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Abstract

We show that in general trading networks with bilateral contracts, a suitably
adapted chain stability concept (Ostrovsky, 2008) is equivalent to stability (Hatfield
and Kominers, 2012; Hatfield et al., 2013) if all agents’ preferences are jointly fully
substitutable and satisfy the Laws of Aggregate Supply and Demand. We also show
that in the special case of trading networks with transferable utility, an outcome is
consistent with competitive equilibrium if and only if it is not blocked by any chain of
contracts. Moreover, from a computational perspective, checking whether an outcome is
chain stable is substantially easier than directly checking whether an outcome is stable.
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1 Introduction

Cooperative solution concepts in game theory often rely on coordinated deviations by large
groups of agents, including, in some cases, all the agents in the economy. A natural question
when considering coordinated deviations is how (and whether) such coalitions can in fact
form. Do all the agents in the economy need to consider all the possible deviations by all the
possible coalitions? Or is it perhaps sufficient for agents to only consider smaller or more
structured types of deviations? Do the agents need to reason about the structure of the
entire economy in order to discover a profitable deviation, or is it sufficient for each of them
to only consider his or her “local” environment?

A different yet related issue arises when considering the concept of competitive equilibrium.
Competitive equilibrium requires specifying prices for all possible goods and trades in the
economy—even those that are not actually traded. Reliance on “hypothetical” prices for
untraded goods may be a relatively minor issue in economies with homogeneous goods and
centralized trading, where most (or all) goods are actually traded and thus have observed
prices. However, this issue is more problematic in economies with heterogeneous goods and
personalized pricing, where only a small fraction of all possible trades in fact take place. In
such environments, the reliance of competitive equilibrium on “unobserved” prices raises a
number of questions and concerns. Do the agents in the economy know what the “unobserved”
prices are? Do they need to? Can agents tell whether a particular set of realized contracts is
consistent with competitive equilibrium, given that to verify consistency they would need
data that does not actually exist?

Shapley and Shubik (1971), Crawford and Knoer (1981), Kelso and Crawford (1982),
and Roth (1984) have shown that in two-sided matching environments with substitutable
preferences, one needs neither rely on coordinated deviations by large groups of agents nor
on optimization under “missing” prices to perform competitive equilibrium analysis: In two-
sided one-to-one and many-to-one matching markets, competitive equilibrium is, in essence,
equivalent to pairwise stability, i.e., the requirement that no pair of agents wants to mutually
deviate from their assignments, in favor of trading with each other. The pairwise stability
requirement does not require specifying any “missing” prices, and does not require coordinated
deviations by complex coalitions. Given that pairwise deviations are much easier for agents
to discover, the equivalence results mitigate potential concerns about solution concepts that
are based on discovering large-group deviations or on reasoning about unobserved “missing”
prices.

In this paper, we establish analogous results for a very rich setting—trading networks
with bilateral contracts. We allow agents to be buyers in some contracts and sellers in other
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contracts, and do not impose any restrictions on the network of possible trades. In particular,
the market is neither required to have a two-sided structure, nor is the network of possible
trades required to have a vertical structure. The model we present here is strictly more
general than any of the earlier models in the literature, subsuming settings with discrete
and continuous prices, with quasilinear and non-quasilinear utility functions, and with and
without indifferences in agents’ preferences. We prove two equivalence results. Our main
result shows that if all agents’ preferences jointly satisfy the full substitutability condition and
the Laws of Aggregate Supply and Demand (which we make precise in Section 2.1, by way
of a condition we call monotone–substitutability), the concept of stability (under which all
possible deviations by groups of agents need to be considered) is equivalent to chain stability,
under which only deviations by chains of agents need to be considered.1 We also show a
corollary of the main result of the current paper and the results of Hatfield et al. (2013): In
trading environments with continuously transferable utility, if all agents’ preferences are fully
substitutable, then an outcome is consistent with competitive equilibrium2 if and only if it is
not blocked by any chain. Note that this is not a limit result for large economies in the spirit
of Debreu and Scarf (1963)—our equivalence result holds for fixed, finite economies.

After presenting our equivalence results, we quantify the simplicity of chain deviations
relative to more general “blocking set” deviations. Formally, we show that as the size of the
economy grows, the number of chains of trades (corresponding to possible blocking chains) is
a vanishingly small fraction of the number of general sets of trades (corresponding to possible
blocking sets). Intuitively, just as in two-sided settings it is much easier to discover a pairwise
blocking set than it would be to find a general blocking set, in our setting it is much easier to
discover a blocking chain than it would be to find a general blocking set. If the network has
additional structure, the simplicity gain can be much higher than suggested by our formal
counting result. For example, in the supply chain setting of Ostrovsky (2008), the number of
chains increases only polynomially as a function of the number of agents, while the number
of sets of contracts increases exponentially.

We also present three examples that demonstrate the roles that our assumptions play in
the main equivalence result. The first example shows that if the preferences of some agent

1Chain stability was originally introduced by Ostrovsky (2008) for a more restrictive, vertical environment
in which all trade flows in one direction, from the suppliers of basic inputs to the consumers of final outputs.
In the Ostrovsky (2008) environment, any chain of contracts has a beginning and an end, and passes “through”
every agent at most once. In the current, richer environment, we adapt the definition of a chain to allow a
chain to end at the same node as where it began (thus becoming a “loop”), and to cross itself (potentially
several times). However, as before, the essential feature of a chain is that it is a “linked” sequence of trades,
such that the agent who is the buyer in a particular trader is the seller in the next trade in the sequence. We
discuss our concept of chain stability in more detail in Section 2.2 after introducing it formally.

2That is, one can “fill out” the missing prices to obtain a competitive equilibrium.
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do not satisfy the Laws of Aggregate Supply and Demand, then chain stable outcomes may
not be stable. The second example shows that if the preferences of some agent are not fully
substitutable, then chain stable outcomes may likewise not be stable. The third example
illustrates that ensuring robustness to blocking chains that do not “cross” themselves (i.e.,
chains that involve each agent in at most two contracts) is not sufficient to ensure robustness
to general blocking sets. This last example, combined with our equivalence results, illustrates
that chain stability plays the same role in the trading network setting as pairwise stability
does in two-sided settings: chains are the “essential” blocking sets that one needs to consider
to evaluate an outcome’s stability or its consistency with competitive equilibrium.

The model of trading networks that we consider is deliberately very general, encompassing
many existing matching models and going beyond them. As a result, the existence of stable
outcomes in our full model is not guaranteed (although it is of course guaranteed in many
important special cases, such as the quasilinear case with transferable utility considered
by Hatfield et al. (2013) and the vertical supply chain setting of Ostrovsky (2008)). The
motivation for considering such a general model is two-fold: First, our model allows us
to uncover the unifying structure underlying the equivalence between stability and chain
stability in various special cases. Second, and relatedly, we establish equivalence for any
other special case in which existence holds; moreover, for settings for which the existence
of stable outcomes is guaranteed, our results imply that checking the existence of chain
stable outcomes is in fact sufficient and that checking chain stability is substantially easier
than checking stability. For example, following the circulation of our original draft, Fleiner,
Jagadeesan, Jankó, and Teytelboym (2018) showed that stable outcomes are guaranteed to
exist in a model of trading networks with frictions in the case of complete markets;3 our work
immediately implies that chain stability is equivalent to stability in their setting.

The remainder of the paper is organized as follows. Section 1.1 provides an overview
of related literature. Section 2 introduces our general model. Section 3 states and proves
the main result on the equivalence of stability and chain stability. Section 4 discusses the
correspondence between chain stable outcomes and competitive equilibria for the special case
of quasilinear preferences and fully transferable utility. Section 5 assesses the simplicity of
checking chain stability relative to checking stability directly. Section 6 presents the examples
that show the roles of our assumptions. Section 7 concludes.

3Their work is a strict generalization of the model of Hatfield et al. (2013) that goes beyond quasilinearity
and allows for certain income effects in agents’ utility functions.
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1.1 Related Literature

The concept of blocking is fundamental in the analysis of matching markets. In the original
papers of Gale and Shapley (1962) and Shapley and Shubik (1971) on stability in two-sided
markets, attention is restricted to pairwise blocks, i.e., pairs of agents who mutually prefer
each other to their assigned partners. The requirement that a two-sided matching be pairwise
stable—i.e., be robust to pairwise blocks—seems much weaker than the requirement that a
matching be robust to deviations by arbitrary sets of agents. Indeed, in general, in markets
in which some agents are allowed to match with multiple partners, a matching that is robust
to deviations by pairs may not be robust to richer deviations.4 However, as we discussed in
the Introduction, key results in the theory of two-sided, many-to-one matching show that
when agents’ preferences are substitutable (Kelso and Crawford, 1982; Roth, 1984), pairwise
relationships are in fact the essential blocking sets: any pairwise stable matching is also
robust to larger deviations.5

Ostrovsky (2008) introduced a generalization of two-sided matching to “supply chain”
environments. In supply chain matching, goods flow downstream from initial producers
to end consumers, potentially with numerous intermediaries in between. In the Ostrovsky
(2008) framework, attention is restricted to blocking chains—sequences of agents who could
benefit from re-contracting with each other along a vertical chain. Outcomes robust to chain
deviations are said to be chain stable. Chain stability is a natural extension of pairwise
stability to the setting in which an agent can be both a buyer and a seller; for example, an
agent may be willing to sell a unit of output only if he can buy a unit of input required to
produce that output. Ostrovsky (2008) showed that when the preferences of all agents in the
economy are fully substitutable (see Definition 1 in Section 2.1), chain stable outcomes are
guaranteed to exist. Again, chain stability appears to be a much weaker condition than the
requirement that an outcome be robust to deviations by arbitrary sets of agents. However,
as in the case of pairwise stability, under the assumption that agents’ preferences are fully
substitutable, chains are the essential blocking sets in the supply chain setting: Hatfield and
Kominers (2012) showed that in that setting, any chain stable outcome is stable, in the sense
that it is robust to blocks by arbitrary sets of agents.6

4For example, if every firm in an economy is only interested in hiring an even number of workers, then an
empty matching will always be pairwise stable, even in the cases where another, non-empty matching makes
all agents in the economy strictly better off.

5Hatfield and Kominers (2017) prove this result in a general two-sided matching setting with contracts,
and provide an overview of earlier literature on related results in other two-sided settings.

6The setting of Hatfield and Kominers (2012) is a special case of our framework, and for that special
case, the Hatfield and Kominers (2012) definition of stability coincides with ours (Definition 4 in Section 2.2).
Note, however, that even in the case of vertical networks, our setting is substantially more general than that
of Ostrovsky (2008) and Hatfield and Kominers (2012): we allow for arbitrary sets of contracts (as opposed
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Hatfield et al. (2013) dispensed with the vertical structure of the supply chain environment,
and instead considered arbitrary trading networks. They also assumed that prices can vary
freely (instead of being restricted to a finite discrete set), and that agents’ preferences are
quasilinear.7 In their analysis, Hatfield et al. (2013) considered a stability concept analogous
to that of Hatfield and Kominers (2012), allowing for re-contracting by arbitrary groups of
agents. They showed that when agents’ preferences are fully substitutable, stable outcomes
exist and are essentially equivalent to competitive equilibria with personalized prices. Our
model includes the setting of Hatfield et al. (2013) as a special case—and for that special case,
a corollary of our main result is that an outcome is consistent with competitive equilibrium if
and only if it is not blocked by any chain of contracts.

Our paper contributes to the literature on the relationships between different solution
concepts in matching environments (see, e.g., Sotomayor (1999), Echenique and Oviedo
(2006), Klaus and Walzl (2009), Westkamp (2010), and Hatfield and Kominers (2017)). It also
has parallels in the operations research literature on flows in networks (see, e.g., a textbook
treatment by Ahuja et al. (1993)); the “flow decomposition lemma” in that literature states
that any “flow” in a network can be “decomposed” into a collection of simple “paths” and
“cycles,” resembling the decomposition of any blocking set into a collection of blocking chains
in our Theorem 2. Note, however, that “paths” and “cycles” in the flow decomposition lemma
cannot cross themselves, while in our environment, we need to allow for the possibility of
self-crossing chains (see Example 3 in Section 6). The difficulty is due to the fact that in the
“network flows” environment, there is a single type of good “flowing” through the network,
and the objective function is the maximization or minimization of the aggregate flow, whereas
in our setting many different types of goods may be present, and the preferences of agents in
the market may be more complex. For the case of quasilinear environments with transferable
utility, Candogan et al. (2016) provided a detailed analysis of the connections between results
on stability and competitive equilibrium in trading networks and the literature on network
flows.
to just finite ones) and explicitly incorporate the case in which an agent may be indifferent between two
different sets of contracts (as opposed to having strict preferences); these generalizations are necessary to
define the concept of competitive equilibrium and to establish the connections between chain stable outcomes
and competitive equilibria.

