
Matching Mechanisms for Refugee Resettlement*

David Delacrétaz�

University of Oxford
Scott Duke Kominers�

Harvard Business School

Alexander Teytelboym§

University of Oxford

September 21, 2020

Abstract

Tens of thousands of refugees are permanently resettled from refugee camps to host-
ing countries every year. In the past, placement of refugees was essentially ad hoc, but
more recently resettlement agencies have been trying to place refugees systematically in
order to improve their outcomes. Yet, even at present, refugee resettlement processes
account for neither the priorities of hosting communities nor the preferences of refugees
themselves. Building on models from two-sided matching theory, we introduce a new
framework for matching with multidimensional knapsack constraints that models the
(possibly multidimensional) sizes of families, as well as the capacities of localities. We
propose four refugee resettlement mechanisms and two solution concepts that can be
used in refugee resettlement matching under various institutional and informational
constraints. Our theoretical results and simulations using refugee resettlement data
suggest that preference-based matching mechanisms can improve match efficiency, re-
spect priorities of localities, and incentivize refugees to report where they would prefer
to settle.

*First version: November 8, 2016 under the title “Refugee Resettlement.” The authors appreciate the
helpful comments of Tommy Andersson, Ramnik Arora, Georgy Artermov, Haris Aziz, Ivan Balbuzanov,
Péter Biró, Vincent Crawford, Sarah Glatte, Jens Gudmundsson, Guillaume Haeringer, Cameron Hepburn,
Will Jones, Fuhito Kojima, Bettina Klaus, Simon Loertscher, Mike Mitchell, Karen Monken, Alex Nichifor,
Assaf Romm, Alvin Roth, Yang Song, Tayfun Sönmez, Bassel Tarbush, Andrew Trapp, William Thomson,
Utku Ünver, and Alex Westkamp, as well as four referees, Pol Antràs, Andrei Shleifer, and numerous
conference and seminar participants. We are very grateful to Hai Nguyen for terrific research assistance.

�Email: david.delacretaz@economics.ox.ac.uk. Much of this work was completed when Delacrétaz
was at the University of Melbourne. Delacrétaz is grateful for the support of the Faculty of Business and
Economics, the Department of Economics, and the Centre for Market Design at the University of Melbourne,
as well as the Australian Research Council grant DP160101350.

�Email: skominers@hbs.edu. Kominers is grateful for the support of National Science Foundation grants
CCF-1216095 and SES-1459912, the Harvard Milton Fund, the Washington Center for Equitable Growth,
the Ng Fund and the Mathematics in Economics Research Fund of the Harvard Center of Mathematical
Sciences and Applications, and the Human Capital and Economic Opportunity Working Group (HCEO)
sponsored by the Institute for New Economic Thinking (INET).

§Email: alexander.teytelboym@economics.ox.ac.uk. Teytelboym is grateful for the support of the
Skoll Centre for Social Entrepreneurship at the Säıd Business School, as well as for the generous fellowship
and hospitality of the EU Centre for Shared Complex Challenges at the University of Melbourne. This work
was supported by the Economic and Social Research Council grant number ES/R007470/1.

1

1 Introduction

At the end of 2019, 79.5 million people were displaced by conflict around the world—the

highest level ever recorded (UNHCR, 2020). Over 20 million of these forcibly displaced people

are deemed to be refugees under the mandate of the United Nations High Commissioner for

Refugees (UNHCR). The UNHCR estimates that, in 2020, around 1.44 million refugees will

not be able return to their home countries safely in the future (UNHCR, 2019a). The UNHCR

deems these refugees eligible for resettlement in states that agree to give them permanent

residence and a route to citizenship. Refugees eligible for resettlement are some of the most

vulnerable refugees in the world, including children, survivors of torture and persecution, as

well as women and girls at risk of violence (UNHCR, 2019b). While the number of refugees

eligible for resettlement has roughly doubled since 2012, the number of resettled refugees has

been falling in recent years. Resettlement places are provided by countries voluntarily—and

the largest hosts are the United States, Canada, the United Kingdom, France, Sweden, and

Australia. Since the Second World War, the U.S. has admitted the majority of resettled

refugees. For example, between 2012 and 2018, the U.S. admitted an average of 46,000

refugees every year.

Yet little attention has been paid to the process that determines where in the hosting

country refugees are resettled. Most countries have historically treated refugee resettlement

as a purely administrative issue—and as such, they have not developed systematic and trans-

parent resettlement procedures. There is, however, ample empirical evidence that the local

communities (localities) where refugees are initially resettled matter a great deal for refugees’

education, job prospects, and earnings (Åslund and Rooth, 2007; Åslund and Fredriksson,

2009; Åslund et al., 2010, 2011; Damm, 2014; Feywerda and Gest, 2016; Bansak et al., 2018;

Martén et al., 2019). In particular, the initial match matters for refugees’ lifetime outcomes

because most refugees do not move from their initial resettlement localities for many years.

As of May 2018, HIAS (founded as the Hebrew Immigrant Aid Society), a resettlement

agency operating in the U.S., has been systematically matching refugees according to their

likelihood of gaining employment while taking various integration constraints into account

(Trapp et al., 2020). Such systematic matching has the potential to increase the short-term

employment of resettled refugees from 30 percent to over 40 percent while ensuring that all

locality-level constraints are met (Bansak et al., 2018; Trapp et al., 2020).

HIAS’s pioneering matching software, Annie� MOORE, is based on a model of matching

with multidimensional knapsack constraints that we introduced in our original working paper

(Delacrétaz et al., 2016; Trapp et al., 2020).1 However, Annie� MOORE at present neither

1In this case our model can be analyzed as an integer program called the multiple multidimensional

2

accounts for refugees’ preferences over localities nor the priorities of the localities themselves.

Refugees’ preferences matter because refugees have private information about their own

skills and abilities, which can affect the refugee-locality match quality—and which cannot be

directly observed by government authorities. Meanwhile, respecting priorities and hosting

capacities of localities can improve integration-relevant outcomes of refugees, ensure the best

use of local resources, and encourage localities to continue participating in resettlement by

building community support.

In this paper, we consider how refugees’ preferences and localities’ priorities can be in-

corporated into refugee resettlement processes, such as the one used by HIAS. We introduce

and analyze several matching market design approaches that balance competing objectives

of refugee welfare, incentives, and respect for localities’ priorities.

Our analysis draws in part upon classic matching models from contexts such as the

matching of students to (public) schools. But in school choice contexts, any given student

takes up exactly one school seat.2 In refugee resettlement, by contrast, families must be kept

together. Therefore, families have different sizes : larger families (e.g., a couple with four

children) take up more places than smaller ones (e.g., a single individual).

Because localities in practice have inflexible total quotas on the number of refugees they

are willing to admit, family sizes render most standard matching mechanisms (e.g., for the

allocation of school seats, houses, or other objects) insufficient for refugee resettlement. Ad-

ditionally, localities often have further requirements that constrain the allocation, such as a

maximum number of single-parent families, refugees speaking a given language, or school-

age children that they can accommodate. Thus, in order to deal with heterogeneous family

sizes and various additional requirements, we allow for (possibly multidimensional) knapsack

constraints that limit the central authority’s ability to allocate refugees to localities simply

on the basis of numbers of individual refugees.3 In this framework, we propose matching

mechanisms that account for preferences and priorities while respecting the knapsack con-

straints.

Our theoretical contribution. We consider a general model with multidimensional knap-

sack constraints, in which each family has a (possibly multidimensional) size and each locality

knapsack problem (Delacrétaz et al., 2016; Trapp et al., 2020).
2Students have heterogeneous preferences over schools and schools have priorities over students (having

a sibling or living in the neighborhood typically gives students a higher priority). The social planner’s
objective is to elicit truthful preferences over schools from students (schools are assumed to be non-strategic
and school seats are treated as objects) and to deliver a non-wasteful matching of students to schools in
which no student envies another student’s seat.

3The version of our model in which the only constraint in each locality is a maximum number of refugees
is sufficient for HIAS’s current matching problem; however, the additional generality of our model may prove
useful for future development of refugee resettlement matching (see Section 3.1 for a discussion).

3

has a (possibly multidimensional) capacity. A group of families can only be matched to a

locality if, for every dimension, the total size of the families does not exceed the locality’s

capacity. The implementation of our model by HIAS via Annie� MOORE constitutes a

special case of our model in which there is only one dimension: the total number of refugees

(Trapp et al., 2020). All our results and solution concepts are novel even when there is only

one dimension. Indeed, with the exception of Theorems 2 and 4 and Proposition 8, our

results are not even affected by the number of dimensions.

