities are fully substitutable, and thus

their demand correspondences Di satisfy the (DEFS) condition of Hatfield et al. (2013), the

demand correspondences D̂i for utility functions Ûi also satisfy the (DEFS) condition, and

thus every Ûi is also fully substitutable.

Now, consider a modified economy for the set of agents I, in which the set of trades is

Ω \ τ(A), and utilities are given by Û . If there is a competitive equilibrium of the modified

economy of the form [∅; p̂Ω\τ(A)], i.e., involving no trades, then we are done: We can combine

the prices in this competitive equilibrium with the prices in A to obtain the price vector p

as

pω =


p̄ω (ω, p̄) ∈ A

p̂ω otherwise.

It is clear that in this case [τ(A); p] is a competitive equilibrium of the original economy—

since ∅ ∈ D̂i(p̂) for every i, no agent strictly prefers to add trades not in τ(A), and by the

individual rationality of A, no agent strictly prefers to drop any trades in τ(A).

Now suppose there is not a competitive equilibrium of the modified economy in which no

trades occur. By Theorem 1, the modified economy has at least one competitive equilibrium
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[Ψ̂; p̂]. By Theorems 2 and 3, we know that Ψ̂ is efficient and ∅ is not. It follows that

∑
i∈I ûi(Ψ̂)−

∑
i∈I ûi(∅)

2|Ω|+ 1
> 0;

we denote this value by δ.

Now, we consider a second modification of the valuation functions, obtained by taking

ũi(Ψ) = ûi(Ψ)− δ|Ψi|.

We show next that the utility functions Ũi corresponding to ũi are fully substitutable: Take

agent i, and any two price vectors p′ and p′′. Construct a new price vector p̃′ as follows.

For every trade ω ∈ Ω \ τ(A), p̃′ω = pω + δ if b(ω) = i, p̃′ω = pω − δ if s(ω) = i, and

p̃′ω = 0 if ω /∈ Ωi. Construct price vector p̃′′ analogously, starting with p′′. Note that for any

set of trades Ψ ⊆ Ω \ τ(A), we have Ũi([Ψ; p′]) = Ûi([Ψ; p̃′]) and Ũi([Ψ; p′′]) = Ûi([Ψ; p̃′′]),

and therefore, for the corresponding indirect utility functions, we have Ṽi(p
′) = V̂i(p̃

′) and

Ṽi(p
′′) = V̂i(p̃

′′).

Now, by the submodularity of V̂i (which follows from the full substitutability of Ûi), we

have

V̂i(p̃
′ ∧ p̃′′) + V̂i(p̃

′ ∨ p̃′′) ≤ V̂i(p̃
′) + V̂i(p̃

′′),

and therefore

Ṽi(p
′ ∧ p′′) + Ṽi(p

′ ∨ p′′) ≤ Ṽi(p
′) + Ṽi(p

′′).

Hence, Ṽi is submodular, and therefore Ũi is fully substitutable.

Now, by our choice of δ, we have
∑

i∈I ũi(Ψ̂) >
∑

i∈I ũi(∅). Thus, ∅ is not efficient under

the valuations ũ and therefore cannot be supported in a competitive equilibrium under those

valuations. Take any competitive equilibrium [Ψ̃, q] of the economy with agents I, trades

Ω \ τ(A), and utilities Ũ . We know that Ψ̃ 6= ∅. Moreover, since Ψ̃i ∈ D̃i(q) for every

i (where D̃i is the demand correspondence induced by Ũi), we know that for any Φ ( Ψ̃i,
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Ũi([Ψ̃i; q]) ≥ Ũi([Φ; q]), and thus Ûi([Ψ̃i; q]) > Ûi([Φ; q]). This then implies that for all i, in the

original economy with trades Ω and utility functions Ui, the set of trades {(ψ, qψ) : ψ ∈ Ψ̃i}

is a subset of every Y ∈ Ci(A ∪ {(ψ, qψ) : ψ ∈ Ψ̃i}). Thus, {(ψ, qψ) : ψ ∈ Ψ̃} is a blocking

set for A, contradicting the assumption that A is stable.

Proof of Theorem 9

Suppose that A is a stable outcome. By Theorem 6, there is a vector of prices p such

that [τ(A); p] is a competitive equilibrium. Now note that the second part of the proof of

Theorem 5 actually shows that any outcome associated with a competitive equilibrium, in

particular A, is strongly group stable.