7If one dispenses with supply chain structure without assuming that prices can vary freely, then stable
outcomes may not exist (Hatfield and Kominers, 2012). Fleiner, Jankó, Tamura, and Teytelboym (2018)
introduced a weaker concept, trail stability, for settings without supply chain structure and showed that trail
stable outcomes are guaranteed to exist under full substitutability.
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2 Model

Our model includes as special cases the discrete-price models of Ostrovsky (2008) and Hatfield
and Kominers (2012), as well as the continuous-price models of Hatfield et al. (2013) and
Fleiner, Jagadeesan, Jankó, and Teytelboym (2018). Our notation is closely based on that of
Hatfield et al. (2013).8

There is an economy with a finite set I of agents. Pairs of agents can participate in
bilateral trades. Each trade ω is associated with a buyer b(ω) ∈ I and a seller s(ω) ∈ I,
with b(ω) 6= s(ω) and specifies all the nonpecuniary terms and conditions associated with a
relationship between b(ω) and s(ω); for instance, ω could specify the transfer of a single unit
of an indivisible good or service from s(ω) to b(ω).9 The set of possible trades, denoted Ω, is
finite and exogenously given. Note that we require that the buyer and the seller associated
with a trade be distinct agents, but we allow Ω to contain multiple trades associated with the
same agents, and allow for the possibility of trades ω ∈ Ω and ψ ∈ Ω such that s(ω) = b(ψ)
and s(ψ) = b(ω).

To capture the purely financial aspect of a transaction associated with a trade, we augment
each trade by introducing a price. Formally, a contract x is a pair (ω, pω) ∈ Ω × R that
specifies a trade and an associated price. For a contract x = (ω, pω), we denote by b(x) ≡ b(ω)
and s(x) ≡ s(ω) the buyer and the seller associated with the trade ω of x. If b(x) = i for
some contract x, then x is upstream of, or on the buy-side for, i; similarly, if s(x) = i for
some contract x, then x is downstream of, or on the sell-side for, i. We denote by X ⊆ Ω×R
the set of all contracts available to the agents; this set is fixed and exogenously given. It can
be infinite (as, e.g., in the setting of Hatfield et al. (2013), where all prices are allowed for
all trades, and thus X = Ω× R), or finite (as, e.g., in the settings of Ostrovsky (2008) and
Hatfield and Kominers (2012)).

For each agent i ∈ I and set of contracts Y ⊆ X, we let Y→i ≡ {y ∈ Y : i = b(y)} denote
the set of contracts in Y in which i is the buyer, i.e., the set of upstream contracts for i, and
Yi→ ≡ {y ∈ Y : i = s(y)} denote the set of contracts in Y in which i is the seller, i.e., the
set of downstream contracts for i. We let Yi ≡ Yi→ ∪ Y→i. We let a(Y ) ≡ ⋃y∈Y {b(y), s(y)}

8In the settings of Ostrovsky (2008), Hatfield and Kominers (2012), and Hatfield et al. (2013), the existence
of stable outcomes is guaranteed when preferences are fully substitutable. In the setting of Fleiner, Jagadeesan,
Jankó, and Teytelboym (2018), the existence of stable outcomes requires the additional “complete markets”
condition. Our equivalence result shows that generally, under full substitutability, a stable outcome exists
whenever a chain stable outcome does; however, the precise conditions for the existence of stable and chain
stable outcomes in the fully general model are not known.

9For some applications, the assignment of buyer and seller roles in a trading relationship follows immediately
from the context. In other applications, one needs a convention. For instance, in a two-sided matching market
without transfers, we think of agents on one side as “sellers” (in all possible matches) and agents on the other
side as “buyers” (in all possible matches).
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denote the set of agents involved in Y as either buyers or sellers. Slightly abusing notation,
for a contract x ∈ X, we write a(x) ≡ a({x}). We use analogous notation for various
properties of trades ω ∈ Ω and sets of trades Ψ ⊆ Ω: e.g., a(ω) = {b(ω), s(ω)} and
Ψi ≡ {ω ∈ Ψ : i ∈ a(ω)}. Finally, we denote by τ(Y ) the set of trades involved in contracts
in Y : τ(Y ) ≡ {ω ∈ Ω : (ω, pω) ∈ Y for some pω ∈ R}.

A set of contracts Y ⊆ X is feasible if it does not contain two or more contracts associated
with the same trade: formally, Y ⊆ X is feasible if (ω, pω), (ω, p̂ω) ∈ Y implies that pω = p̂ω;
equivalently, Y ⊆ X is feasible if |Y | = |τ(Y )|. An outcome is a feasible set of contracts.

2.1 Preferences

Each agent i has a utility function Ui over feasible sets Y ⊆ Xi of contracts that involve i as
the buyer or the seller. For a feasible set Y ⊆ Xi, we have that Ui(Y ) ∈ R ∪ {−∞}, with
the value of −∞ used to denote sets of contracts that are technologically impossible for the
agent to undertake (e.g., selling the same object to two different buyers). We assume that
Ui(∅) ∈ R, i.e., any agent’s utility from the “outside option” of not forming any contracts is
finite.

The choice correspondence of agent i from a set of contracts Y ⊆ Xi is defined as the
collection of sets of contracts maximizing the utility of agent i:

Ci(Y ) ≡ {Z ⊆ Y : Z is feasible; ∀ feasible Z ′ ⊆ Y, Ui(Z) ≥ Ui(Z ′)}.10

For notational convenience, we also extend the choice correspondence to sets of contracts
that do not necessarily involve agent i: for a set of contracts Y ⊆ X, Ci(Y ) ≡ Ci(Yi).

We now introduce our first key condition on preferences, full substitutability. To ease
the exposition, we first present a version of the full substitutability condition that restricts
attention to situations in which the choice correspondence is single-valued.11

Definition 1. The preferences of agent i are fully substitutable if:

1. For all sets of contracts Y, Z ⊆ Xi such that |Ci(Y )| = |Ci(Z)| = 1, Yi→ = Zi→, and
Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

(Y→i r Y ∗→i) ⊆ (Z→i r Z∗→i) and Y ∗i→ ⊆ Z∗i→.

10Note that Ci(Y ) may be empty if Y is infinite.
11For the case of quasilinear utility functions, the full substitutability definition we use here corresponds to

the (CFS) condition of Hatfield et al. (2018). Thus, the results of Hatfield et al. (2018) imply that (again, for
the case of quasilinear utility functions) our definition is equivalent to a number of other substitutability
concepts that have originated in several distinct literatures. Ostrovsky (2008) and Hatfield et al. (2013)
provide detailed discussions of the implications of full substitutability in various environments.
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2. For all sets of contracts Y, Z ⊆ Xi such that |Ci(Y )| = |Ci(Z)| = 1, Y→i = Z→i and
Yi→ ⊆ Zi→, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

(Yi→ r Y ∗i→) ⊆ (Zi→ r Z∗i→) and Y ∗→i ⊆ Z∗→i.

Informally, the choice correspondence Ci is fully substitutable if, when the set of options
available to i on one side expands, i both rejects a (weakly) larger set of contracts on that side
and selects a (weakly) larger set of contracts on the other side, where “larger” is understood
in a set-inclusion sense. Hatfield et al. (2013, 2018) have identified several economically
important examples of fully substitutable preferences.

The second property important for our results is that the preferences of all agents satisfy
the Laws of Aggregate Supply and Demand. As with full substitutability, we first present a
version of the Laws of Aggregate Supply and Demand that restricts attention to situations in
which the choice correspondence is single-valued.

Definition 2. The preferences of agent i satisfy the Law of Aggregate Demand if for all sets
of contracts Y, Z ⊆ Xi such that |Ci(Y )| = |Ci(Z)| = 1, Yi→ = Zi→, and Y→i ⊆ Z→i, for the
unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

|Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→|.

The preferences of agent i satisfy the Law of Aggregate Supply if for all sets of contracts
Y, Z ⊆ Xi such that |Ci(Y )| = |Ci(Z)| = 1, Yi→ ⊆ Zi→, and Y→i = Z→i, for the unique
Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

|Z∗i→| − |Z∗→i| ≥ |Y ∗i→| − |Y ∗→i|.

Informally, the choice correspondence Ci satisfies the Law of Aggregate Demand if, when
the set of options available to i as a buyer expands, the net demand of i, i.e., the difference
between the number of buy-side and sell-side contracts demanded by i, (weakly) increases.12

Similarly, the choice correspondence Ci satisfies the Law of Aggregate Supply if, when the set
of options available to i as a seller expands, the net supply of i, i.e., the difference between the
number of sell-side and buy-side contracts supplied by i, (weakly) increases. These conditions
extend the canonical Law of Aggregate Demand (Hatfield and Milgrom (2005); see also Alkan
and Gale (2003)) to the current setting, in which each agent can be both a buyer in some

12That is, when an agent gains access to more buy-side contracts while holding his set of available sell-side
contracts fixed, the increase in the number of buy-side contracts chosen has to be weakly larger than the
increase in the number of sell-side contracts chosen.
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trades and a seller in others.
Intuitively, if we think of each contract as specifying the transfer of an object, the Laws

of Aggregate Supply and Demand require that no object can substitute for multiple other
objects. Thus, when i obtains access to a new buy-side contract, the total number of buy-side
contracts he chooses weakly increases (for a fixed number of sell-side contracts), and, similarly,
when i obtains access to a new sell-side contract, the total number of sell-side contracts he
chooses weakly increases (for a fixed number of buy-side contracts).13 For instance, in the
setting of the used car market discussed by Hatfield et al. (2013), a trade represents the
transfer of an automobile, and so the Laws of Aggregate Supply and Demand hold naturally:
purchasing an additional car enables the dealer to sell at most one more car.

When the choice correspondence is multi-valued (as can naturally arise when prices can
vary continuously), the definitions of full substitutability and the Laws of Aggregate Supply
and Demand must become more subtle in order to account for indifferences. In particular,
we need to reformulate the first part of the definition of full substitutability (Definition 1) to
consider instances when the choice correspondence is multi-valued by requiring, for any set
Y , for each optimal choice from Y , for a set Z that expands i’s opportunities on the buy-side,
i.e., a set Z such that Yi→ = Zi→ and Y→i ⊆ Z→i, there exists an optimal choice from Z

that satisfies the same conditions as those in the first part of Definition 1.14 Similarly, we
have to extend the Laws of Aggregate Supply and Demand to consider multivalued choice
correspondences as the set of available buy-side or sell-side contracts expands. Additionally,
when the choice correspondence may be multi-valued, requiring both conditions to hold
simultaneously becomes subtle, as we need to ensure that they apply to the same element of
the multi-valued choice correspondence. That is, for example, we need that for any set Y , for
each optimal choice Y ∗ from Y , for a set Z that expands i’s opportunities on the buy-side,
there exists an optimal Z∗ that simultaneously fulfills the requirements of full substitutability
and the Laws of Aggregate Supply and Demand. We formalize the preceding requirements in
the following definition.

Definition 3. The preferences of agent i are monotone–substitutable if:15

1. For all finite sets of contracts Y, Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for every
Y ∗ ∈ Ci(Y ) there exists Z∗ ∈ Ci(Z) such that both Y ∗ and Z∗ are consistent with the

13Of course, these monotonicity conditions only make sense if trades represent corresponding units of goods;
for a discussion of this and other issues related to contract design, see Hatfield and Kominers (2017).

14These formulations of full substituability are equivalent when continuous transfers are available and
agents’ utility functions are quasilinear (Hatfield et al., 2018).

15Note that when choice-correspondences are single-valued, monotone-substitutability reduces to imposing
full substitutability and the Laws of Aggregate Demand and Supply separately.
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full substitutability condition when the set of buy-side opportunities expands, i.e.,

(Y→i r Y ∗→i) ⊆ (Z→i r Z∗→i) and Y ∗i→ ⊆ Z∗i→, (1a)

and Y ∗ and Z∗ are consistent with the Law of Aggregate Demand, i.e.,

|Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→|. (1b)

2. For all finite sets of contracts Y, Z ⊆ Xi such that Y→i = Z→i and Yi→ ⊆ Zi→, for every
Y ∗ ∈ Ci(Y ) there exists Z∗ ∈ Ci(Z) such that both Y ∗ and Z∗ are consistent with the
full substitutability condition when the set of sell-side opportunities expands, i.e.,

(Yi→ r Y ∗i→) ⊆ (Zi→ r Z∗i→) and Y ∗→i ⊆ Z∗→i, (2a)

and Y ∗ and Z∗ are consistent with the Law of Aggregate Supply, i.e.,

|Z∗i→| − |Z∗→i| ≥ |Y ∗i→| − |Y ∗→i|. (2b)

The following lemma illustrates one of the implications of monotone–substitutability,
which plays a key role in understanding our main result.