We start with the case in which the resettlement agency focuses only on the preferences

of refugee families. We show that the Knapsack Top Trading Cycles (KTTC) algorithm—

a slight modification of the classical Top Trading Cycles (TTC) algorithm of Shapley and

Scarf (1974)—allows us to incorporate knapsack constraints and obtain a Pareto-efficient

mechanism in which refugee families do not have any incentive to misreport their preferences

(Proposition 1). In practice, however, resettlement agencies already have existing allocation

processes so we consider how to incorporate preference information into a setting with a

baseline allocation, i.e, an endowment. For example, HIAS might start with the employment-

maximizing outcome from Annie� MOORE and then give refugees an option to submit

preferences in order to improve their matches. A matching is then individually rational if

every family is matched to a locality it weakly prefers to its endowment. In this case, because

families have different sizes, a Pareto-efficient and individually rational matching cannot be

achieved by only using the trading cycles that arise in the KTTC algorithm: It might be

necessary to swap sets of families in order to guarantee feasible Pareto improvements. Indeed,

it turns out that there is no strategy-proof mechanism that guarantees to find even a single

Pareto improvement upon an endowment that is not Pareto-efficient (Proposition 2). We

therefore relax Pareto efficiency by considering Pareto-improving chains in which swaps occur

at the level of families. We define a matching to be chain-efficient if it cannot be improved

by carrying out any Pareto-improving chain. We show that there does not exist any chain-

efficient and strategy-proof mechanism (Theorem 1). In fact, a strategy-proof mechanism

that Pareto improves upon an endowment that is not chain-efficient is not guaranteed to

exist when there is more than one dimension (Theorem 2). In order to Pareto improve upon

an endowment whenever possible, we introduce an algorithm, called Knapsack Top Trading

Cycles with Endowment (KTTCE), which generalizes the KTTC algorithm. (Without an

endowment, both algorithms are equivalent (Proposition 3).) The KTTCE mechanism is

strategy-proof and can potentially Pareto improve upon the endowment by carrying out

Pareto-improving chains (Theorem 3). If there is only one dimension and larger families

have a higher priority, then the KTTCE algorithm is guaranteed to Pareto improve upon

the endowment in a strategy-proof way (Theorem 4).

4

When priorities of localities also need to be taken into account, new trade-offs arise. In

particular, stable matchings may not exist and determining whether a stable matching ex-

ists (or finding a stable matching when one exists) is a computationally intractable problem

(McDermid and Manlove, 2010; Biró and McDermid, 2014).4 In our model, stable outcomes

only exist under fairly strong conditions (e.g., if families are prioritized by sizes; see Proposi-

tion 4). To address the non-existence and computational shortcomings of stable matchings,

we introduce an alternative solution concept called weak envy-freeness, which is based on

envy-freeness (Sotomayor, 1996; Wu and Roth, 2018; Kamada and Kojima, 2020), but is less

demanding. Envy-freeness eliminates envy, that is, it rules out matchings in which a family

f is matched to locality ` but prefers locality `′ which hosts a family f ′ with a lower-priority

than f at `′. Weak envy-freeness is less stringent than envy-freeness. Weak envy-freeness

allows family f to envy family f ′ as long as f ′ does not interfere with any higher-priority

family at locality `′. We show that a family-optimal weakly envy-free matching exists and

can be found via a modification of the classical Deferred Acceptance (DA) algorithm (Gale

and Shapley, 1962), which we call the Knapsack Deferred Acceptance (KDA) algorithm

(Theorem 5). However, unlike in contexts such as school choice, this modification of the

DA algorithm is manipulable because localities’ choice functions (induced by the priorities

and constraints) do not satisfy the cardinal monotonicity condition (Alkan, 2002; Hatfield

and Milgrom, 2005). In fact, there is no family-optimal weakly envy-free and strategy-proof

mechanism (Proposition 7), implying a trade-off between incentives and efficiency when the

designer requires weak envy-freeness.5 We therefore develop a strategy-proof and weakly

envy-free mechanism, called the Threshold Knapsack Deferred Acceptance (TKDA) algo-

rithm (Theorem 6). We use refugee resettlement data from HIAS to test our mechanisms.

We assume that localities rank refugees according to their likelihood of employment esti-

mated by Trapp et al. (2020). As refugee preferences are currently not collected, we simu-

late different preference distributions. We find that (particularly when refugees’ preferences

are uncorrelated): (i) the KTTCE mechanism makes many families better off compared to

the employment-maximizing endowment; (ii) the KDA algorithm is substantially more effi-

cient than the TKDA algorithm; (iii) there are considerable efficiency gains from using weak

envy-freeness criterion compared to envy-freeness in the KDA and TKDA algorithms in the

presence of multidimensional constraints.

4We use the term stable in the sense of pairwise stability following the two-sided matching literature (Gale
and Shapley, 1962). In matching markets with priorities, a stable matching is sometimes said to eliminate
justified envy (Abdulkadiroğlu and Sönmez, 2003) or to be non-wasteful and fair (Balinski and Sönmez,
1999).

5We leave the study of mechanisms that satisfy weaker conditions on truth-telling incentives, such
as Bayesian incentive compatibility (Ehlers, 2008), regret-freeness (Fernandez, 2017), or partial strategy-
proofness (Mennle and Seuken, 2014), for future work.

5

Impact on resettlement practices To the best of our knowledge, no resettlement agency

currently uses refugees’ preferences directly in determining refugee–locality assignments.

However, as we elaborate in Section 2.1, this does not mean that resettlement agencies

do not see value in taking preferences into account—and in fact, they have indicated an

interest in doing so. But the constraints that resettlement agencies face mean that existing

matching frameworks are not directly applicable to refugee resettlement. This paper pro-

vides the necessary theory to make preference-based refugee matching a reality. We study

a matching model that accounts for (possibly multidimensional) knapsack constraints, high-

light the trade-offs that will arise, and propose a number of mechanisms that sketch out

parts of the allocative frontier.

Our KTTCE mechanism constitute a natural first step as it allows directly incorporating

preferences into current practices. For example, if HIAS were to collect preferences, it could

use the KTTCE mechanism in conjunction with the Annie� MOORE system it currently

uses: Annie� MOORE would calculate an endowment and the KTTCE mechanism would

identify and carry out mutually beneficial trades. Thus, each family would be matched, to

a locality at least as preferred as the one they would receive under the current allocation

scheme.

In the long run, an agency may wish to involve localities more closely in the matching

process. Our mechanisms based on weak envy-freeness provide solutions that account for the

priorities of localities alongside the preferences of refugees. Priority orders could come from a

combination of employment probabilities (as calculated by Annie� MOORE), administrative

policies, and local residents’ preferences; accounting for these explicitly may help create

goodwill from localities—who may in turn increase their capacity—or at least take advantage

of the localities’ information about what constitutes a good match.

As for any matching market, which solution works best is likely to depend on specific

circumstances. Only practice can tell us exactly what those might be in the refugee resettle-

ment context. In that respect, our work offers a practically relevant contribution: it provides

resettlement agencies with a motivating reason to collect preferences and evaluate how they

would affect allocation under different matching rules.

Relationship to prior work. Matching markets for refugee resettlement were first pro-

posed by Moraga and Rapoport (2014) as a part of a system of international refugee quota

trading (Schuck, 1997). In the international context of matching refugees to countries, how-

ever, the refugee matching market is “thick”—any country can be expected to host any fam-

ily up to its capacity—and can be reasonably modeled as a standard school choice problem

(Abdulkadiroğlu and Sönmez, 2003; Jones and Teytelboym, 2017a). Jones and Teytelboym

6

(2017b) informally introduced the idea of refugee resettlement matching in the national con-

text and pointed out the knapsack constraints and the thinness of matching markets that

arise on the local level. Andersson and Ehlers (2020) examine a market for allocating private

housing to refugees in which landlords have preferences over the sizes of refugee families and

over the native languages refugees speak. Our work is the first to offer a formal theory of

preference-based matching for refugee resettlement.

Beyond refugee resettlement, our work draws upon and contributes to the applied litera-

ture on the design and implementation of complex matching mechanisms. The most famous

example is the National Resident Matching Program (NRMP), in which residents may apply

to jobs as couples (Roth and Peranson, 1999; Klaus and Klijn, 2005; Klaus et al., 2007; Haake

and Klaus, 2009). In this market, as in ours, stable outcomes may not exist. There are a

number of algorithms that can find stable matchings in the couples model whenever they

exist (Echenique and Yenmez, 2007; Kojima, 2015) or find approximate solutions (Nguyen

and Vohra, 2018). However, the structure of our problem is different to the matching with

couples problem as the barriers to stability in our context arise from the constraints on the

locality (hospital) side, rather than from the family (doctor) side (as in the couples prob-

lem). While stable matchings are computationally hard to find in our model (even when they

exist), there are various weaker stability concepts that are computationally tractable (Aziz

et al., 2018). Stable outcomes also do not exist in general in the market for trainee teachers

in Slovakia and Czechia, where teachers are expected to teach two out of three subjects

and schools have capacities for each subject (Cechlárová et al., 2015). Another difficult case

for market design has been matching with minimum quotas, in which stable outcomes also

typically do not exist (Goto et al., 2014; Fragiadakis et al., 2016). In similar spirit to this

paper, Kamada and Kojima (2020) consider many-to-one matching markets under general

constraints. While their model is more general than ours, their results are independent of

ours, and they focus on the structure of constraints that allow for an existence of a feasible,

individually rational, and envy-free matchings. Milgrom and Segal (2020) study a dynamic

auction with knapsack constraints, but they focus mainly on the properties of the classic

deferred acceptance algorithm. Finally, Nguyen et al. (2019) consider a version of our model

in which localities have cardinal preferences that arise from an integer optimization problem.