To see that for any core outcome A there is a stable outcome Â such that τ(A) = τ(Â),

note that by Theorem 8, every core outcome A has an efficient set of trades τ(A). By

Theorem 3, we can find a competitive equilibrium corresponding to any efficient set of

trades—in particular, τ(A). Finally, by Theorem 5, this competitive equilibrium induces a

stable outcome.

Proof of Theorem 10

We prove part (a); the proof of part (b) is completely analogous.

First, we show that Ξ ∈ Di(q). Note that |Ξi ∩Ψ| ∈ {0, 1} by mutual incompatibility of

the trades in Ψ. If Ξi ∩ Ψ = ∅, then let ξ ∈ argmaxψ∈Ψ pψ. Now consider Φ ∈ Di(q). As

|Φi ∩ Ψ| ∈ {0, 1} by mutual incompatibility of the trades in Ψ, there are two subcases to

consider: If Φi ∩ Ψ = ∅, then Ui([Φ; q]) = Ui([Φ; p]) ≤ Ui([Ξ; p]) = Ui([Ξ; q]) where the first

step follows from qΩ\Ψ = pΩ\Ψ, the second step follows from the optimality of Ξi at prices p,

and the third step follows from qΩ\Ψ = pΩ\Ψ; hence, Ξ ∈ Di(q). Alternatively, if Φi∩Ψ = {ϕ},

then Ui([Φ; q]) = Ui([(Φ \ {ϕ}) ∪ {ξ}; q]) = Ui([(Φ \ {ϕ}) ∪ {ξ}; p]) ≤ Ui([Ξ; p]) = Ui([Ξ; q]),

where the first step follows from perfect substitutability of the trades in Ψ, the second step

follows from the facts that pξ = qξ and qΩ\Ψ = pΩ\Ψ, the third step follows from the optimality
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of Ξi at prices p, and the fourth step follows from the facts that pξ = qξ and qΩ\Ψ = pΩ\Ψ;

hence, Ξ ∈ Di(q).

If Ξi ∩ Ψ 6= ∅, let {ξ} = Ξi ∩ Ψ; note that ξ ∈ argmaxψ∈Ψ pψ as the trades in the set

Ψ are perfectly substitutable and Ξi is optimal given prices p. Now consider Φ ∈ Di(q).

As |Φi ∩ Ψ| ∈ {0, 1} by mutual incompatibility of the trades in Ψ, there are two subcases

to consider: If Φi ∩ Ψ = ∅, then Ui([Φ; q]) = Ui([Φ; p]) ≤ Ui([Ξ; p]) = Ui([Ξ; q]) where the

first step follows from qΩ\Ψ = pΩ\Ψ, the second step follows from the optimality of Ξi at

prices p, and the third step follows from the facts that pξ = qξ and qΩ\Ψ = pΩ\Ψ; hence,

Ξ ∈ Di(q). Alternatively, if Φi ∩ Ψ = {ϕ}, then Ui([Φ; q]) = Ui([(Φ \ {ϕ}) ∪ {ξ}; q]) =

Ui([(Φ \ {ϕ}) ∪ {ξ}; p]) ≤ Ui([Ξ; p]) = Ui([Ξ; q]), where the first step follows from perfect

substitutability of the trades in Ψ, the second step follows from the facts that pξ = qξ and

qΩ\Ψ = pΩ\Ψ, the third step follows from the optimality of Ξi at prices p, and the fourth step

follows from the facts that pξ = qξ and qΩ\Ψ = pΩ\Ψ; hence, Ξ ∈ Di(q).

Second, we show that for an arbitrary agent j 6= i, Ξ ∈ Dj(q). If Ξj ∩ Ψ = ∅, then

pΞj
= qΞj

while pΩj→ = qΩj→ and pΩ→j
≤ qΩ→j

; hence Ξ ∈ Dj(q). If Ξj ∩ Ψ 6= ∅, then

Ξj ∩Ψ = {ξ} for some ξ because of mutual incompatibility of the trades in Ψ for i; note that

ξ ∈ argmaxψ∈Ψ pψ as the trades in the set Ψ are perfectly substitutable and Ξi is optimal for

i given prices p. Therefore, pΞj
= qΞj

while pΩj→ = qΩj→ and pΩ→j
≤ qΩ→j

; hence Ξ ∈ Dj(q).
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