Lemma 1. Suppose that the preferences of i are monotone–substitutable and that Y ∗ ∈ Ci(Y )
for some Y ⊆ X.

1. For any contract ȳ ∈ [X r Y ]→i, there exists a Ȳ ∗ ∈ Ci(Y ∪ {ȳ}) such that either

(a) Ȳ ∗ = Y ∗, or

(b) Ȳ ∗ = Y ∗ ∪ {ȳ}, or

(c) there exists a contract y ∈ Y ∗→i such that Ȳ ∗→i = (Y ∗→i ∪ {ȳ}) r {y} and Ȳ ∗i→ = Y ∗i→,
or

(d) Ȳ ∗→i = Y ∗→i ∪ {ȳ} and there exists some contract z ∈ [Y r Y ∗]i→ such that Ȳ ∗i→ =
Y ∗i→ ∪ {z}.

2. For any contract ȳ ∈ [X r Y ]i→, there exists a Ȳ ∗ ∈ Ci(Y ∪ {ȳ}) such that either

(a) Ȳ ∗ = Y ∗, or

(b) Ȳ ∗ = Y ∗ ∪ {ȳ}, or

(c) there exists a contract y ∈ Y ∗i→ such that Ȳ ∗i→ = (Y ∗i→ ∪ {ȳ}) r {y} and Ȳ ∗→i = Y ∗→i,
or
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(d) Ȳ ∗i→ = Y ∗i→ ∪ {ȳ} and there exists some contract z ∈ [Y r Y ∗]→i such that Ȳ ∗→i =
Y ∗→i ∪ {z}.

Part 1 of Lemma 1 describes how an optimal choice by i changes when i gains access to
the contract ȳ as a buyer. There are four possibilities: In the first possibility, ȳ is undesirable
and so i’s optimal choice does not change. In the second possibility, i chooses the same set of
contracts along with the newly-available contract ȳ. In the third possibility, the contract ȳ
“substitutes” for y, and i chooses the same set of contracts as a seller. In the fourth possibility,
i chooses the same set of contracts along with the newly-available contract ȳ as a buyer,
and also chooses a not-previously-chosen sell-side contract. Part 2 of Lemma 1 describes the
analogous behavior associated with gaining access to one contract as a seller.

To understand the proof of Lemma 1, consider an agent with fully substitutable preferences
who converts inputs into outputs and suppose that one input ȳ becomes available. Full
substitutability ensures that the agent still rejects all of the inputs that he rejected before
and does not reject any additional outputs. The Laws of Aggregate Supply and Demand
ensure that, when ȳ becomes available, the intermediary’s optimal choice must have a weakly
higher net demand. Given the constraints imposed by full substitutability, this can only be
achieved by either choosing the same set of contracts that he chose before (leaving net demand
unchanged), choosing the same set of contracts along with ȳ (which increases net demand by
one), replacing some contract y with ȳ as a buyer (leaving net demand unchanged), or taking
ȳ and adding some contract z as a seller (also leaving net demand unchanged).

In a quasilinear setting, Hatfield et al. (2018) showed that full substitutability implies
monotone–substitutability. In general, however, full substitutability does not imply the Laws
of Aggregate Supply and Demand (see, e.g., Example 1 of Section 6 below) and thus does
not imply monotone–subsitutability.16 Hatfield et al. (2018) provided an extended discussion
of the restrictions imposed by monotone–substitutability and economically interesting classes
of preferences that are monotone–substitutable (in quasilinear settings).

2.2 Stability and Chain Stability

Our main result connects two solution concepts for trading network settings: stability, based
on the concepts introduced by Hatfield and Kominers (2012) and Hatfield et al. (2013), and
chain stability, based on the concept introduced by Ostrovsky (2008).

We begin with the definition of stability.

Definition 4. An outcome A is stable if it is
16Even in the special case of a two-sided market, full substitutability does not imply the Laws of Aggregate

Supply and Demand, see, e.g., Hatfield and Milgrom (2005).
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1. Individually rational: Ai ∈ Ci(A) for all i;
2. Unblocked: There is no nonempty blocking set Z ⊆ X such that

(a) Z is feasible,
(b) Z ∩ A = ∅, and
(c) for all i ∈ a(Z), for all Y ∈ Ci(Z ∪ A), we have Zi ⊆ Y .

Individual rationality is a voluntary participation condition based on the idea that an agent
can always unilaterally drop contracts if doing so increases his welfare. The unblockedness
condition states that when presented with a stable outcome A, one cannot propose a new set
of contracts such that all the agents involved in these new contracts would strictly prefer
to execute all of them (and possibly drop some of their existing contracts in A) instead of
executing only some of them (or none).

To introduce our second solution concept, chain stability, we first need to formalize the
notion of a chain.

Definition 5. A non-empty set of trades Ψ is a chain if its elements can be arranged in
some order ψ1, . . . , ψ|Ψ| such that s(ψ`+1) = b(ψ`) for all ` ∈ {1, 2, . . . , |Ψ|− 1}. A non-empty
set of contracts Z is a chain if τ(Z) is a chain.

Note that because there is no vertical ordering of agents in our framework, Definition 5
adapts the “chain” concept of Ostrovsky (2008) to our current framework by allowing chains
to cross themselves: the buyer in contract y|Z| is allowed to be the seller in contract y1 (in
which case the chain becomes a cycle) and a given agent can be involved in the chain multiple
times. Example 3 of Section 6 illustrates the role of “self-crossing” chains in our results.

We now define chain stability.

Definition 6. An outcome A is chain stable if it is

1. Individually rational: Ai ∈ Ci(A) for all i;
2. Not blocked by a chain: There does not exist a feasible nonempty blocking chain Z ⊆ X

such that

(a) Z is feasible,
(b) Z ∩ A = ∅, and
(c) for all i ∈ a(Z), for all Y ∈ Ci(Z ∪ A), we have Zi ⊆ Y .

The essential difference between the definitions of stability (Definition 4) and chain
stability (Definition 6) consists of just one word: “set” in requirement 2 in the definition of
stability versus “chain” in requirement 2 in the definition of chain stability. Substantively,
however, the two definitions are very different. Blocking sets considered in Definition 4 can
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be arbitrarily complex, involving any sets of contracts and agents. By contrast, blocking
chains considered in Definition 6 have a well-defined linear structure. As Ostrovsky (2008)
argued, blocking chains are much easier to identify and organize than arbitrary blocking sets.
An agent can contact a potential supplier and propose a possible contract. The supplier
would then contact one of his suppliers, and so on, and the process would proceed in a linear
fashion until a blocking chain is identified. An important difference in our setting is that in
the case of loops, the agent initiating the communication may need to make his initial offer
tentative: instead of proposing a contract outright, he would have to say something along
the lines of: “I may be interested in signing the contract x with you, if I can subsequently
sign a contract y with a customer for one of the outputs I am offering.” An initial agent
may also try initiating the deviation in both directions at the same time, making tentative
offers to a supplier and a customer. While identifying chains in our trading network setting
is more complicated than identifying pairwise blocks in two-sided settings or blocking chains
in the setting of Ostrovsky (2008), it is still relatively simple and natural compared to trying
to identify grand coalitions and large, complex, “non-linear” sets of blocking contracts (see
Section 5).

3 Main Result: Equivalence of Stability Concepts

Stability appears substantively different and noticeably stronger than chain stability: the
former requires robustness to all blocking sets, while the latter requires robustness only to
specific blocking sets—chains of contracts. It is immediate that any stable outcome is chain
stable, regardless of whether agents’ preferences are fully substitutable or satisfy the Laws of
Aggregate Supply and Demand. Our main result shows that when agents’ preferences are
monotone–substitutable, the two solution concepts are in fact equivalent.

Theorem 1. If all agents’ preferences are monotone–substitutable, then any chain stable
outcome is stable.

Theorem 1 is an immediate corollary of a stronger result: when agents’ preferences are
monotone–substitutable, any set blocking an outcome A can be “decomposed” into blocking
chains.

Theorem 2. Suppose that all agents’ preferences are monotone–substitutable. If some
outcome A is blocked by some set Z then for some K ≥ 1 we can partition the set Z into a
collection of K chains {W k}K

k=1 such that A is blocked by W 1 and for any k ≤ K − 1, the set
of contracts A ∪W 1 ∪ · · · ∪W k is blocked by W k+1.
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In particular, Theorem 1 follows from Theorem 2 by noting that if an outcome A is
not stable, then either A is not individually rational (and so A can not be chain stable by
definition) or there exists a blocking set Z; Theorem 2 then implies that we can construct a
chain W 1 that blocks A.

We prove Theorem 2 by way of the following lemma, which shows that, for any set of
contracts A blocked by some set Z, either Z is a chain or we can remove a chain W from Z

and still have that Z rW blocks A.

Lemma 2. Suppose that all agents’ preferences are monotone–substitutable. For any feasible
outcome A blocked by some set Z, if Z is not itself a chain, then there exists a chain W ( Z

such that A is blocked by Z rW and A ∪ (Z rW ) is blocked by W .

Lemma 2 implies that for any set Z blocking A, if Z is not a chain, then there exists a
chain W̃ 1 ( Z such that A is blocked by Z r W̃ 1 and A ∪ (Z r W̃ 1) is blocked by W̃ 1. But
then, applying Lemma 2 again, if Z r W̃ 1 is not a chain, there exists a chain W̃ 2 ( Z r W̃ 1

such that A is blocked by (Z r W̃ 1) r W̃ 2 = Z r (W̃ 1 ∪ W̃ 2) and A ∪ (Z r (W̃ 1 ∪ W̃ 2))
is blocked by W̃ 2. Iterating this logic, we obtain a sequence of chains W̃ 1, W̃ 2, . . . such
that, for each `, Z r (W̃ 1 ∪ · · · ∪ W̃ `) blocks A, W̃ ` blocks A ∪ (Z r (W̃ 1 ∪ · · · ∪ W̃ `)),
and, if Z r (W̃ 1 ∪ · · · ∪ W̃ `) is not a chain, we can extend the sequence by another chain
W̃ `+1. As Z is finite (since it is feasible), the sequence of chains W̃ 1, W̃ 2, . . . must be finite;
consequently, there must be some L such that Z r (W̃ 1 ∪ · · · ∪ W̃L) is a chain that—by
construction—blocks A. Setting W 1 ≡ Z r (W̃ 1 ∪ · · · ∪ W̃L) and W ` ≡ W̃L+2−` for all
` ∈ {2, . . . , L+ 1}, we see that Lemma 2 implies Theorem 2: By construction of W̃ 1, . . . , W̃L,
we have that W̃ 1, . . . , W̃L is a partition of Z, A is blocked by W 1 = Z r (W̃ 1 ∪ · · · ∪ W̃L),
and, for all ` ≤ L, A ∪ W 1 ∪ · · · ∪ W ` = A ∪ (Z r (W̃ 1 ∪ · · · ∪ W̃L+1−`)) is blocked by
W `+1 = W̃L+1−`.

Before proceeding to the formal proof of Lemma 2, we explain the intuition behind this
result and highlight where our assumptions on preferences are used. For simplicity, assume
that there are no indifferences in agents’ preferences over any relevant sets of contracts, i.e.,
that all agents’ choice correspondences over subsets of Z ∪ A are single-valued. Our goal is
to “peel off” a chain W from the set Z in such a way that the remaining set Z rW still
blocks A.