However, Nguyen et al. (2019) focus on group-stable and near-feasible matchings and do not

consider strategic issues which are key for preference-based refugee resettlement.

In some matching market design settings, such as school choice in New Orleans or hous-

ing allocation, stability is considered secondary to efficiency. In such cases, the Top Trading

Cycles algorithm (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003) or its

modifications (Pápai, 2000; Dur and Ünver, 2015) are used instead of stable mechanisms.

7

Pycia and Ünver (2017) show that in settings where agents have single-unit demands over

objects, all Pareto-efficient mechanisms that cannot be manipulated by a group of agents

can be represented in terms of a general class of Trading Cycles mechanisms. Pápai (2003,

2007) analyzes the difficulties of exchange with endowments and multiple goods. In our

setting, families are only endowed with at most one locality; however, efficient and strategy-

proof mechanisms are similarly hard to find. Abdulkadiroğlu et al. (2009) propose to take

advantage of priority ties in school choice to improve upon the student-optimal stable match-

ing. They show that any such improvement comes at the cost of losing strategy-proofness.

Their negative result arises because the matching which they want to improve upon depends

on reported preferences; on the other hand, our negative results rely solely on knapsack

constraints as in our setting the endowment is independent of preferences.

Organization of the paper. The remainder of the paper is organized as follows. In Sec-

tion 2, we describe the institutional context of refugee resettlement in the U.S.. We state

our formal model in Section 3. In Section 4, we explain how two variations on the Top

Trading Cycles algorithm can fully incorporate preferences of refugees. In Section 5, we

propose solutions for the case where refugee preferences need to be balanced with priorities

of the localities. In Section 6, we present simulations based on refugee resettlement data

from HIAS. Section 7 is a conclusion. All proofs are in the Appendix. The Online Appendix

provides additional results on the Threshold Knapsack Deferred Acceptance Algorithm (On-

line Appendix A), examples of how different algorithms work (Online Appendix B), further

simulation results (Online Appendix C) and relationships between our model and previous

models (Online Appendix D).

2 Institutional context

The Vietnam War and the evacuation of over 130,000 Vietnamese, Cambodian, and Laotian

refugees to the U.S. in 1975 precipitated the Refugee Act of 1980, which created the federal

Office for Refugee Resettlement. This Act standardized the resettlement process, set flexible

annual quotas, and fixed funding for resettlement. Since then around three million refugees

have been resettled to the U.S., mainly from southeast Asia and the former Soviet Union.

Annual resettlement numbers fluctuate considerably, partly because they can be altered by

executive action in response to crises and political will. In the past decade, around 70,000

refugees arrived annually to the U.S.; this rose to almost 78,761 in 2016. In September 2016,

President Obama had committed to resettling at least 110,000 refugees in 2017; however, in

January 2017 President Trump reduced the quota to 50,000 (although only 24,559 refugees

8

were eventually resettled to the U.S. in 2017 and 17,112 in 2018).

Refugees can apply for the U.S. resettlement program directly or be referred by the

UNHCR (often while living in a refugee camp). The refugee resettlement program is managed

by the U.S. Refugee Admissions Program (USRAP) which, alongside the UNHCR and the

International Organization for Migration, identifies refugees, conducts security checks on

all family members, and arranges travel;6 This process can take 18 to 24 months. Once a

family has passed the security checks, it proceeds to medical checks and cultural orientation.

Then the case is handed over to one of the nine U.S. Resettlement Agencies, which are

responsible for matching the refugee family to a local community.7 Resettlement agencies

resettle refugees all over the U.S., although the majority are initially placed in California,

Florida, New York State, and Texas.

Refugees are allowed to list family members who live in the U.S., in which case they

are almost certain to be reunited with them. But beyond that, resettlement agencies do

not collect information about refugees’ preferences over initial placements, and instead must

make informed guesses about where refugees would fare well.

Resettlement agencies establish their own links to local communities, which we refer to as

localities throughout the paper, that are willing to host refugees.8 Every year, agencies review

the capacities of their localities to host refugees. Hosting commitments of localities run for

the duration of the fiscal year (from October to October). Localities express a variety of

hosting constraints to their agencies. The key constraint is the total number of refugees they

are able or willing to host. The Department of State approves the quotas for every locality,

which can be as high as 200 or as low as 20 refugees per year. Localities cannot exceed

the annual quotas. There can also be additional constraints, for example on the number of

refugees from certain countries or regions, the number of children or elderly members, or

the number of refugees with a medical condition. Other (binary) constraints might include

whether the community can support single-parent families or disabled refugees. Agencies

assign refugees to localities roughly every fortnight. In order to balance the resettlement

load, the fortnightly quota for each locality is set proportionally to that locality’s annual

6USRAP consists of the Bureau of Population, Refugees and Migration (PRM) of the U.S. Department of
State, the U.S. Citizenship and Immigration Services (USCIS) of the U.S. Department of Homeland Security,
and the Office of Refugee Resettlement (ORR) of the U.S. Department of Health and Human Services (HHS)

7These resettlement agencies, also known as “voluntary agencies”, are: Church World Service (CWS),
Ethiopian Community Development Council (ECDC), Episcopal Migration Ministries (EMM), Hebrew Im-
migrant Aid Society (HIAS), International Rescue Committee (IRC), U.S. Committee for Refugees and
Immigrants (USCRI), Lutheran Immigration and Refugee Services (LIRS), U.S. Conference of Catholic
Bishops (USCCB), World Relief Corporation (WR).

8Resettlement agencies also coordinate the entire arrival process with the locality and ensure that housing
and initial support facilities (e.g., airport pickup, pocket money, first meals) are ready when the refugee family
arrives.

9

quota and is treated as a hard constraint (Trapp et al., 2020). Localities do not currently

fix priorities over specific types of refugees beyond the constraints they express to agencies.

Most localities commit to supporting refugees for their first year of resettlement, after which

the refugees are more or less on their own.9

2.1 Introducing preferences and priorities into refugee resettle-

ment

In 2018, HIAS became the first resettlement agency to adopt a matching system that at-

tempts to maximize short-run refugee employment while meeting the constraints of localities.

The system predicts employment likelihoods across refugee-locality matches using observ-

able historical data and suggests matchings that aim to maximize the employment objective.

While matching families and localities based on observable characteristics constitutes a sig-

nificant improvement over random allocation or ad hoc procedures (Bansak et al., 2018;

Trapp et al., 2020), there are still reasons to incorporate refugees’ preferences and localities’

priorities into the matching process.10

Refugees are likely to hold private information about their preferences that can affect the

quality of matches. As Mark Hetfield, the CEO of HIAS has explained:

“Many Somali refugees initially settled around the country subsequently migrated

to Lewiston, Maine. Lewiston has a weak economy but an established Somali

community. Consequently, efforts to resettle these refugees elsewhere in the U.S.

were less effective than they could have been. Their preferences should have been

taken into account from the start” (see Roth (2015)).

Indeed, refugees’ private information might even be pertinent to maximizing observable

outcomes, such as employment. As Hetfield points out, taking preferences into account may

also help prevent internal migration—the movement of refugees away from their assigned

localities soon after arrival—which localities want to avoid because they make substantial

upfront investments in hosting refugees. On the other side of the match, resettlement agencies

also miss information by not eliciting priorities from localities. For example, a locality cannot

currently signal that it would prefer to resettle larger or smaller families, families from

9The federal government provides very limited support with a fixed grant of $1,125 per refugee to cover
the first 90 days of resettlement.

10Logistically, there is no obvious impediment to the collection of preferences and priorities. Resettlement
agencies have time to elicit families’ preferences over localities after those families’ applications have been
approved and before departure. Localities can be consulted about their priorities at the beginning of each
fiscal year.

10

particular ethnic or linguistic groups, or families in which members have certain medical

conditions.11

Another reason for eliciting and responding to preferences is ethical. Refugees ought to

be afforded the same agency as other citizens and be given some choice during one of the

most consequential moments in their lives (Jones and Teytelboym, 2017b). It is arguably

inconsistent to talk about what is “good” for refugees without seriously considering their

preferences. Meanwhile, respecting priorities of localities can serve as an important fairness

criterion for refugee families and give communities a sense of control over the resettlement

process—which might corral goodwill and incentivize localities’ long-term participation.

Eliciting preferences of refugees over localities might appear to be a difficult task. Refugees

face roughly the same number of options (16 at HIAS as of September 2020) as parents in a

public school choice system—and these parents often face difficulties forming and expressing

their preferences (Hastings et al., 2007; Corcoran et al., 2018). Moreover, refugees may not

be able to determine precise preferences over individual localities because they lack necessary

the information, such as an understanding of the localities’ labor markets and opportunities.

To address this lack of information in resettlement matching, refugees could be asked to rank

(or value) the properties of localities that are important to them: for example, proximity

to a city, low crime, presence of a co-ethnic or a co-religious community (Jones and Teytel-

boym, 2017b). The resettlement agency can then combine refugees’ expressed preferences

over characteristics with data on localities to infer a likely preference profile over localities

(see, for example, Wiswall and Zafar (2017), who use the hypothetical choice methodology

to estimate preferences for workplace attributes).

Eliciting localities’ priorities is more straightforward. Resettlement agencies might simply

ask localities to list and weight the characteristics of families that they would prefer to

resettle. Agencies might want to exclude some characteristics from the ranking process (e.g.,

race or religion), and expect localities to resettle any family that does not violate its capacity

constraints. Alternatively, localities might want to rank families according to features that

are difficult for localities themselves to estimate (e.g., likelihood of employment, see Bansak

et al. (2018); Trapp et al. (2020)); in that case, the agency could estimate these characteristics

on behalf of the localities and assign priority rankings accordingly.

11A resettlement agency might put reasonable restriction on what criteria can be used for priority rankings.
For example, a locality could be prevented from ranking refugees based on race or religion.

11

3 Model

There is a finite set of refugee families f ∈ F and a finite set of localities ` ∈ L. We assume

that there exists a null locality ∅ ∈ L that represents being unmatched. There is a finite set

D of dimensions. The size of a family f is the vector (νfd)d∈D ∈ Z|D|≥0 \ {0}.12

The vector (κ`d)d∈D ∈ Z|D|≥0 denotes the capacity of locality `. We use the convention that

κ∅d = +∞ for all dimensions d, i.e., that the null locality has infinite capacity. Locality `

can accommodate a set of families G ⊆ F if
∑

g∈G ν
g
d ≤ κ`d for all d ∈ D. Locality ` can

accommodate a family f alongside G ⊆ F \ {f} if ` can accommodate G ∪ {f}. We assume

that every family can be accommodated on its own by at least one locality other than the

null.

A (feasible many-to-one) matching is a correspondence µ : F ∪L⇒ F ∪L, such that for

all f ∈ F , ` ∈ L, and d ∈ D,

(i) every family is matched to exactly one locality, i.e., µ(f) ∈ L;

(ii) every locality is matched to a subset of families, i.e., µ(`) ⊆ F ;

(iii) a family is matched to a locality if and only if the locality is matched to the family,

i.e., µ(f) = ` if and only if f ∈ µ(`); and

(iv) every locality can accommodate all the families matched to it, i.e.,
∑

g∈µ(`) ν
g
d ≤ κ`d.

The first three conditions are standard while condition (iv) ensures that no locality’s

capacity is exceeded. Figure 1 illustrates an example of a matching in a knapsack constraints.

Our model generalizes a number of existing matching models with complex constraints (see

Online Appendix D).

Families have preferences over localities. We denote by �f the strict ordinal preference

list of family f over L, and let � = (�f)f∈F be the preference profile of families. We therefore

write ` �f `′ to mean that f strictly prefers ` to `′. We write ` �f `′ to denote that either

` �f `′ or ` = `′. We assume that every family’s least preferred option is being unmatched.

Localities have exogenously fixed priorities over families. We let .` be the strict ordinal

priority list of locality ` over families F and let . = (.`)`∈L be the ordinal priority profile of

the localities. We therefore write f .` f
′ to mean that f has a higher priority than f ′ at `.

We assume that localities prioritize families they can accommodate on their own: if ` can

accommodate {f} but not {f ′}, then f .` f
′.

12We assume that every family takes up one unit of capacity in at least one dimension. This is without
loss of generality as a family that does not take up any capacity can be matched to any locality without
affecting any other family. Moreover, this is consistent with our application as, in practice, every family has
at least one family member.

12

f1 f2 f3 f4 f5

`1

f4 f4

f1 f4

f1

f1
`2

f3 f3

f5 f5

f5

f2

Figure 1: Matching in a market with two-dimensional constraints. There are five families
f1, . . . , f5, two localities `1, `2, and two dimensions, represented by the left and right columns.
The sizes of the families are (3, 0), (1, 0), (1, 1), (1, 2), and (2, 1); for example, family f1’s
size is represented by 3 blocks in the first column and 0 blocks in the second column. The
capacities of the localities are (4, 2) and (4, 3). In the matching pictured, families f1 and
f4 are matched to locality `1 and families f2, f3, and f5 are matched to locality `2. All of
`1’s capacity is used while `2 has one unit capacity for the second dimension that remains
unused.

13

A matching µ is wasteful if there exists a family f ∈ F and a locality ` ∈ L such

that ` �f µ(f) and ` can accommodate f alongside µ(`). We say that matching µ Pareto

dominates matching µ′, denoted µ � µ′, if µ(f) �f µ′(f) for all f ∈ F and µ(f) �f µ′(f)

for some f ∈ F . We write µ � µ′ if µ weakly Pareto dominates µ′, that is if either µ � µ′

or µ = µ′. A matching µ is Pareto-efficient if there does not exist another matching µ′ that

Pareto dominates µ.

Fixing a set of families and their sizes, a set of localities and their capacities, and a profile

of priorities, we define a (direct) mechanism as a function ϕ that takes as input a preference

profile and outputs a matching. A mechanism ϕ is strategy-proof if for any f ∈ F there does

not exist a report of a preference list �′f such that

ϕ(�′f ,�−f)(f) �f ϕ(�)(f),

where ϕ(�)(f) is the locality to which f is matched under the mechanism ϕ and the pref-

erence profile �. Strategy-proofness requires that refugee families cannot make themselves

better off by misreporting their preferences over localities, irrespective of the reports of other

families.

If a mechanism always selects a matching with a certain property, we refer to the mech-

anism as having that property. For example, if a mechanism always selects a non-wasteful

matching, we call it a non-wasteful mechanism.

Throughout the paper, we describe all the mechanisms as algorithms: therefore, a mech-

anism takes a preference profile as an input and uses instructions from its corresponding

algorithm to produce a matching. We say that a family is permanently matched (perma-

nently rejected) to a locality at some step of the algorithm for mechanism ϕ if by that step

it has been established that the family will (not) be matched to the locality in the matching

outputted by ϕ.

3.1 Knapsack constraints in practice

In practice, there is a constraint on the total number of refugees that a locality can host.

As we explained in Section 2, these quotas are approved by the Department of State and

are treated as hard constraints. If we call this dimension d1 and consider a family f , νfd1
is the number of family members (e.g., if f is a dual-parent family with four children, then

νfd1 = 6). For a locality `, κ`d1 is that locality’s quota, i.e., the number of refugees that ` can

host.

On top of this, resettlement agencies face additional constraints that are agreed on di-

rectly with the localities. In the case of HIAS, all of these constraints are currently binary.

14

For example, some localities are equipped to host single-parent families or refugees with

particular disabilities or medical conditions while others are not. In addition, some localities

only accept refugees speaking languages for which they have translators available. Additional

dimensions are not required to model binary constraints: we can straightforwardly extend

the model so that some family-locality pairs can simply be considered to be infeasible. Fami-

lies would only have preferences over feasible localities and localities would only rank feasible

families. All the results in the paper would go through with this minor modification.

HIAS currently uses only binary additional constraints so the special case of our model

in which |D| = 1 is sufficient for introducing preferences into its current practice. While

all our results and solution concepts are novel even in the one-dimensional case, there are

reasons to think that our general model may be useful to apply preference-based matching

more widely. First, until 2016, there was a second institutional constraint limiting the

number of refugees from a given region. For example, a locality might be able to host up

to fourteen refugees in total but no more than eight Syrians. Given how volatile the legal

structures around refugee resettlement are, it is conceivable that additional institutional

constraints may be added in the future and modeling such a situation would require adding

a dimension for each of the constrained regions. Second, some of the binary constraints that

HIAS uses do not necessarily need to be binary but are treated as such because managing

multidimensional constraints manually is difficult. If the model allows for multidimensional

constraints, it may be possible to relax some of the binary constraints on the matching.

For example, a locality who has only one Arabic translator available may be able to take

one Arabic-speaking family but not more, a situation for which binary constraints cannot

cater but multidimensional constraints can. Third, the possibility of using multidimensional

constraints could help localities express their ability to support different kinds of refugee

families. For example, a constraint on the total number of children could reflect the capacity

of schools and kindergartens and the constraint on the number of seniors could reflect the

capacity of care homes (see Section 6.3).

From a practical perspective, it is important to distinguish constraints from preferences.

Refugees have preferences over localities and we allow these to be arbitrary. Constraints are

imposed by the localities (in agreement with resettlement agencies and the U.S. Department

of State) which can specify a total number of refugees they are able to host as well as, possibly,

additional constraints for specific categories of refugees or families. Therefore, independently

of the families’ preferences, any matching must satisfy all of these constraints.

As we mentioned in Section 2, while quotas on total number of refugees are set annu-

ally, refugees arrive over the course of the year so the matching takes place roughly every

fortnight. The current practice for HIAS is to consider each static matching problem inde-

15

pendently: Every fortnight, there is a set of families to be matched to a set of localities and

the total number of refugees that a locality can host is set proportionally to its remaining

annual quota and treated as a hard constraint (Trapp et al., 2020).13 Adjusting capacity

across matching periods over the course of the year or changing the frequency of the match-

ings (e.g., to monthly or quarterly) could in principle improve both the employment-based

optimization (Trapp et al., 2020, Table 10) and preference-based matching. We focus on the

static matching problem and leave dynamic capacity management for future work.