We start the chain “in the middle,” by choosing an arbitrary contract z0 ∈ Z. Since Z
is a blocking set, we have that Zb(z0) ⊆ Z∗b(z0) where {Z∗b(z0)} = Cb(z0)(Z ∪ A). Thus, as the
preferences of b(z0) are monotone–substitutable, Case 1 of Lemma 1 implies that, for the
unique Y ∗b(z0) ∈ Cb(z0)((Z r {z0}) ∪ A), either17

17Note that the first possibility described in the first case of Lemma 1 can not happen, as we know
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1. Z∗b(z0) = Y ∗b(z0) ∪ {z0}, or

2. Z∗→b(z0) = (Y ∗→b(z0)∪{z0})r{y} for some y ∈ [(A∪Z)rZ∗]→b(z0) and Z∗b(z0)→ = Y ∗b(z0)→,
or

3. Z∗→b(z0) = Y ∗→b(z0) ∪ {z0} and Z∗b(z0)→ = Y ∗b(z0)→ ∪ {ȳ} for some ȳ ∈ Z∗b(z0)→.

Rewriting the preceding to describe Y ∗, we find that

1. Y ∗b(z0) = Z∗b(z0) r {z0}, or

2. Y ∗→b(z0) = (Z∗→b(z0) r {z0}) ∪ {y} for some y ∈ (A ∪ Z) r Z∗ and Y ∗b(z0)→ = Z∗b(z0)→, or

3. Y ∗→b(z0) = (Z∗→b(z0) r {z0}) and Y ∗b(z0)→ = Z∗b(z0)→ r {ȳ} for some ȳ ∈ Z∗b(z0)→.

Thus, with respect to the contracts in Z, there are two possibilities

• The agent b(z0) chooses all of his remaining contracts in [Z r {z0}]b(z0), i.e., [Z r
{z0}]b(z0) ⊆ Y ∗. This possibility corresponds to the first case above, the second case
above (since (A ∪ Z) r Z∗ ⊆ A as b(z0) chooses all of the contracts in Z from A ∪ Z),
and the third case above when ȳ ∈ A.

• The agent b(z0) chooses all of his remaining contracts in [Z r {z0}]b(z0) except for
one contract z1 = ȳ for which he is the seller, i.e., [Z r {z0, z1}]b(z0) ⊆ Y ∗ for some
z1 ∈ Zb(z0)→. This possibility corresponds to the third case above when ȳ ∈ Z.

In the former case, we have found the “downstream end” of the chain; in the latter case,
we extend the chain by adding z1 and now consider b(z1). By assumption, the preferences
of b(z1) are also monotone–substitutable, and so the same analysis applies: either z1 is the
“downstream end” of the chain or we can extend the chain by adding a contract z2 ∈ Zb(z1)→

and considering b(z2). Since the number of contracts in Z is finite, by iterating this process
we must eventually reach a contract zN such that the agent b(zN ) chooses all of his remaining
contracts in [Z r {z0, . . . , zN}]b(zN ); thus, zN is the “downstream end” of the chain. An
analogous process allows us to grow the chain “upstream,” adding contracts z−1, z−2, . . . until
we reach the “upstream end,” z−M . The chain W = {z−M , . . . , zN} satisfies the requirements
of Lemma 2: First, W blocks (Z ∪ A) rW because Z blocks A, i.e., every contract in Z is
chosen from Z∪A, and so every contract inW ⊆ Z is chosen from ((Z∪A)rW )∪W = Z∪A.
Second, by construction, every agent chooses all of their contracts in ZrW from (Z∪A)rW ;
thus, Z rW blocks A.

z0 ∈ Z∗b(z0) since Z is a blocking set.
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The full proof of Lemma 2 follows the sketch just described, but the execution is much
more challenging due to the need to account for multi-valued choice correspondences.18

3.1 Proof of Lemma 2

We first define the A-endowed utility function Ûi(·;A) for each i ∈ I as

Ûi(Y ;A) = max
Ā⊆A
{Ui(Y ∪ Ā)};

that is, Ûi(Y ;A) is the maximum utility that agent i can obtain by combining Y with elements
of A. This gives rise to an A-endowed choice correspondence Ĉi(·;A) for each i ∈ I, given by

Ĉi(Y ;A) ≡ argmax
Ȳ⊆Y

{Ûi(Ȳ ;A)} = {Ỹ r A : Ỹ ∈ Ci(Y ∪ A)};

that is, an element of Ĉi(Y ;A) is a set of contracts that i “chooses” from Y when he has access
to all the contracts in A. Note that, since Z is a blocking set, Zi ⊆ Y for all Y ∈ Ci(Z ∪ A)
for all i ∈ I, and thus Ĉi(Z;A) = {Zi} for all i ∈ I.

Take any contract z0 ∈ Z. We will algorithmically “grow” a chain W containing z0, by
proceeding upstream and downstream from z0. Specifically, in a sequence of steps from z0,
we grow a quasi-removable chain—i.e., a chain W = {z−m, . . . , z0, . . . , zn} such that Z rW

is a blocking set except (possibly) for the buyer of zn and the seller of z−m. We first proceed
downstream, showing that after each step, either Z rW behaves like a blocking set for the
buyer of zn—in which case zn is a terminal contract—or we can extend the quasi-removable
chain W at least one step further. We then proceed upstream, analogously. Once we have
found the downstream and upstream terminal contracts, our quasi-removable chain W is in
fact “removable” from the blocking set Z, in the sense that Z rW blocks A, as desired. We
now formally define what it means for a chain to be quasi-removable.

Definition 7. A chain W−m,n = {z−m, . . . , zn} is quasi-removable if:

1. For all i ∈ I r {s(z−m), b(zn)}, we have that {[Z rW−m,n]i} = Ĉi(Z rW−m,n;A).

2. If b(zn) 6= s(z−m), then, when choosing from Z rW−m,n:
18Our formal proof follows the sketch just presented, but allows for cases where the choice correspondence

is not single-valued. In particular, we can not use Lemma 1, as it does not allow us to characterize
Cb(z0)((Z r {z0}) ∪ A) if the choice correspondence Cb(z0)(Z ∪ A) is not single-valued; rather, we need to
prove an analogue to the conclusion of Lemma 1 which accounts for the fact that Cb(z0)(Z ∪ A) may be
multi-valued. Similarly, we need to prove an analogue to the the conclusion of Lemma 1 for the case in which
the chain “self-crosses.”
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(a) The buyer of zn never drops a contract for which he is the buyer and drops at
most one contract for which he is the seller, i.e., for all Ẑ∗ ∈ Ĉb(zn)(ZrW−m,n;A),
we have that

Ẑ∗→b(zn) = [Z rW−m,n]→b(zn)

and either
Ẑ∗b(zn)→ = [Z rW−m,n]b(zn)→

or there exists a zn+1 ∈ Zb(zn)→ such that

Ẑ∗b(zn)→ = [Z r (W−m,n ∪ {zn+1})]b(zn)→.

(b) The seller of z−m never drops a contract for which he is the seller and drops at most
one contract for which he is the buyer, i.e., for all Ẑ∗ ∈ Ĉs(z−m)(Z rW−m,n;A),
we have that

Ẑ∗s(z−m)→ = [Z rW−m,n]s(z−m)→

and either
Ẑ∗→s(z−m) = [Z rW−m,n]→s(z−m)

or there exists a z−m−1 ∈ Z→s(z−m) such that

Ẑ∗→s(z−m) = [Z r (W−m,n ∪ {z−m−1})]→s(z−m).

3. If b(zn) = s(z−m) = k, then, when choosing from Z rW−m,n, agent k drops at most
one contract for which he is the buyer and at most one contract for which he is the
seller, i.e., for all Ẑ∗ ∈ Ĉk(Z rW−m,n;A), we have that both

(a) either
Ẑ∗→k = [Z rW−m,n]→k

or there exists a z−m−1 ∈ Z→k such that

Ẑ∗→k = [Z r (W−m,n ∪ {z−m−1})]→k,

and

(b) either
Ẑ∗k→ = [Z rW−m,n]k→
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or there exists a zn+1 ∈ Zk→ such that

Ẑ∗k→ = [Z r (W−m,n ∪ {zn+1})]k→.

The first condition of Definition 7 ensures that each agent not associated with either end of
the chain chooses all of the contracts in Z rW−m,n that he is associated with. The second
condition of Definition 7 ensures that, when each “end” of the chain is associated with a
different agent, the agent at each end chooses all but one contract in Z rW−m,n that he is
associated with. The third condition of Definition 7 ensures that, when each “end” of the
chain is associated with the same agent, that agent chooses all of the contracts in Z rW−m,n

that he is associated with except for possibly one contract as a buyer and possibly one
contract as a seller.

We say that a quasi-removable chain W−m,n = {z−m, . . . , zn} is

1. downstream terminal if b(zn) strictly demands all of the contracts for which he is a
seller, i.e., for all Ẑ∗ ∈ Ĉb(zn)(Z rW−m,n;A), we have that

Ẑ∗b(zn)→ = [Z rW−m,n]b(zn)→,

and

2. upstream terminal if s(z−m) strictly demands all of the contracts for which he is a
buyer, i.e., for all Ẑ∗ ∈ Ĉs(z−m)(Z rW−m,n;A), we have that

Ẑ∗→s(z−m) = [Z rW−m,n]→s(z−m).

We now present a series of five claims, all proven in Appendix A, that we combine to
establish Lemma 2.

Claim 1. Consider any z0 ∈ Z. Then W 0,0 ≡ {z0} is a quasi-removable chain.

Claim 1 shows that for any arbitrary element z0 ∈ Z, the set W 0,0 ≡ {z0} is a quasi-
removable chain. Now we show that any blocking chain that is not downstream terminal
can be extended into a longer quasi-removable chain through the addition of a downstream
contract.

Claim 2. Suppose that W−m,n = {z−m, . . . , zn} is a quasi-removable chain that is not
downstream terminal. Then there exists a zn+1 such that s(zn+1) = b(zn) and such that
W−m,n+1 ≡ W−m,n ∪ {zn+1} is a quasi-removable chain. Moreover, if W−m,n is upstream
terminal, then W−m,n+1 is upstream terminal.
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An analogous result holds upstream: any blocking chain that is not upstream terminal
can be extended into a longer quasi-removable chain through the addition of an upstream
contract.

Claim 3. Suppose that W−m,n = {z−m, . . . , zn} is a quasi-removable chain that is not
upstream terminal. Then there exists a z−m−1 such that b(z−m−1) = s(z−m) and such that
W−m−1,n ≡ W−m,n∪{z−m−1} is a quasi-removable chain. Moreover, if W−m,n is downstream
terminal, then W−m−1,n is downstream terminal.

Our next claim ensures that, once we have found a quasi-removable chain that is both
upstream and downstream terminal, then that quasi-removable chain is in fact a blocking
chain.

Claim 4. IfW−m,n = {z−m, . . . , zn} is an upstream and downstream terminal quasi-removable
chain, then Z rW−m,n blocks A.

Our last claim verifies that any subset W of a blocking set Z blocks the set A ∪ (Z rW ).

Claim 5. Any non-empty W ⊆ Z blocks A ∪ (Z rW ).

We now complete the proof of Lemma 2. Consider any z0 ∈ Z; by Claim 1, we have that
W 0,0 = {z0} is a quasi-removable chain. If W 0,0 is not downstream terminal, then by Claim 2,
there exists a z1 such that s(z1) = b(z0) and such that W 0,1 = {z0, z1} is a quasi-removable
chain. Proceeding inductively, any quasi-removable chain W 0,n = {z0, . . . , zn} that is not
downstream terminal can be extended to a quasi-removable chain W 0,n+1 = W 0,n ∪ {zn+1}
by adding one sell-side contract zn+1 for the buyer of zn. Since Z is finite and all the quasi-
removable chains are contained in Z, this downstream extension process must eventually
end at a quasi-removable chain W 0,N that is downstream terminal. Similarly, if W 0,N is a
quasi-removable chain that is downstream but not upstream terminal, then by Claim 3 there
exists a z−1 such that W−1,N = W 0,N ∪ {z−1} is a downstream terminal quasi-removable
chain. Again proceeding inductively, we can extend any downstream but not upstream
terminal quasi-removable chain W−m,N to a downstream terminal quasi-removable chain
W−m−1,N , until we reach a quasi-removable chain W−M,N which is downstream and upstream
terminal. Finally, by Claims 4 and 5, Z rW−M,N must block A and W−M,N must block
A ∪ (Z rW−M,N).

4 Chain Stability and Competitive Equilibrium

The results of Section 3 hold for general sets of contracts and general monotone–substitutable
utility functions. For an environment in which both
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• prices are continuous and unrestricted, i.e., X = Ω× R, and

• agents’ preferences are quasilinear in prices,

Hatfield et al. (2013) showed that, when agents’ preferences are fully substitutable, an
outcome is stable if and only if it is consistent with competitive equilibrium. Thus, a corollary
of Theorem 1 is that in the trading network setting of Hatfield et al. (2013), an outcome is
consistent with competitive equilibrium if and only if it is not blocked by a chain of contracts;
for a formal statement of this result, see Appendix B.