4 Targeting efficiency

In this section, we propose matching mechanisms that incorporate refugee preferences and

give refugees an incentive to report their preferences over localities truthfully.

We show first that the Pareto-efficient and strategy-proof Top Trading Cycles (TTC)

mechanism of Shapley and Scarf (1974) can be adapted to our setting in a natural way while

preserving its properties. However, resettlement agencies already have existing processes for

assigning refugees to localities—for example, HIAS matches refugees according to observable

characteristics to maximize objectives such as the likelihood of employment (Bansak et al.,

2018; Trapp et al., 2020). To make preference-based matching as easy as possible to integrate

with existing systems, we extend our TTC-based approach to allow resettlement agencies to

use their initial allocations—which we refer to as an endowment—as a baseline and allow

refugees to express preferences in order to improve upon that baseline.

We consider mechanisms that Pareto improve upon the endowment in the sense that

every refugee family is assigned to a locality that it weakly prefers to its endowment. Pareto

improvements upon an endowment make it possible to use refugees’ preferences to identify

welfare gains over and above the assignments that would be selected based on observables.

Such Pareto improvements also allow, in principle, resettlement agencies to institute distri-

butional goals or other minimal welfare guarantees through the choice of the endowment. We

show that finding Pareto improvements upon an endowment presents many challenges in our

environment; even so, we obtain a strategy-proof mechanism based on the TTC algorithm

that can achieve Pareto improvements.

13Since the decisions about the timing of arrivals are made by the U.S. government, there is little or no
scope for refugees to manipulate the timing of arrivals (as in Caspari, 2019). Moreover, since the annual
quotas are fixed at the beginning of the fiscal year and then managed by the resettlement agencies, there is
no short-run scope for quota manipulation by localities (as in Sönmez, 1997).

16

4.1 The Knapsack Top Trading Cycles mechanism

Our first mechanism, described in Algorithm 1, is an extension of the TTC mechanism to

matching with (possibly multidimensional) knapsack constraints.

In the first round, each family f points at its most preferred locality ` that can accommo-

date f and each locality `′ points at the highest-priority family f ′ that `′ can accommodate.

There must be at least one (directed) cycle in the graph in which nodes are labeled with

families and localities and “pointing” is represented by directed edges. Note that each family

and each locality is in at most one cycle. Every family in a cycle is permanently matched to

the locality at which it is pointing.

In the subsequent rounds, every locality permanently rejects every family that cannot

be accommodated alongside families that are already permanently matched to that locality.

Every family then points at its most preferred locality from which the family has not yet been

permanently rejected; every locality points at its highest-priority family that the locality has

not yet permanently rejected. Once again, there is at least one cycle and in each cycle

we permanently match every family to the locality at which that family is pointing. The

algorithm terminates in a finite number of steps because at least one family is permanently

matched in each step of the algorithm.

Proposition 1. The KTTC mechanism is strategy-proof and Pareto-efficient.

The Knapsack Top Trading Cycles (KTTC) algorithm generalizes the classical TTC algo-

rithm used in school choice by taking into account knapsack constraints. The KTTC mech-

anism is Pareto-efficient because a family continues pointing at its most preferred locality

until it can no longer be accommodated alongside families that are permanently matched to

it. The key reason for strategy-proofness is that a family can only be permanently matched

by being involved in a cycle. A family can only create such a cycle by pointing at any locality

in a pointing sequence that terminates with the family; the pointing sequence continues to

exist until the family is permanently matched. Therefore, every family has an incentive to

continue pointing at its most preferred locality that has not permanently rejected it yet.

Note that Proposition 1 does not include any properties of the KTTC mechanism that

pertain to the priorities of the localities. Indeed, the priorities are only used in the KTTC

mechanism in order to determine the order in which localities point. However, strategy-

proofness and efficiency of the KTTC mechanism do not depend on the pointing order of

the localities.14

14If all localities have the same priority order, then the KTTC mechanism collapses to the serial dictatorship
mechanism.

17

Algorithm 1: Knapsack Top Trading Cycles (KTTC)

Initialize the current matching µ1 such that µ1(f) = ∅ for all f ∈ F . No
families are permanently matched.

Round i ≥ 1

Starting with µi, every locality ` permanently rejects all families that `
cannot accommodate alongside µi(`).

Every family f that is not permanently matched points at its most preferred
locality among those that have not permanently rejected f .

Every locality ` points at the highest-priority family that has not been
permanently matched and that ` has not permanently rejected. (If no such
family exists, then ` does not point.)

At least one cycle appears and every family and every locality is involved
in at most one cycle. Update the current matching to µi+1 by permanently
matching every family in a cycle to the locality at which it is pointing (this
could be ∅).
If all families are permanently matched, end and output µi+1. Otherwise
continue to Round i+ 1.

18

4.2 Improving efficiency from an endowment

Consider an exogenous matching µE, which we refer to as the endowment. We say that

a matching µ is individually rational if µ � µE, that is if µ weakly Pareto dominates the

endowment.15 We will also refer to locality µE(f) as family f ’s endowment and to families

µE(`) as locality `’s endowment. In the school choice setting, i.e., when |D| = 1 and νfd = 1

for all f , the TTC mechanism finds an individually rational and Pareto-efficient matching

by carrying out one cycle at a time.16 In contrast, in a setting with knapsack constraints,

carrying out one cycle at a time may not achieve Pareto-efficiency because some Pareto

improvements may require families to swap in groups. For example, two “small” families in

one locality might be able to swap simultaneously with a “large” family in another locality,

but none of the pairwise swaps between a “small” family and the “large” family would be

feasible. We therefore limit the set of Pareto improvements that can be executed.

Definition 1. Given a matching µ, a Pareto-improving chain is a sequence

(f1, `1, f2, `2, . . . , fn, `n)

of distinct families and localities such that:

� `1 �f1 µ(f1);

� for all i = 2, . . . , n,

– `i−1 can accommodate fi−1 alongside µ(`i−1) \ {fi},

– `i �fi `i−1 = µ(fi); and

� `n can accommodate fn alongside µ(`n) \ {f1}.

In any Pareto-improving chain, family f1 moves to locality `1 which f1 prefers to its

current locality. Locality `1, in turn, must be able to accommodate f1 alongside all families

in µ(`1) except for f2 which leaves locality `1 for a more preferred locality `2. The Pareto-

improving chain continues with f3 moving from `2 to `3 and so on. The Pareto-improving

chain terminates in one of two ways: either (i) the Pareto-improving chain is “open” and no

family leaves the last locality, i.e., `n 6= µ(f1) or (ii) the Pareto-improving chain is “closed”

and f1 leaves the last locality, i.e., `n = µ(f1).

Definition 2. A matching is chain-efficient if it does not have any Pareto-improving chain.

15Our meaning from individual rationality is in line with the rest of the social choice literature here as the
endowment, rather than not being matched, now plays the role of the outside option.

16The KTTC mechanism collapses to the TTC mechanism in the school choice setting.

19

Chain efficiency constitutes a relaxation of Pareto efficiency because it only requires

the elimination of Pareto-improving chains, which form a subset of all possible Pareto im-

provements. In school choice, Pareto efficiency is equivalent to chain efficiency and the

Pareto-efficient TTC mechanism is strategy-proof. In our setting with knapsack constraints,

however, there might be a matching that Pareto dominates a chain-efficient matching if

there are groups of families that could participate in a Pareto-improving swap that is not a

Pareto-improving chain. Moreover, even chain-efficient mechanisms are not strategy-proof.

Theorem 1. There is no strategy-proof, individually rational, and chain-efficient mecha-

nism.

The proof of Theorem 1 requires only one dimension and the largest family size is two.

The intuition is that different Pareto-improving chains can interfere with each other, thereby

giving families an opportunity to select into the Pareto-improving chain they prefer by ma-

nipulating their preferences. As Pareto efficiency implies chain efficiency, Theorem 1 directly

implies the following result.

Corollary 1. There is no strategy-proof, individually rational, and Pareto-efficient mecha-

nism.

More generally, Theorem 1 and Corollary 1 imply a trade-off between efficiency and

strategy-proofness when the designer wants to Pareto improve upon an endowment. This

trade-off does not exist in school choice and constitutes a direct consequence of the fact that

families have different sizes. This leaves open an important question: can a strategy-proof

mechanism guarantee even a single Pareto improvement upon an endowment? To formalize

this idea, we say that a mechanism ϕ Pareto improves upon an endowment µE, if ϕ(�) � µE,

that is if the mechanism returns a matching that Pareto dominates the endowment. This

definition strengthens individual rationality by ruling out the case where the mechanism

returns the endowment.

Proposition 2. There is no strategy-proof mechanism that Pareto improves upon every

endowment that is not Pareto-efficient.

By definition, a mechanism cannot Pareto improve upon a Pareto-efficient endowment.

Proposition 2 implies that, even if it were possible to Pareto improve upon the endowment,

one might not be able to do so without giving families an incentive to misrepresent their

preferences. The intuition behind the proof of Proposition 2 is similar to the proof of

Theorem 1.

As chain efficiency is less stringent than Pareto efficiency, one may still hope to be able to

Pareto-improve upon endowments that are not chain-efficient in a strategy-proof way—but

even this turns out to be impossible in the presence of multidimensional knapsack constraints.

20

Theorem 2. If |D| > 1, there is no strategy-proof mechanism that Pareto improves upon

every endowment that is not chain-efficient.

Theorem 2 considers any kind of Pareto improvements, whether or not they are Pareto-

improving chains. Therefore, the result directly implies that, when |D| > 1, it may not be

possible to find any Pareto-improving chains—even if they exist—without giving families an

incentive to misrepresent their preferences. This means that strategy-proofness may preclude

all trade in matching markets with multidimensional knapsack constraints.

While Theorem 1 and Proposition 2 hold even when there is only one dimension, the

impossibility result in Theorem 2 relies on the failure of the size monotonicity condition,

which can only occur when there is more than one dimension. In the remainder of this section,

we show how we can adapt the KTTC mechanism in order to overcome the impossibility

result in Theorem 2 whenever sizes are monotonic (e.g., when there is only one dimension).

4.3 KTTC with Endowment

We now present an extension of the KTTC mechanism which attempts to Pareto improve

upon an endowment. As in the KTTC algorithm, the KTTC with Endowment (KTTCE)

algorithm (Algorithm 2) looks for trading cycles and families point at localities which they

prefer to their endowment. However, the KTTCE algorithm checks whether the cycles that

appear are feasible.17 In general, endowments can cause trading cycles to be infeasible.18 If

trading cycles are feasible, we match families to the localities they are pointing at in the cycles

just as in the KTTC algorithm. The key step—the Rejection Stage—deals with the case

when none of the cycles are feasible. In the Rejection Stage, we pick a family f at random

or according to some exogenous rule among those at which at least one locality is pointing.

Family f is permanently rejected by every locality ` where f cannot be accommodated

alongside families that are currently matched to ` except for some family at which ` is

pointing (if there is such a family). Since f is not necessarily rejected by all localities, the

Rejection Stage leaves an opportunity for f to be involved in a feasible cycle in a subsequent

round of the algorithm. It is worth noting that any feasible cycle found by the KTTCE

algorithm corresponds to at least one Pareto-improving chain.19 Therefore, the KTTCE

17This is not particularly challenging from a computational point of view as it simply requires to verify
whether each locality in the cycle can replace the family pointing at the locality by the family at which the
locality points. Thus, the KTTCE algorithm works in polynomial time.

18If |D| = 1 and vfd = 1 for all f ∈ F and all d ∈ D all trading cycles are feasible. Moreover, without
endowments all trading cycles are also feasible.

19In particular, a feasible cycle can be broken into multiple “open” Pareto-improving chains if some
localities point at families not in their endowment.

21

Algorithm 2: KTTC with Endowment (KTTCE)

Initialize the current matching µ1 such that µ1(f) = µE(f) for all f ∈ F . No
families are permanently matched.

Round i ≥ 1

Every locality ` permanently rejects all families that ` cannot accommodate
alongside families that are permanently matched to `.

Every family f that is not permanently matched points at its most preferred
locality among those that have not permanently rejected f .

Every locality ` points at the highest-priority family that has not been perma-
nently matched and that ` has not permanently rejected. (If no such family
exists, then ` does not point.)

At least one cycle appears and every family and every locality is involved in at
most one cycle. Label the families and localities in any such cycle f1 → `1 →
f2 → `2, . . . , fn → `n → f1.

A cycle is feasible if, for all j = 1, . . . , n, `j can accommodate fj alongside
µi(`j) \ {fj+1} (letting fn+1 = f1).

If one or more cycles are feasible, continue to the Matching Stage. Otherwise,
continue to the Rejection Stage.

Matching Stage: Update the current matching to µi+1 by matching every fam-
ily in a feasible cycle to the locality at which it is pointing (this could be ∅);
all these families become permanently matched.

If all families are permanently matched, end and output µi+1. Otherwise con-
tinue to Round i+ 1.

Rejection Stage: Pick one family f (at random or according to some exogenous
rule) at whom at least one locality is pointing. Permanently reject f from all
localities to which f cannot be matched, i.e., ` permanently rejects f if `
cannot accommodate f alongside µi(`) \ {f ′} (where f ′ is the family at which
` is pointing).

If f is permanently rejected by either the locality at which f is pointing or by
a locality pointing at f , let µi+1 = µi and continue to Round i+ 1. Otherwise,
pick another family that has not been picked yet and repeat the Rejection
Stage.

22

algorithm attempts to improve upon the endowment by carrying out successive Pareto-

improving chains (each of which may be “open” or “closed”).

Theorem 3. The KTTCE mechanism is strategy-proof and individually rational.

The KTTCE mechanism preserves strategy-proofness because (i) in the Matching Stage,

families point at their most preferred localities (as in KTTC), and (ii) in the Rejection Stage,

the permanent rejections from localities do not depend on reported preferences.

Effectively, the KTTCE algorithm adds the Rejection Stage to each round of the KTTC

algorithm in order to deal with infeasible cycles created by the endowment. The following

proposition formalizes this point—when all families are endowed with the null locality, the

outcomes of the KTTC and KTTCE algorithms coincide.

Proposition 3. If µE(f) = ∅ for all f ∈ F , then µKTTC = µKTTCE.

We illustrate the KTTCE algorithm with an example in Online Appendix B.2.

As Theorem 2 shows, whenever |D| > 1, no strategy-proof mechanism (e.g., KTTCE)

can be guaranteed to find any Pareto improvements upon an endowment that is not chain-

efficient. Therefore, in general, the KTTCE mechanism might simply output the endowment

even if Pareto-improving chains exist.

4.4 Guaranteeing Pareto improvements in the KTTCE mecha-

nism

We now introduce a condition on family sizes, which guarantees that there exist priority

profiles for which the KTTCE mechanism improve upon every endowment that is not chain-

efficient.

Definition 3. Sizes are monotonic if for any two families f and f ′ and any two dimensions

d and d′, νfd > νf
′

d implies νfd′ ≥ νf
′

d′ .

When |D| = 1, sizes are always monotonic; however, when |D| > 1, the size monotonicity

condition states that whenever f is larger than f ′ in one dimension, then f is weakly larger

in all other dimensions.

We next provide a class of priority profiles which guarantees that the KTTCE mechanism

improves upon any endowment that is not chain-efficient.

Definition 4. Let sizes be monotonic. A priority profile is lexicographic if, for every f, g ∈ F
and every ` ∈ L \ {∅},

23

� families in `’s endowment have a higher priority, i.e., f ∈ µE(`) and g /∈ µE(`) implies

f .` g; and

� within `’s endowment, larger families have a higher priority, i.e., f, g ∈ µE(`) and

νfd > νgd for some d ∈ D imply f .` g.

Lexicographic priorities imply that each locality prioritizes all families in its endowment

over those that are not and that, among the families in its endowment, the locality prioritizes

families in decreasing order of sizes. There are no restrictions about how each locality ranks

any two families with the same size or any two families not in its endowment. Note that

lexicographic priorities are only well-defined when sizes are monotonic. If sizes are not

monotonic, then there exist two families, say f and g, such that νfd1 > νgd1 and νfd2 < νgd2 .

Lexicographic priorities dictate that every locality prioritize f over g and prioritize g over

f , a contradiction.

If sizes are monotonic and priorities are lexicographic, at the start of the KTTCE al-

gorithm every locality ` points at the largest family in its endowment. Suppose that `

permanently rejects a family f that is not in its endowment. This means that f cannot

be accommodated at ` even when the largest family in `’s endowment has been removed.

Therefore, in the endowment, there does not exist any Pareto-improving chain in which f

moves to `. If the outcome of the KTTCE algorithm is the endowment, then f has been

permanently rejected by every preferred locality. This means that the endowment had no

Pareto-improving chains in which f moves to any of the preferred localities and f is not

involved in any Pareto-improving chain in the endowment. By extending this argument to

every family, we can see that the KTTCE algorithm only returns the endowment whenever

the endowment is chain-efficient.

Theorem 4. If sizes are monotonic and priorities are lexicographic, then the KTTCE mech-

anism Pareto improves upon every endowment that is not chain-efficient.

The KTTCE mechanism takes priorities as an input to determine the family to which each

locality points (if any) in every round. However, properties presented in this section do not

depend on priorities. Therefore, if sizes are monotonic but priorities are not lexicographic, it

is possible to modify the pointing order in the KTTCE algorithm by constructing the point-

ing order from lexicographic priorities. This does not affect the mechanism’s properties—

individual rationality and strategy-proofness—but ensures that the KTTCE mechanism finds

a Pareto-improving chain as long as one exists. This observation implies the following corol-

lary to Theorem 4.

24

Corollary 2. If sizes are monotonic, then there exists a strategy-proof mechanism that

Pareto improves upon every endowment that is not chain-efficient.