5 Quantifying the Simplicity Gain

A principal benefit of Theorem 1 is that it implies that checking whether an outcome is stable
(or, in the quasilinear case, consistent with competitive equilibrium) reduces to checking
whether that outcome is chain stable. Checking directly whether a given outcome Y is
stable is computationally burdensome, as it requires checking 2|XrY | possible blocking sets.
Theorem 1 shows that checking stability is equivalent to checking chain stability under
monotone–substitutability; here, we show that the reduction to chain stability leads to a
significant asymptotic simplicity gain, in the sense that the proportion of possible blocking
sets that are chains goes to 0 as the economy grows large.

Formally, we define a sequence of economies (I,Ωm)∞m=1 as a fixed set of agents I and a
sequence of finite sets of trades Ω1,Ω2, . . . such that |Ωm| = m. Here, we could in principle
allow the set of agents I to be infinite as, since the set of contracts Ωm is finite for all m, the
set of “relevant” agents, i.e., those agents with at least one contractual opportunity, will be
finite; this allows us to consider economies where the set of “relevant” agents grows with m.

For a given ω ∈ ∪∞m=1Ωm, let P(ω) ⊆ R be the set of possible prices for ω, that is, for the
economy (I,Ωm) the set of contracts is given by Xm ≡ ∪ω∈Ωm ∪p∈P(ω) {(ω, p)}; that is, we
assume that the set of possible prices associated with a given trade ω does not vary with m.19

In principle, checking the stability of an outcome Y for the economy (I,Ωm) may require
checking blocking sets corresponding to any set of trades in

Bm(Y ) ≡ {Ψ ⊆ Ωm r τ(Y )}.

By contrast, checking the chain stability of an outcome Y for the economy (I,Ωm) requires
19In principle, we could allow the set of prices for a given trade to vary with m but, as our results concern

the number of chains and sets of trades that need to be considered, this additional generality would not affect
our results.
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checking blocking chains corresponding to any chain of trades in

Cm(Y ) ≡ {Ψ ⊆ Ωm r τ(Y ) : Ψ is a chain}.

We show that, for any fixed set of contracts Y , the ratio of the set of chains of trades
corresponding to possible blocking chains to the set of sets of trades corresponding to possible
blocking sets, i.e, Cm(Y )

Bm(Y ) , goes to 0 as m grows large.

Theorem 3. For any sequence of economies (I,Ωm)∞m=1 such that |Ωm| = m for all m, for
any Y , we have that

Cm(Y )
Bm(Y ) = O


√

log2m√
m

 .
In particular, Cm(Y )

Bm(Y ) → 0 as m→∞.

Theorem 3 follows from a general graph-theoretic result proven by Shayani (2016) as a
supplement to our work here. To understand why Theorem 3 holds, we consider a directed
multi-graph with the set of vertices I and the set of edges that has one edge for each trade in
Ωm, directed from the seller to the buyer of that trade.

To consider what proportion of the subsets of Ωm are chains, we proceed via a probabilistic
argument: We consider a random set of trades Ψ chosen from Ωm by including each trade
ω ∈ Ωm in Ψ independently with probability 1

2 . For a random set of trades Ψ to be a chain
the following two “balancedness” requirements have to be satisfied:

1. for each agent i ∈ a(Ψ), the number of contracts in which he is the buyer differs by at
most 1 from the number of contracts in which he is the seller, i.e. ||Ψ→i| − |Ψi→|| ≤ 1,
and

2. there are at most two distinct agents j ∈ a(Ψ) who sign different numbers of contracts
as a buyer and as a seller, i.e., there are at most two distinct agents j ∈ a(Ψ) for whom
|Ψ→j| − |Ψj→| 6= 0.

These “balancedness” requirements follow directly from the definition of a chain (Definition 5),
as the buyer of the first trade is the seller of the second trade, the buyer of the second trade
is the seller of the third trade, . . . , and the buyer of the (|Ψ| − 1)st trade is the seller of the
|Ψ|th trade; thus, only the seller of the first trade and the buyer of the |Ψ|th trade can sign
different numbers of contracts as a buyer and a seller.

For the random set of trades Ψ, there are two cases to consider:

Large agent case: In this case, there is one “big” agent i, who is involved in many of the
m trades in Ψ.
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Many small agents case: In this case, there are many “small” distinct agents, each of
whom is involved in a few trades in Ψ.

In the large agent case, we show that the probability that the first “balancedness” condition
is satisfied for a “big” agent i is small, as it is unlikely that i will have roughly equal numbers
of contracts in which he is a buyer and in which he is a seller, as he is involved in many
trades in the random set Ψ. In the many small agents case, we show that the probability
that Ψ is such that |Ψ→j| − |Ψj→| = 0 for all but two agents j is small, so it is unlikely that
the second “balancedness” condition is satisfied. Combining the preceding two results shows
that, in the limit, very few random sets of trades will be chains.

For completeness, we adapt the proof of Theorem 3 by Shayani (2016) to our setting and
include it in Appendix C.

Theorem 3 implies that for general trading networks, the ratio of chains to the total
number of subsets converges to 0 as the number of trades grows large. Thus, the set of
chains is asymptotically a vanishingly small fraction of the set of potential blocking sets;
consequently, checking stability by considering each possible blocking chain is asymptotically
much simpler than checking stability by considering each possible blocking set.20 In fact,
even for settings for which the existence of stable outcomes is not guaranteed,21 Theorem 1
implies that checking for the existence of chain stable outcomes is sufficient, and Theorem 3
implies that checking chain stability is substantially easier than checking stability.

If the trading network has additional structure, then the simplicity gain can be much
higher than that implied by the bound in Theorem 3. For instance, consider the case of
multi-layered supply chains, á la Ostrovsky (2008). In a multi-layered supply chain, there are
L+ 1 layers (I`)L+1

`=1 , which partition the set of agents; every trade “flows” one layer down
the supply chain, i.e., for any trade ω ∈ Ω, if s(ω) ∈ I`, then b(ω) ∈ I`+1. Thus, there are L
layers of trades, Ω1, . . . ,ΩL such that s(Ω`) ⊆ I` and b(Ω`) ⊆ I`+1. In this case, the total
number of chains of trades is bounded by ∏L

`=1(|Ω`|+ 1), while the total number of sets of
trades is given by 2|Ω1|+···+|ΩL|.

Our results also imply (by combining Corollary B.1 and Theorem 3) that checking whether
an outcome is consistent with competitive equilibrium becomes straightforward in the Sun
and Yang (2006, 2009) environment with gross substitutes and complements. In such an
environment, one side of the market is comprised of buyers while the other side of the
market is comprised of two distinct groups of objects. Buyers view objects in the same group

20However, for arbitrarily complex trading networks Shayani (2016) showed that the bound in Theorem 3
is almost tight.

21For example, if prices are not allowed to vary freely and preferences are not quasilinear, monotone–
substitutability is not in general sufficient to guarantee the existence of stable outcomes; see, e.g., Hatfield
and Kominers (2012).
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as substitutes for each other, but view objects in different groups as complements; such
preferences arise naturally when a firm has two types of complementary inputs. As Hatfield
et al. (2013) showed, the Sun and Yang (2006, 2009) environment is a special case of the
Hatfield et al. (2013) trading network framework.22 Moreover, chains in the Sun and Yang
(2006, 2009) environment are particularly simple: they consist either of one buyer and one
object (or more formally, one contract between a buyer and an object) or of one buyer and
one object from each of the two groups (again, more formally, two contracts, involving the
same buyer and two objects from different groups). Thus, checking for consistency with
competitive equilibrium reduces to checking one- and two-contract blocking chains.

Similarly, our results imply as a natural corollary that in two-sided markets in which
agents’ preferences are monotone–substitutable, checking stability reduces to checking whether
individual contracts constitute blocks. In particular, we need only consider blocks comprised
of a single contract when checking stability in the setting of Kelso and Crawford (1982).

In addition to the simplicity analysis provided here, in work subsequent to ours, Candogan
et al. (2016) developed a polynomial-time algorithm for the quasilinear case, that, for a given
outcome, either constructs a blocking chain or verifies that no such chain exists. Combining
the Candogan et al. (2016) result with our Theorem 1, we obtain a polynomial-time algorithm
for checking stability in the case when preferences are quasilinear in a numeraire.

6 Examples

The proof of our main equivalence result (Theorem 1) requires monotone–substitutability—the
conjunction of full substitutability and the Laws of Aggregate Supply and Demand. In this
section, we show that, when either preferences are not fully substitutable or fail the Laws of
Aggregate Supply and Demand, our equivalence result may not hold. We also show that it is
essential that the definition of chain stability allow chains to cross themselves, i.e., that we
allow an agent to be involved in more than two contracts in a chain.23

We start with an example of preferences that are fully substitutable, but for which the
Laws of Aggregate Supply and Demand do not hold—and the equivalence result does not
hold either.24

22The embedding of Hatfield et al. (2013) allows for much more general environments than those considered
by Sun and Yang (2006, 2009): e.g., “objects” may have preferences over whom they match with, and may be
involved in multiple contracts.

23For convenience, we give our examples in terms of ordinal preference relations over sets of contracts.
In these examples, it is straightforward to construct corresponding cardinal utility functions over sets of
contracts that give rise to these ordinal preference relations, and we omit those constructions.

24As shown by Hatfield and Kominers (2012), the Laws of Aggregate Supply and Demand are not necessary
for the equivalence of stability and chain stability in the supply chain setting. The need to impose monotone–
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Example 1. There are two agents, i and j. There are four contracts between these two
agents: x, y, z, and w. Agent i is the seller of x, y, and z, and is the buyer of w, while
agent j is thus the buyer of x, y, and z, and the seller of w. The economy is depicted in the
diagram below, with each arrow denoting a contract from a seller to a buyer:
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The preferences of the agents are as follows. Informally, agent i is happy to sign contract
w in which he is the buyer, regardless of what his options are on the other side of the market,
and if (and only if) he is able to sign contract w, then he is also happy to sign any subset
of the other three contracts (in which he is the seller)—the more, the better. Formally, the
preferences of i over acceptable bundles of contracts are as follows:

{w, x, y, z} � {w, x, y} � {w, x, z} � {w, y, z} � {w, x} � {w, y} � {w, z} � {w} � ∅.

Agent j is happy to sign any subset of {x, y, z} (in which he is the buyer)—the more, the
better—no matter what his options are on the other side of the market. If (and only if) he
has access to all three of these contracts, then he is also happy to sign contract w (in which
he is the seller). Formally, the preferences of j over acceptable bundles of contracts are as
follows:

{w, x, y, z} � {x, y, z} � {x, y} � {x, z} � {y, z} � {x} � {y} � {z} � ∅.

Note first that the preferences of agents i and j are fully substitutable (but also note
that the preferences of agent i do not satisfy the Law of Aggregate Demand). Consider now
the empty set of contracts. It is not stable: it is blocked by the full set of contracts in the
economy, {w, x, y, z}, which is the most preferred set of contracts for both agents. At the
same time, the empty set of contracts is not blocked by any chain, and is therefore chain
stable. To see this, note first that any blocking set would of course have to involve both agents.
Second, every non-empty set acceptable to agent i must include contract w, so w would have
to be a part of the blocking chain. Third, the only set of contracts involving contract w that
is acceptable to agent j is the full set of contracts {w, x, y, z}. Thus, {w, x, y, z} is the only
blocking set in this example—and it cannot be represented as a chain.

Our second example shows that full substitutability likewise plays a critical role for the
substitutability in our setting is because we need to allow for chains to be self-crossing.
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equivalence result: without it, chain stability is strictly weaker than stability, even when all
agents’ preferences satisfy the Laws of Aggregate Supply and Demand.

Example 2. There are three agents: i, j, and k. There are two contracts, x and y. Agent i
is the buyer of both x and y, agent j is the seller of x, and agent k is the seller of y. The
economy is depicted in the diagram below:
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The preferences of agents j and k are straightforward, and satisfy full substitutability:
each one prefers to sign the contract in which he is the seller to not signing it: {x} �j ∅
and {y} �k ∅. The preferences of agent i are not fully substitutable: i prefers signing both
contracts to signing none, but prefers not signing any contracts to signing only one. That is,
the preferences of agent i over acceptable bundles of contracts are given by {x, y} �i ∅.

Consider now the empty set of contracts. It is not stable: it is blocked by the full set of
contracts in the economy, {x, y}. At the same time, the empty set is chain stable: any chain
in this market involves agent i and contains exactly one contract—which is not an acceptable
deviation for agent i.