Recall that whenever there is only one dimension, sizes are always monotonic ensuring the

existence of a strategy-proof mechanism—i.e., KTTCE with an adjusted pointing order—

that Pareto improves upon any endowment. Corollary 2 therefore contrasts the impossibility

result in Theorem 2 by highlighting the possibility of strategy-proof Pareto-improvement

upon endowments that are not chain-efficient in the case when there is only one dimension.

Moreover, Corollary 2 is relevant for current practice: HIAS currently uses Annie� MOORE

with only one dimension—the only constraint is on the total number of refugees—in its

resettlement processes (Trapp et al., 2020). In Section 6, we simulate realistic resettlement

settings with one and three dimensions and show that the KTTCE mechanism finds Pareto

improvements even when Theorem 4 does not apply. We leave open the question of finding

the most efficient, strategy-proof, and individually rational mechanism.

5 Accounting for priorities

As we have argued in this paper, preferences of refugees are central to designing matching

mechanisms for refugee resettlement. However, there are good reasons for taking priorities of

localities seriously as well. Mechanisms in Section 4 do not guarantee to satisfy the priorities

of localities. In this section, we offer mechanisms that respect priorities of localities in

addition to the preferences of refugee families.

5.1 (Non-)existence of stable matchings

Denote by F̂ f
` = {g ∈ F : g .` f} the set of families with a higher priority than family f at

locality `. A common solution concept for balancing preferences and priorities is (pairwise)

stability (Roth, 1984a; Abdulkadiroğlu and Sönmez, 2003).

Definition 5. A matching µ is stable if there is no f ∈ F and ` ∈ L such that

(i) f prefers ` to its current match, i.e., ` �f µ(f); and

(ii) ` can accommodate f alongside F̂ f
` ∩ µ(`), i.e., all families matched to ` with a higher

priority than f .

In words, family f and locality ` are a blocking pair in a matching µ if f prefers ` to its

current match and it is possible to accommodate f in ` without removing any higher-priority

family. A matching is stable if it does not have any blocking pairs. Our definition extends the

25

concept of stability to a setting with possibly multidimensional knapsack constraints. Our

definition is in line with the way stability is defined in similar models (see, e.g., McDermid

and Manlove (2010); Biró and McDermid (2014); Delacrétaz (2019)). If |D| = 1 and νfd1 = 1

for all f ∈ F , Definition 5 collapses to the “elimination of justified envy” used in school

choice and other object allocation settings (Abdulkadiroğlu and Sönmez, 2003).

While stable matchings always exist in school choice models, they do not exist in ours

(even when |D| = 1).20 In fact, determining whether a stable matching exists in our model

(even when |D| = 1) is a computationally intractable problem (McDermid and Manlove,

2010): The running time of an algorithm that can be guaranteed to find a stable matching

or proves that none exists increases exponentially with the problem size.21 This can be an

impediment to practical applications in large matching markets.22

However, stable outcomes are guaranteed to exist in a special case of our model where

sizes are monotonic and the priorities of localities are sufficiently similar.

Definition 6. A priority profile . is aligned if for any f, g ∈ F such that νf 6= νg and any

`, `′ ∈ L \ {∅}, f .` g if and only if f .`′ g.

The aligned priorities condition generalizes the second part in the definition of lexico-

graphic priorities (Definition 4). Under the aligned priorities condition, any two families

with different sizes are ranked identically by all localities, but families with the same size

can be ranked arbitrarily. The case of identical priorities is therefore a special case of the

aligned priorities condition. If sizes are monotonic, aligned priorities also include the case

where all localities give a higher priority to larger families and, symmetrically, the case where

all localities give a higher priority to smaller families.

Proposition 4. If sizes are monotonic and the priority profile is aligned, then a stable

matching exists.

The monotonicity of sizes and alignment of the priority profile ensures that the set of

families can be partitioned into {F1, F2, . . . , Fn} such that for any i = 1, . . . , n, all families

in Fi have the same size and for all j < i, all families in Fj have a higher priority for all

localities than all families in Fi. A stable matching then can be obtained in polynomial

time by running sequentially the (family-proposing) Deferred Acceptance algorithm for each

20In Online Appendix B.1, we present an example of a market in which a stable matching does not exist.
21The decision problem of the existence of stable matchings in our setting is NP-complete, meaning there

is no known efficient (e.g., with polynomial running time in the number of families or localities) method
of solving it. Finding a stable matching, like solving the knapsack problem, is therefore NP-hard, i.e., as
hard as the hardest computational problems. Verifying whether a particular matching is stable only involves
checking all possible blocking pairs which is a simple computational problem.

22Delacrétaz et al. (2016) present an algorithm to find a stable matching whenever one exists.

26

subset, starting with F1. In a school choice setting, all families have the same size (νf = 1

for all f ∈ F) and priority profile is (trivially) aligned; therefore the existence of stable

matchings follows immediately from Proposition 4. As in school choice, stable matchings

under size monotonicty and priority alignment can be found in polynomial time in our model.

5.2 Envy-free matchings

In the refugee resettlement context, priority alignment might be a strong assumption. In

general, we should expect localities’ priorities to be heterogeneous. For example, even if all

localities use the same objective function, such as employment, refugee families’ likelihoods

of employment might vary substantially across localities. The possible non-existence of

stable matchings and the computational challenges involved in finding them motivates us to

consider alternative solution concepts. The key issue we will face is how to trade off respect

for priorities against tolerating wasted capacity. Indeed, as Delacrétaz (2019) shows: if waste

must be eliminated, then there may exist a blocking pair (f, `) where an arbitrarily large

number of units of ` are assigned to families with a lower priority than f . In the context

of refugee resettlement, locality goodwill might be important; therefore respecting priorities

might often take center stage. Furthermore, the underuse of capacity may well be tolerable

because it can be used for the next cohort of resettled refugee families. In the refugee

resettlement context, therefore, it seems reasonable to consider matching mechanisms that

tilt the balance somewhat in favor of respecting priorities rather than eliminating waste.

We now introduce envy-free matchings, which respect the priorities of localities, but

introduce possible underuse of the localities’ capacity.

Definition 7. Given a matching µ, f ∈ F envies family f ′ 6= f if

(i) f prefers f ′’s locality to its current match, i.e., µ(f ′) �f µ(f); and

(ii) f has a higher priority at f ′’s locality, i.e., f .µ(f ′) f
′.

Definition 8. A matching µ is envy-free if, under µ, no family envies another family.

Envy-freeness ensures that priorities are fully respected (as in a stable matching), but it

tolerates waste.23 In our setting, waste can occur when a “small” family f prefers locality `

to its current match and could be accommodated by ` alongside µ(`), but a “larger” family

with a higher priority which also prefers ` to its current match cannot be accommodated at

23The concept of envy-freeness has been studied in two-sided matching theory (Sotomayor, 1996; Wu and
Roth, 2018; Kamada and Kojima, 2020). While Wu and Roth (2018) use the term “envy-free”, Sotomayor
(1996) and Kamada and Kojima (2020) respectively call the concept “simple” and “fair”.

27

`. If the “smaller” family were matched to `, it would be envied by the “large” family (even

though the “large” family could not be accommodated at `).

The existence of an envy-free matching is immediate—an empty matching in which all

families are matched to the null is envy-free. Consequently, it is straightforward to show the

existence of an envy-free matching that is not Pareto-dominated by another envy-free match-

ing. It is, however, not obvious whether an optimal—from the point of view of families—

envy-free matching nevertheless exists. Formally, an envy-free matching µ is family-optimal

if µ � µ′ for every envy-free matching µ′, i.e, µ weakly Pareto dominates every other envy-free

matching.

Proposition 5. There exists a unique family-optimal envy-free matching.

The existence of the family-optimal envy-free matching provides one natural solution to

balancing refugees’ preferences and localities’ priorities.24 As we argued above; however, the

family-optimal envy-free matching may lead to waste.

We now show that envy-freeness is too restrictive and unnecessarily wasteful when there

are multiple dimensions and that certain kinds of innocuous priority violations should be

allowed in order to improve refugee family welfare. We illustrate this point with an example.

Example 1 (Inadequacy of envy-freeness in matching with multidimensional constraints).

There are three families f1, f2, and f3 and one locality `1. The priority list of `1 is f1.`1f2.`1f3.

There are two dimensions and the sizes and capacities are displayed below:

ν =

(f1 f2 f3

d1 1 1 0

d2 0 0 1

)
κ =

(`1

d1 1

d2 1

)
.

The family-optimal envy-free matching assigns f1 to `1 and leaves the other two families

unmatched. Envy-freeness precludes assigning f3 to `1 because f2 would then envy f3.

However, f2 and f3 are not really in competition since the units they require are in different

dimensions. Therefore, a matching in which both f1 and f3 are matched to `1 is more efficient

and appears to have no meaningful priority violations.

5.3 Weakly envy-free matchings

Example 1 shows that even the family-optimal envy-free matching can introduce unnecessary

waste by requiring removal of innocuous priority violations. We therefore introduce a solution

24In recent work, Kamada and Kojima (2020) extend Proposition 5 by showing the existence of a family-
optimal envy-free matching in a more general setting.