Our third and final example shows that even when preferences are monotone–substitutable
it may not be sufficient to restrict attention to blocking chains that do not “cross” themselves.
Specifically, if attention is restricted to chains in which each agent appears in at most two
consecutive contracts, then an outcome that is robust to deviations by such chains may be
blocked by richer sets of contracts.25

Example 3. There are three agents: i, j, and k. There are four contracts: x1, x2, y1, and
y2. Agent i is the buyer in contract in x1 and the seller in contract y1. Agent j is the buyer
in contract x2 and the seller in contract y2. Agent k is the seller in contracts x1 and x2 and
the buyer in contracts y1 and y2. The economy is depicted in the diagram below:
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25However, the necessity of considering self-crossing chains is only present in fully general trading networks.
In particular, in the supply chain setting of Ostrovsky (2008), self-crossing chains are not even possible as
each agent only buys from agents upstream and only sells to agents downstream. In the supply chain setting,
stability and chain stability are also equivalent to the tree stability concept of Ostrovsky (2008).
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The preferences of agents i and j are straightforward: each one prefers to sign both
contracts that he is associated with and is not interested in any other non-empty set of
contracts. The preferences of agent k are as follows:

{x1, x2, y1, y2} � {x1, y2} � {x2, y1} � ∅;

agent k finds other non-empty sets of contracts unacceptable.
In this example, all agents’ preferences are monotone–substitutable. Also, the empty set

of contracts is unstable: it is blocked by the chain {x1, y1, x2, y2}. Note, however, that this
chain is “self-crossing”—it involves agent k in all four contracts. If attention were restricted
to chains that do not cross themselves (i.e., in this particular example, chains that involve
agent k in at most two contracts), the empty set would be robust to deviations by such chains.
For example, the chain {x1, y1} does not block the empty set, because Ck({x1, y1}) = {∅},
and so {x1, y1}k = {x1, y1} /∈ Ck({x1, y1}).

7 Conclusion

In this paper, we show that when all agents have monotone–substitutable preferences every
chain stable outcome is stable. As a corollary, we also show that in quasilinear environments
with transferable utility and fully substitutable preferences, an outcome is consistent with
competitive equilibrium if and only if it is chain stable. Moreover, checking whether an
outcome is chain stable is meaningfully easier than checking whether an outcome is stable
directly.

In practice, blocking chains may be relatively easy to form: they require much less
coordination than general blocking sets, and do not rely on “hypothetical,” “unobserved”
prices for untraded goods; our work shows that under standard assumptions on preferences,
ruling out these particularly natural blocks in fact guarantees that there are no possible
blocks by groups of agents. It also ensures that every chain stable outcome is consistent with
competitive equilibrium, and satisfies the various properties of competitive equilibria (such
as, e.g., efficiency).
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A Appendix: Proofs Omitted from the Main Text

A.1 Proof of Lemma 1

To prove the first part of Lemma 1, we consider the case in which ȳ ∈ [X r Y ]→i. Since the
preferences of i are monotone–substitutable, we have from Condition 1a of the definition of
monotone–substitutability that there exists a Ȳ ∗i ∈ Ci(Y ∪ {ȳ}) such that

Y→i r Y ∗→i ⊆ (Y→i ∪ {ȳ}) r Ȳ ∗→i;

thus, we have
Ȳ ∗→i ⊆ Y ∗→i ∪ {ȳ}. (3a)

Moreover, we have from Condition 1a of the definition of monotone–substitutability that

Ȳ ∗i→ ⊇ Y ∗i→, (3b)

which implies that
|Ȳ ∗i→| − |Y ∗i→| ≥ 0;

Condition 1b of the definition of monotone–substitutability then implies that

|Ȳ ∗→i| − |Y ∗→i| ≥ |Ȳ ∗i→| − |Y ∗i→| ≥ 0. (4)

There are two cases to consider:
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Case 1: ȳ /∈ Ȳ ∗. Then (3a) implies that Ȳ ∗→i ⊆ Y ∗→i and so |Ȳ ∗→i| − |Y ∗→i| ≤ 0. As (4) implies
that |Ȳ ∗→i| − |Y ∗→i| ≥ 0, we must then have that |Ȳ ∗→i| = |Y ∗→i|; hence, Ȳ ∗→i = Y ∗→i. Then
(4) can only hold if |Ȳ ∗i→| = |Y ∗i→|, and so (3b) implies that Ȳ ∗i→ = Y ∗i→. Thus Ȳ ∗ = Y ∗,
which is the possibility stated in Possibility (a) in the lemma.

Case 2: ȳ ∈ Ȳ ∗. Then (3a) implies that |Ȳ ∗→i| ≤ |Y ∗→i|+ 1.

If |Ȳ ∗→i| ≤ |Y ∗→i|, then (as in the preceding case), (4) can only hold if

|Ȳ ∗→i| − |Y ∗→i| = |Ȳ ∗i→| − |Y ∗i→| = 0,

which implies that Ȳ ∗→i = (Y ∗→i∪{ȳ})r{y} for some y ∈ Y ∗→i (from (3a)) and Y ∗i→ = Ȳ ∗i→

(from (3b)), which is the possibility stated in Possibility (c) in the lemma.

Otherwise, |Ȳ ∗→i| = |Y ∗→i| + 1 and so (3a) implies that Ȳ ∗→i = Y ∗→i ∪ {ȳ}. Thus,
|Ȳ ∗→i|−|Y ∗→i| = 1 and so (4) can only hold if either |Ȳ ∗i→|−|Y ∗i→| = 0 or |Ȳ ∗i→|−|Y ∗i→| = 1.
In the former case, we have (from (3b)) that Ȳ ∗i→ = Y ∗i→ and so Ȳ ∗ = Y ∗ ∪{ȳ}, which is
the possibility stated in Possibility (b) in the lemma. In the latter case, we have (from
(3b)) that Ȳ ∗i→ = Y ∗i→ ∪ {z} for some z ∈ [Y r Y ∗]i→, which is the possibility stated in
Possibility (d) in the lemma.

The proof of the second part of Lemma 1 is completely analogous to the proof of the first
part.

A.2 Proof of Claim 1

The first condition of Definition 7 holds immediately.
To prove that part (a) of the second condition of Definition 7 holds, we proceed as follows:

Choose an arbitrary Y ∗ ∈ Cb(z0)((Z r {z0}) ∪ A). Since Cb(z0) is monotone–substitutable,
there exists a Z∗ ∈ Cb(z0)(Z ∪ A) such that

[((Z r {z0}) ∪ A) r Y ∗]→b(z0) ⊆ [(Z ∪ A) r Z∗]→b(z0) (5)

Y ∗b(z0)→ ⊆ Z∗b(z0)→ (6)

|Z∗→b(z0)| − |Y ∗→b(z0)| ≥ |Z∗b(z0)→| − |Y ∗b(z0)→|. (7)

Partition Y ∗ into Ŷ ∗ ≡ Y ∗ ∩ (Z r {z0}) and Y̌ ∗ ≡ Y ∗ ∩A, and Z∗ into Ẑ∗ ≡ Z∗ ∩ Z and
Ž∗ ≡ Z∗ ∩ A.26 Note that since Z is a blocking set, we must have Ẑ∗b(z0) = Zb(z0).

26To see that these are partitions, recall that A ∩ Z = ∅ as Z is a blocking set.
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We argue first that when z0 is no longer available, every optimal choice by b(z0) includes
all of the remaining contracts in Z for which he is a buyer, i.e., Ŷ ∗→b(z0) = [Z r {z0}]→b(z0).
Using the notation introduced above, we can rewrite (5) as

[((Z r {z0}) ∪ A) r (Ŷ ∗ ∪ Y̌ ∗)]→b(z0) ⊆ [(Z ∪ A) r (Ẑ∗ ∪ Ž∗)]→b(z0),

or, equivalently,

[((Z r {z0}) r Ŷ ∗) ∪ (Ar Y̌ ∗)]→b(z0) ⊆ [Ar Ž∗]→b(z0). (8)

Here, we have used the fact that [Z r Ẑ∗]→b(z0) = ∅ since Z is a blocking set. From (8), we
can immediately infer that [(Z r {z0}) r Ŷ ∗]→b(z0) ⊆ A. Given that Z is a blocking set, we
must have Z ∩ A = ∅ and thus [(Z r {z0}) r Ŷ ∗]→b(z0) = ∅. Hence, [Z r {z0}]→b(z0) ⊆ Ŷ ∗.
Since Ŷ ∗ = Y ∗ ∩ (Z r {z0}), we obtain that [Z r {z0}]→b(z0) = Ŷ ∗→b(z0).

Next, we argue that when z0 is no longer available, every optimal choice by b(z0) excludes
at most one of his contracts in Z for which he is a seller, i.e., either Ŷ ∗b(z0)→ = Zb(z0)→ or
there exists a z1 ∈ Z such that Ŷ ∗b(z0)→ = [Z r {z1}]b(z0)→. Note first that (5) implies that
b(z0) chooses at most one fewer contract as a buyer when z0 is no longer available, i.e.,
|Z∗→b(z0)| ≤ |Y ∗→b(z0)∪{z0}| = |Y ∗→b(z0)|+ 1, and so |Z∗→b(z0)|− |Y ∗→b(z0)| ≤ 1. Hence, (7) implies
that |Z∗b(z0)→| − |Y ∗b(z0)→| ≤ 1; we rewrite this last inequality as

(|Ẑ∗b(z0)→| − |Ŷ ∗b(z0)→|) + (|Ž∗b(z0)→| − |Y̌ ∗b(z0)→|) ≤ 1. (9)

Now by (6), we have that Y ∗b(z0)→ ⊆ Z∗b(z0)→ and thus Y̌ ∗b(z0)→ ⊆ Ž∗b(z0)→; combining this with
(9) implies that |Ẑ∗b(z0)→| − |Ŷ ∗b(z0)→| ≤ 1. Moreover, by (6), we have that Y ∗b(z0)→ ⊆ Z∗b(z0)→

and thus Ŷ ∗b(z0)→ ⊆ Ẑ∗b(z0)→; hence, either Ŷ ∗b(z0)→ = Ẑ∗b(z0)→ = Zb(z0)→ or there exists a z1 ∈ Z
such that Ŷ ∗b(z0)→ = [Ẑ∗ r {z1}]b(z0)→ = [Z r {z1}]b(z0)→.

Part (b) of the second condition of Definition 7 follows analogously to part (a).
The third condition of Definition 7 holds vacuously as b(z0) 6= s(z0).

A.3 Proof of Claim 2

Since W−m,n is a quasi-removable chain that is not downstream terminal, there exist Z̃∗ ∈
Ĉb(zn)(Z rW−m,n;A) and zn+1 ∈ [Z rW−m,n]b(zn)→ such that Z̃∗b(zn)→ = [(Z rW−m,n) r
{zn+1}]b(zn)→. We will argue that W−m,n+1 ≡ W−m,n ∪ {zn+1} is a quasi-removable chain.

To see that W−m,n+1 satisfies the first condition of Definition 7, we note that:
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• For all i ∈ I r {s(z−m), b(zn), b(zn+1)}, we have that

{[Z rW−m,n+1]i} = Ĉi(Z rW−m,n+1;A),

as W−m,n is quasi-removable and [Z rW−m,n+1]i = [Z rW−m,n]i for each such i.

• We show here that if b(zn) 6= s(z−m) then {[ZrW−m,n+1]b(zn)} = Ĉb(zn)(ZrW−m,n+1;A).27,28

Let Z̃ ( [Z rW−m,n+1]b(zn) be arbitrary. We claim that Z̃ /∈ Ĉb(zn)(Z rW−m,n+1;A).
To see this, note first that part (a) of the second condition of Definition 7 applied to
W−m,n implies that Z̃ /∈ Ĉb(zn)(ZrW−m,n;A); meanwhile, [(ZrW−m,n)r{zn+1}]b(zn) ∈
Ĉb(zn)(Z rW−m,n;A) by assumption. Thus,

Ûb(zn)([(Z rW−m,n) r {zn+1}]b(zn)) > Ûb(zn)(Z̃).

Hence, since [(Z rW−m,n) r {zn+1}]b(zn) is available from [(Z rW−m,n) r {zn+1}]b(zn)

and provides a higher utility than Z̃, we have that Z̃ /∈ Ĉb(zn)(Z rW−m,n+1;A).

To finish the proof, we consider two cases, depending on whether both ends of the chain
W−m,n+1 are associated to the same agent. In the first case, we suppose the ends of the chain
are associated with distinct agents, i.e., b(zn+1) 6= s(z−m). In the second case, we suppose
the ends of the chain are associated with the same agent, i.e., b(zn+1) = s(z−m).

Case 1: b(zn+1) 6= s(z−m). If b(zn+1) 6= s(z−m), then we need to check the second condition
of Definition 7. We prove first that part (a) of the second condition is satisfied.
We proceed via an argument analogous to that used to prove Claim 1: Choose an
arbitrary Y ∗ ∈ Cb(zn+1)((Z rW−m,n+1)∪A). Note first that since Cb(zn+1) is monotone–
substitutable, there exists a Z∗ ∈ Cb(zn+1)((Z rW−m,n) ∪ A) such that

[((Z rW−m,n+1) ∪ A) r Y ∗]→b(zn+1) ⊆ [((Z rW−m,n) ∪ A) r Z∗]→b(zn+1) (10)

Y ∗b(zn+1)→ ⊆ Z∗b(zn+1)→ (11)

|Z∗→b(zn+1)| − |Y ∗→b(zn+1)| ≥ |Z∗b(zn+1)→| − |Y ∗b(zn+1)→|. (12)

Partition Y ∗ into Ŷ ∗ ≡ Y ∗ ∩ (Z rW−m,n+1) and Y̌ ∗ ≡ Y ∗ ∩ A, and Z∗ into Ẑ∗ ≡
Z∗ ∩ (Z rW−m,n) and Ž∗ ≡ Z∗ ∩ A.29

27We consider the case where b(zn) = s(z−m) below.
28If b(zn) 6= s(z−m), we have that b(zn) ∈ I r {s(z−m), b(zn+1)} since s(zn+1) = b(zn) and s(zn+1) 6=

b(zn+1). Hence, we also have to establish the first condition of Definition 7 for b(zn) if b(zn) 6= s(z−m).
29Recall that A ∩ Z = ∅, and so A ∩ (Z r W−m,n+1) = ∅.
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We argue first that when zn+1 is no longer available, every optimal choice by b(zn+1)
includes all of his remaining contracts in Z for which he is a buyer, i.e., Ŷ ∗→b(zn+1) =
[Z rW−m,n+1]→b(zn+1). Using the notation just introduced, we can rewrite (10) as

[((Z rW−m,n+1)∪A)r (Ŷ ∗ ∪ Y̌ ∗)]→b(zn+1) ⊆ [((Z rW−m,n)∪A)r (Ẑ∗ ∪ Ž∗)]→b(zn+1),

or, equivalently,

[((Z rW−m,n+1) r Ŷ ∗) ∪ (Ar Y̌ ∗)]→b(zn+1) ⊆ [Ar Ž∗]→b(zn+1). (13)

Here, we have used the fact that [(Z rW−m,n) r Ẑ∗]→b(zn+1) = ∅ since Ĉb(zn+1)(Z r
W−m,n;A) = {[Z rW−m,n]b(zn+1)} (which follows from the fact that W−m,n is a quasi-
removable chain and applying the first condition of Definition 7). From (13), we
can immediately infer that [(Z r W−m,n+1) r Ŷ ∗]→b(zn+1) ⊆ A. Given that Z is a
blocking set, we must have Z ∩ A = ∅ and thus [(Z rW−m,n+1) r Ŷ ∗]→b(zn+1) = ∅.
Hence, [Z r W−m,n+1]→b(zn+1) ⊆ Ŷ ∗. Since Ŷ ∗ = Y ∗ ∩ (Z r W−m,n+1) we obtain
[Z rW−m,n+1]→b(zn+1) = Ŷ ∗→b(zn+1).

Next, we argue that when zn+1 is no longer available, every optimal choice by b(zn+1)
excludes at most one of his contracts in ZrW−m,n+1 for which he is a seller, i.e., either
Ŷ ∗b(zn+1)→ = [Z rW−m,n+1]b(zn+1)→ or there exists a zn+2 ∈ Z such that Ŷ ∗b(zn+1)→ =
[(Z rW−m,n+1) r {zn+2}]b(zn+1)→. Note first that (10) implies that b(zn+1) chooses at
most one fewer contract as a buyer when zn+1 is no longer available, i.e., |Z∗→b(zn+1)| −
|Y ∗→b(zn+1)| ≤ 1. Hence, (12) implies that |Z∗b(zn+1)→| − |Y ∗b(zn+1)→| ≤ 1; we can rewrite
this last inequality as

(|Ẑ∗b(zn+1)→| − |Ŷ ∗b(zn+1)→|) + (|Ž∗b(zn+1)→| − |Y̌ ∗b(zn+1)→|) ≤ 1. (14)

Now by (11), we have that Y ∗b(zn+1)→ ⊆ Z∗b(zn+1)→ and thus Y̌ ∗b(zn+1)→ ⊆ Ž∗b(zn+1)→;
combining this with (14) implies that |Ẑ∗b(zn+1)→| − |Ŷ ∗b(zn+1)→| ≤ 1. Moreover, by
(11), we have that Y ∗b(zn+1)→ ⊆ Z∗b(zn+1)→ and thus Ŷ ∗b(zn+1)→ ⊆ Ẑ∗b(zn+1)→; hence, either
Ŷ ∗b(zn+1)→ = Ẑ∗b(zn+1)→ or there exists a zn+2 such that Ŷ ∗b(zn+1)→ = [Ẑ∗ r {zn+2}]b(zn+1)→.

To prove that part (b) of the second condition of Definition 7 is satisfied, as well as
that extending the chain conserves upstream terminality, we distinguish two cases:

• If s(z−m) 6= b(zn), we have that W−m,n
s(z−m) = W−m,n+1

s(z−m) as we have assumed by
hypothesis b(zn+1) 6= s(z−m); thus, since W−m,n is a quasi-removable chain by
assumption, we have that part (b) of the second condition of Definition 7 is satisfied
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for s(z−m) and W−m,n+1.
Moreover, if W−m,n is upstream terminal, then for all Z̄∗ ∈ Ĉs(z−m)(ZrW−m,n;A)
we have that

Z̄∗→s(z−m) = [Z rW−m,n]→s(z−m). (15)

Combining (15) with the fact that W−m,n
s(z−m) = W−m,n+1

s(z−m) yields that for all Z̄∗ ∈
Ĉs(z−m)(Z rW−m,n+1;A), we have that

Z̄∗→s(z−m) = [Z rW−m,n+1]→s(z−m),

and thus W−m,n+1 is upstream terminal by definition.

• If s(z−m) = b(zn) = k, recall first that Z̃∗ ∈ Ĉk(Z rW−m,n;A) and zn+1 were
chosen such that Z̃∗k→ = [(ZrW−m,n)r{zn+1}]k→. Since Z̃∗ ∈ Ĉk(ZrW−m,n;A),

Ûi(Z̃∗;A) > Ûi(Y ;A)

for all Y ⊆ Z rW−m,n such that Y /∈ Ĉi(Z rW−m,n;A); that is, Z̃∗ provides a
higher utility to i than any Y ⊆ ZrW−m,n that was not chosen when ZrW−m,n

was available. Thus, since Z̃∗k→ = [(Z rW−m,n) r {zn+1}]k→ (and thus Z̃∗ ⊆
Z rW−m,n+1), we have that

Ĉk(Z rW−m,n+1;A) ⊆ Ĉk(Z rW−m,n;A). (16)

We now show that when zn+1 is no longer available the seller of z−m never drops a
contract for which he is the seller, i.e., for all Z̄∗ ∈ Ĉk(Z rW−m,n+1;A), we have
that

Z̄∗k→ = [Z rW−m,n+1]k→.

Since W−m,n was a quasi-removable chain, there does not exist Y ∈ Ĉk(Z r
W−m,n;A) such that |Yk→| < |[Z rW−m,n]k→| − 1. Thus, using (16), we have
that there does not exist Y ∈ Ĉk(Z r W−m,n+1;A) such that |Yk→| < |[Z r
W−m,n]k→| − 1 = |[Z rW−m,n+1]k→|. Therefore, k must now choose as a seller all
of the contracts in Z rW−m,n+1, i.e.,

Z̄∗k→ = [Z rW−m,n+1]k→.

Next, we show that when zn+1 is longer available the seller of z−m drops at most
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one contract as a buyer, i.e., for all Z̄∗ ∈ Ĉk(Z rW−m,n+1;A) either

Z̄∗→k = [Z rW−m,n+1]→k

or there exists a z−m−1 ∈ Z such that

Z̄∗→k = [Z r (W−m,n+1 ∪ {z−m−1})]→k.

Since W−m,n was a quasi-removable chain, there does not exist Y ∈ Ĉk(Z r
W−m,n;A) such that |Y→k| < |[ZrW−m,n]→k|− 1. Thus, using (16), we have that
there does not exist Y ∈ Ĉk(ZrW−m,n+1;A) such that |Y→k| < |[ZrW−m,n]→k|−1.
Therefore, k must now choose all but one of his contracts as a buyer, i.e., either

Z̄∗→s(z−m) = [Z rW−m,n]→s(z−m)

or there exists a z−m−1 ∈ Z such that

Z̄∗→s(z−m) = [Z r (W−m,n ∪ {z−m−1})]→s(z−m).

Since s(zn+1) = b(zn) = s(z−m), we have that [Z r W−m,n]→s(z−m) = [Z r
W−m,n+1]→s(z−m) and thus obtain the desired statement.
Finally, we show that if W−m,n is upstream terminal, then W−m,n+1 is upstream
terminal. If W−m,n is upstream terminal, then for all Z̄∗ ∈ Ĉk(Z rW−m,n;A), we
have that

Z̄∗→k = [Z rW−m,n]→k. (17)

Combining (17) with (16) yields that for all Z̄∗ ∈ Ĉs(z−m)(Z rW−m,n+1;A), we
have that

Z̄∗→k = [Z rW−m,n+1]→k.

Thus, W−m,n+1 is upstream terminal by definition.

Case 2: b(zn+1) = s(z−m). If b(zn+1) = s(z−m) ≡ k, then we need to check the third
condition of Definition 7. As in Case 1, choose an arbitrary Y ∗ ∈ Ck((ZrW−m,n+1)∪A).
Note first that since Cb(zn+1) is monotone–substitutable, there exists a Z∗ ∈ Cb(zn+1)((Zr
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W−m,n) ∪ A) such that

[((Z rW−m,n+1) ∪ A) r Y ∗]→k ⊆ [((Z rW−m,n) ∪ A) r Z∗]→k (18)

Y ∗k→ ⊆ Z∗k→ (19)

|Z∗→k| − |Y ∗→k| ≥ |Z∗k→| − |Y ∗k→|. (20)

Partition Y ∗ into Ŷ ∗ ≡ Y ∗ ∩ (Z rW−m,n+1) and Y̌ ∗ ≡ Y ∗ ∩ A, and Z∗ into Ẑ∗ ≡
Z∗ ∩ (Z rW−m,n) and Ž∗ ≡ Z∗ ∩ A.30 Note that either Ẑ∗→k = [Z rW−m,n]→k or
Ẑ∗→k = [(Z rW−m,n) r {z−m−1}]→k for some z−m−1 ∈ [Z rW−m,n]→k as W−m,n is a
quasi-removable chain and b(zn) 6= s(z−m) in the case we consider here.31

We argue first that Condition 3(a) of Definition 7 is satisfied: When zn+1 is no longer
available, every optimal choice by k excludes at most one of his remaining contracts
as a buyer, i.e., either Ŷ ∗→k = [Z rW−m,n+1]→k or there exists a z−m−1 ∈ Z such that
Ŷ ∗→k = [(Z rW−m,n+1) r {z−m−1}]→k. We can rewrite (18) as

[[(Z rW−m,n+1) ∪ A]→k r [Ŷ ∗ ∪ Y̌ ∗]→k] ⊆ [[(Z rW−m,n) ∪ A]→k r [Ẑ∗ ∪ Ž∗]→k]

or, equivalently,

[[(Z rW−m,n+1) r Ŷ ∗]→k ∪ [Ar Y̌ ∗]→k] ⊆ [[(Z rW−m,n) r Ẑ∗]→k ∪ [Ar Ž∗]→k];

given that Z ∩ A = ∅, this subset relation implies that

[(Z rW−m,n+1) r Ŷ ∗]→k ⊆ [(Z rW−m,n) r Ẑ∗]→k. (21)

If Ẑ∗→k = [Z rW−m,n]→k, then (21) implies that Ŷ ∗→k ⊇ [Z rW−m,n+1]→k; but Ŷ ∗ ≡
Y ∗ ∩ (Z r W−m,n+1) and so Ŷ ∗→k = [Z r W−m,n+1]→k. Consequently, if W−m,n is
upstream terminal (i.e., Ẑ∗→k = [Z rW−m,n]→k), then W−m,n+1 is upstream terminal
(i.e., Ẑ∗→k = [Z r W−m,n+1]→k). If Ẑ∗→k = [(Z r W−m,n) r {z−m−1}]→k for some
z−m−1 ∈ [Z rW−m,n]→k, then (21) implies that Ŷ ∗→k ⊇ [(Z rW−m,n+1) r {z−m−1}]→k;
but Ŷ ∗ ≡ Y ∗ ∩ (Z r W−m,n+1) and so either Ŷ ∗→k = [Z r W−m,n+1]→k or Ŷ ∗→k =
[(Z rW−m,n+1) r {z−m−1}]→k. Hence, when zn+1 is no longer available, every optimal
choice by k as a buyer includes all but at most one of the contracts in [ZrW−m,n+1]→k.

We argue second that Condition 3(b) of Definition 7 is satisfied: When zn+1 is no longer
30Recall that A ∩ (Z r W−m,n+1) = ∅.
31In this case, we have assumed that b(zn+1) = s(z−m) and so, since b(zn) = s(zn+1) and s(zn+1) 6= b(zn+1),

we have that b(zn) 6= s(z−m).
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available, every optimal choice by k excludes at most one of his remaining contracts
as a seller, i.e., either Ŷ ∗k→ = [Z rW−m,n+1]k→ or there exists a zn+2 ∈ Zk→ such that
Ŷ ∗k→ = [(ZrW−m,n+1)r {zn+2}]k→. Note first that (18) implies that k chooses at most
one fewer contract as a buyer when zn+1 is no longer available, i.e., |Z∗→k| − |Y ∗→k| ≤ 1.
Hence, (20) implies that |Z∗k→| − |Y ∗k→| ≤ 1; we can rewrite this last inequality as

(|Ẑ∗k→| − |Ŷ ∗k→|) + (|Ž∗k→| − |Y̌ ∗k→|) ≤ 1. (22)

Now by (19), we have that Y ∗k→ ⊆ Z∗k→ and thus Y̌ ∗k→ ⊆ Ž∗k→; combining this with
(22) implies that |Ẑ∗k→| − |Ŷ ∗k→| ≤ 1. Moreover, by (19), we have that Y ∗k→ ⊆ Z∗k→

and thus Ŷ ∗k→ ⊆ Ẑ∗k→; hence, either Ŷ ∗k→ = Ẑ∗k→ or there exists a zn+2 such that
Ŷ ∗k→ = [Ẑ∗ r {zn+2}]k→.

This completes the proof of Claim 2.

A.4 Proof of Claim 3

The proof is analogous to the proof of Claim 2.

A.5 Proof of Claim 4

As W−m,n is quasi-removable, we know that for all i ∈ I r {s(z−m), b(zn)} we have that
{[Z rW−m,n]i} = Ĉi(Z rW−m,n) (from Condition 1 of Definition 7). There are two cases to
consider:

Case 1: b(zn) 6= s(z−m). Since W−m,n is upstream terminal, we have that

{Zs(z−m) r {z−m, . . . , zn}} = Ĉs(z−m)(Z r {z−m, . . . , zn};A).

Furthermore, since W−m,n is downstream terminal, we have that

{Zb(zn) r {z−m, . . . , zn}} = Ĉb(zn)(Z r {z−m, . . . , zn};A).

Thus, Z rW−m,n blocks A.

Case 2: b(zn) = s(z−m). In this case, since W−m,n is upstream and downstream terminal,
we have that

{Zb(zn) r {z−m, . . . , zn}} = Ĉb(zn)(Z r {z−m, . . . , zn};A).
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Thus, Z rW−m,n blocks A.

This completes the proof of Claim 4.

A.6 Proof of Claim 5

As Z blocks A, for all i ∈ a(Z), for each Y ∈ Ci(A∪Z), we have that Zi ⊆ Y . Since W ⊆ Z,
for all i ∈ a(Z), for each Y ∈ Ci(A∪Z), we have thatWi ⊆ Y . Thus, for all i ∈ a(W ) ⊆ a(Z),
for each Y ∈ Ci(A∪Z) = Ci((A∪ (ZrW ))∪W ), we have that Wi ⊆ Y . Thus, by definition,
W blocks A ∪ (Z rW ).

B Chain Stability and Competitive Equilibrium

In this appendix, we show that in the trading network setting of Hatfield et al. (2013), an
outcome is consistent with competitive equilibrium if and only if it is not blocked by a chain
of contracts.

The Hatfield et al. (2013) is a special case of ours that requires that

• prices are continuous and unrestricted, i.e., X = Ω× R, and

• agents’ preferences are quasilinear in prices.

Formally, a utility function Ui is quasilinear in prices if there exists a valuation function ui

from the sets of trades involving agent i to R ∪ {−∞} such that for any feasible set Y ⊆ Xi,

Ui(Y ) = ui(τ(Y )) +
∑

(ω,pω)∈Yi→

pω −
∑

(ω,pω)∈Y→i

pω.

Definition 8. An outcome Y is consistent with competitive equilibrium if there exists a
vector of prices for all trades in the economy, p ∈ RΩ, such that

• for every ω ∈ τ(Y ), (ω, pω) ∈ Y , and

• for every agent i, for every set of trades Φ ⊆ Ωi,

Ui(Yi) ≥ ui(Φ) +
∑

ω∈Φi→

pω −
∑

ω∈Φ→i

pω.

An outcome Y only specifies prices for the trades that are in fact executed under the
outcome, while a competitive equilibrium specifies prices for all the trades in the economy.
For an outcome to be consistent with competitive equilibrium it has to be the case that one
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can specify prices for the trades that are not executed in such a way that under the resulting
vector of prices p, for each agent i, selecting the trades associated with the outcome Y is in
fact consistent with utility maximization. Definition 8 formalizes this requirement.

We are now ready to state our competitive equilibrium equivalence result.

Corollary B.1. Suppose that the set of contracts is X = Ω × R, and that all agents’
preferences are fully substitutable and quasilinear in prices. Then, an outcome is consistent
with competitive equilibrium if and only if it is chain stable.

Proof. Under the assumed conditions on X and agents’ preferences, Theorem 10 of Hatfield
et al. (2018) implies that all agents’ utility functions are monotone–subsitutable. Thus, by
our Theorem 1, an outcome is chain stable if and only if it is stable. Moreover, by Theorems 5
and 6 of Hatfield et al. (2013), an outcome is stable if and only if it is consistent with
competitive equilibrium. Thus, an outcome is chain stable if and only if it is consistent with
competitive equilibrium.

C Proof of Theorem 3

Here, we implicitly use I as the set of agents who have trades in Ωm.
For a set of agents J ⊆ I, for any set of trades Φ ⊆ Ωm, let

ΦJ ≡ ∪j∈JΦj = {ϕ ∈ Φ : b(ϕ) ∈ J or s(ϕ) ∈ J}.

For a set of agents J ⊆ I, an agent i ∈ I r J expands Ωm
J if Ωm

{i}∪J r Ωm
J 6= ∅. An expanding

sequence of agents is a sequence of agents (i1, . . . , iR) such that ir expands Ωm
{i1,...,ir−1} for all

r = 1, . . . , R. A complete expanding sequence of agents is a sequence of agents (i1, . . . , iR)
such that Ωm

{i1,...,iR} = Ωm. Note that every set of trades can be constructed by sequentially
choosing sets of trades in Ωi1,...,ir r Ωi1,...,ir−1 for r = 1, . . . , R.

We complete the proof by considering two mutually exclusive cases: in the first case, we
assume that there exists an agent associated with at least m

log2(m) trades. In the second case,
since no agent is associated with m

log2(m) or more trades, any complete expanding sequence
must contain at least log2(m) agents. In each case, we construct a bound on the ratio of the
number of chains to the number of potential blocking sets.

Case 1: A large agent. Here, we suppose that there exists an agent i such that |Ωm
i | ≥

m
log2(m) .
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For a set of trades Φ ⊆ Ωm to be a chain, it must be the case that either |Φ→i| = |Φi→|,
|Φ→i| = |Φi→|+1 (when i is at the “downstream end” of the chain), or |Φ→i|+1 = |Φi→|
(when i is at the “upstream end” of the chain). We compute that

• the number of the sets of trades satisfying the first of these three criteria is

|Ωm
→i|∑

n=0

(
|Ωm
→i|
n

)(
|Ωm

i→|
n

)
=
(
|Ωm

i |
|Ωm
→i|

)
≤
(
|Ωm

i |
|Ωm

i |
2

)
;

• the number of the sets of trades satisfying the second of these three criteria is

|Ωm
→i|∑

n=0

(
|Ωm
→i|

n+ 1

)(
|Ωm

i→|
n

)
=
(
|Ωm

i |
|Ωm
→i| − 1

)
≤
(
|Ωm

i |
|Ωm

i |
2

)
;

• the number of the sets of trades satisfying the third of these three criteria is

|Ωm
→i|∑

n=0

(
|Ωm
→i|
n

)(
|Ωm

i→|
n+ 1

)
=
(
|Ωm

i |
|Ωm
→i|+ 1

)
≤
(
|Ωm

i |
|Ωm

i |
2

)
.

Summing the three previous expressions, we find that the number of sets of trades
satisfying one of our three conditions is no greater than

3
(
|Ωm

i |
|Ωm

i |
2

)
.

Thus, using Stirling’s bounds, we find that the number of chains of trades is no greater
than

3
√

2
π

 2|Ωm
i |√
|Ωm

i |

 .
Thus, as the number of subsets of trades is simply 2|Ωm

i |, we have that Cm(Y )
Bm(Y ) =

O
(√

log2 m
√

m

)
as |Ωm

i | ≥ m
log2(m) .

Case 2: Small agents. Here, we suppose that |Ωm
i | < m

log2(m) for all i ∈ I. Thus, there
must exist a complete expanding sequence of agents (i1, . . . , iR) such that R ≥ log2(m).
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It is easy to compute that, as Ωm
i1 is nonempty, the following holds:32

{W 1 ⊆ Ωm
i1 : |W 1

→i1| = |W
1
i1→|}

{W 1 ⊆ Ωm
i1}

≤ 1
2 .

That is, the number of subsets of Ωm
i1 that are “balanced for i1” (i.e., such that i1

is associated with the same number of buy and sell contracts) is at most half of the
number of subsets of Ωm

i1 . We can also compute, taking any sequence W 1, . . . ,W r−1

where W r′ is chosen from Ωm
{i1,...,ir′}

, that (recalling that (i1, . . . , iR) is an expanding
sequence)

{W r ⊆ Ωm
{i1,...,ir} r Ωm

{i1,...,ir−1} : |[∪r
s=1W

s]→ir | = |[∪r
s=1W

s]ir→|}
{W r ⊆ Ωm

{i1,...,ir} r Ωm
{i1,...,ir−1}}

≤ 1
2 .

That is, taking any sequence W 1, . . . ,W r−1 where W r′ is chosen from Ωm
{i1,...,ir′}

, the
number of subsets of Ωm

{i1,...,ir} r Ωm
{i1,...,ir−1} such that ∪r

s=1W
s is “balanced for ir” is at

most half of the number of subsets of Ωm
{i1,...,ir} r Ωm

{i1,...,ir−1}.

Using the preceding two observations, if we construct a set by choosing trades in this
way along the complete expanding sequence, the overall probability that each agent ir
is “balanced” is bounded by (1

2

)R

.

Similarly, the overall probability that each agent ir except one is “balanced” is bounded
by (

R

1

)(1
2

)R−1
.

Finally, the overall probability that each agent ir except for two is “balanced” is bounded
by (

R

2

)(1
2

)R−2
.

Summing the three preceding expressions, we compute that the probability that a set
of trades constructed by choosing each trade in Ωm with probability 1

2 is a chain is no
32This follows as we can compute {W 1 ⊆ Ωm

i1
: |W 1

→i1
| = |W 1

i1→|} as the sum over

|Ωm
→i1 |∑

n=0

(
|Ωm
→i1
|

n

)(
|Ωm

i1→|
n

)
=
(
|Ωm

i1
|

|Ωm
→i1
|

)
≤
( |Ωm

i1
|⌊ |Ωm

i1
|

2

⌋) ≤ 2|Ω
m
i1 |−1.
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more than (1
2

)R

+
(
R

1

)(1
2

)R−1
+
(
R

2

)(1
2

)R−2
≤ 4R2

(1
2

)R

.

Recalling that R ≥ log2(m), we have that Cm(Y )
Bm(Y ) = O

(
(log2(m))2

m

)
� O

(√
log2 m
√

m

)
.
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