28

concept that relaxes envy-freeness by allowing families to be matched to a locality as long

as they do not compete with higher-priority families.

Recall that a locality ` can accommodate a family f alongside set of families G ⊆ F \{f}
if νfd +

∑
g∈G ν

g
d ≤ κ`d for all d ∈ D. We begin by relaxing this definition.

Definition 9. Locality ` ∈ L can weakly accommodate family f ∈ F alongside G ⊆ F \ {f}
if, for all d ∈ D,

either νfd = 0 or νfd +
∑
g∈G

νgd ≤ κ`d.

Definition 9 relaxes the original concept of accommodation by only taking into account

the dimensions in which f will take at least one unit of capacity. If the aggregate sizes of

families in G exceed the capacity of locality ` for some dimension, f cannot be accommodated

alongside G; however, it may still be possible to weakly accommodate f if f ’s size in that

dimension is zero. If |D| = 1, weak accommodation is equivalent to accommodation; however,

if |D| > 1, ` may be able to weakly accommodate f alongside G but unable to accommodate

f alongside G. In fact, ` may even be able to weakly accommodate f alongside G even if `

cannot accommodate the families inG. In Example 1, `1 cannot accommodate f3 alongside f1

and f2 because it cannot even accommodate {f1, f2}. However, `1 can weakly accommodate

f3 alongside f1 and f2 because νf3d1 = 0.

We are now in a position to define this section’s main solution concept.

Definition 10. Given a matching µ, family f ∈ F strongly envies f ′ 6= f (with `′ = µ(f ′))

if

(i) f prefers f ′’s locality to its current match, i.e., `′ �f µ(f);

(ii) f has a higher priority at `′, i.e., f .`′ f
′; and

(iii) `′ cannot weakly accommodate f ′ alongside all families with a higher priority than f ′ at

`′ that weakly prefer `′ to their current matches, i.e., {g ∈ F : g.`′ f
′ and `′ �g µ(g)}.25

Definition 11. A matching µ is weakly envy-free if no family strongly envies another family.

Weak envy-freeness relaxes envy-freeness by allowing some innocuous priority violations.

More precisely, under weak envy-freeness, family f may envy family f ′ so long as f ′’s size in

all dimensions that prevent f from being matched to µ(f ′) is zero. All envy-free matchings

25In fact, if there exist a family f ′ and a locality `′ satisfying condition (iii), then there exists a family
f ∈ {g ∈ F : g .`′ f

′ and `′ �g µ(g)} for which conditions (i) and (ii) hold. We include conditions (i) and
(ii) in Definition 10 in order to emphasize the relationship between envy-freeness and weak envy-freeness.

29

are weakly envy-free but the converse does not hold, even when |D| = 1.26 In Example 1,

the matching that assigns both f1 and f3 to `1 is weakly envy-free, but not envy-free. The

reason for this is that even though f2 has a higher priority than f3 at `1, f3’s size in the first

dimension is zero, i.e., νf3d1 = 0. Therefore, f2 envies f3, but does not strongly envy f3, when

f3 is matched to `1.

Let us illustrate how the particular way in which weak envy-freeness relaxes envy-freeness

might be relevant in refugee resettlement.

Example 2. There is one locality ` (other than the null) that can accommodate up to 99

children overall and one refugee with a rare medical condition: κ` = (99, 1).27 There are two

families f1 and f2 that do not have any children but each have one member with the rare

medical condition—νf1 = νf2 = (0, 1)—and 100 families f3 − f102 that each have one child

but no individual with the rare medical condition—νf3 = . . . = νf102 = (1, 0).

Consider the priority profile f1 .` f2,` f102. In the family-optimal envy-free outcome,

only family f1 is matched to ` because ` cannot accommodate f2 and f2 would envy any

family fj matched to ` for j > 2. This means that all 99 places for children at ` are wasted.

In the family-optimal weakly envy-free outcome, in contrast, waste is entirely eliminated as

all families except f2 are matched to `.

Now, consider the priority profile f3 .`` f102 .` f1 .` f2. In the family-optimal envy-

free outcome, the place devoted to the rare medical condition is wasted because f102 would

envy f1 or f2 if either were matched to `. However, in the family-optimal weakly envy-free

outcome, f1 can be matched to `, which eliminates waste.

Example 2 is merely illustrative; however, our simulations in Section 6 suggest that the

efficiency impact of using weak envy-freeness instead of envy-freeness could be significant in

practice.

Before looking for a family-optimal weakly envy-free matching in the next section, we

clarify the logical relationships among the three priority-respecting solution concepts intro-

duced thus far. Envy-freeness and stability are logically independent: Envy-freeness allows

waste which stability precludes; however, stability allows for some waste-eliminating pri-

ority violations. Weak envy-freeness is logically independent of stability in the same way

as envy-freeness is. In contrast, stability only fails due to the presence of waste or via a

priority violation so non-wasteful and envy-free matchings are always stable.28 Perhaps sur-

26Suppose there are two families f1 and f2, one locality `, and one dimension d with νf1d = νf2d = 1, κ`d = 2,
` �f1 ∅, ` �f2 ∅, and f1 .` f2. The matching (f1, ∅), (f2, `) is weakly envy-free, but not envy-free.

27In reality, there would be at least one more constraint on the total number of refugees but for the sake
of illustration, we assume that no constraint other than the two explicitly mentioned are binding.

28Kamada and Kojima (2020) define stability to be the combination of envy-freeness and non-wastefulness,
making their definition more restrictive than ours.

30

Weakly Envy-free

Envy-Free Stable

Non-Wasteful

Figure 2: Logical relationships among our solution concepts.

Algorithm 3: Knapsack Deferred Acceptance (KDA)

Round i ≥ 1

Step 1 : Every family proposes to its favorite locality that has not perma-
nently rejected it yet.

Step 2 : Every locality tentatively accepts a proposing family if the locality
can weakly accommodate the family alongside all families with a higher
priority that are proposing to or have been permanently rejected by that
locality. Otherwise the locality permanently rejects the family.

Step 3 : If at least one family has been permanently rejected in Step 2,
continue to Round i+ 1. Otherwise permanently match every family to the
locality to which the family is proposing and end.

prisingly, although weak envy-freeness allows for some priority violations, we can establish

an analogous relationship among stability, non-wastefulness, and weak envy-freeness.

Proposition 6. If a matching is non-wasteful and weakly envy-free, then it is stable.

Proposition 6, combined with the possible nonexistence of a stable matching, formally

establishes that a weakly envy-free and non-wasteful matching may not exist. Figure 2

summarizes the relationships among the solution concepts. Note that weak envy-freeness is

strictly weaker than envy-freeness even when |D| = 1.

5.4 A family-optimal weakly envy-free mechanism

We now prove the existence of the (unique) family-optimal weakly envy-free matching by

introducing an algorithm that finds this matching in polynomial time (Algorithm 3). In each

31

round of our Knapsack Deferred Acceptance (KDA) algorithm (Algorithm 3), all families

propose to their favorite localities that have not permanently rejected them yet. A locality

` permanently rejects a family f if ` cannot weakly accommodate f alongside families with

a higher priority from which ` has received a proposal (in this round or a previous one). By

construction, families that have already proposed to ` can only be matched to ` or a less-

preferred locality, which implies that if ` permanently rejects f then f cannot be matched

to ` in any weakly envy-free matching. If f is not permanently rejected, then f continues to

propose to ` in the next round. In each round of the KDA algorithm, at least one family is

permanently rejected so the algorithm eventually terminates. The KDA algorithm matches

each family to its most-preferred locality in any weakly envy-free matching, which yields the

following result.

Theorem 5. The output of the KDA algorithm is the unique family-optimal weakly envy-free

matching.

Since weak envy-freeness allows for some priority violations, the existence of the family-

optimal weakly envy-free matching, which is directly implied by Theorem 5, does not follow

from the existence of the family-optimal envy-free matching unless |D| = 1 (Wu and Roth,

2018; Kamada and Kojima, 2020).

We now illustrate the KDA algorithm and discuss its incentive properties.

Example 3. There are four families, four localities, and one dimension. The preferences,

priorities, sizes, and capacities are

�f1 : `2, `1, . . . �f2 : `1, `3, `4, . . . �f3 : `1, `2, . . . �f4 : `1, `3, . . .
.`1 : f1, f2, f3, f4 .`2 : f3, f1,`3 : f4, f2,`4 : . . .

ν =
(f1 f2 f3 f4

d1 1 2 1 1
)

κ =
(`1 `2 `3 `4

d1 2 1 2 5
)

.

It can be verified that this market does not have a stable matching. Its family-optimal

weakly envy-free matching is (
f1 f2 f3 f4

`1 `4 `2 `3

)
.

The family-optimal weakly envy-free matching can be calculated using the KDA algorithm,

which is displayed in Table 1.29

In Round 1, all families propose to their favorite localities. Locality `1 has two units of

capacity and receives proposals from families f2, f3, and f4. As family f2 has the highest

29As there is only one dimension, this is also the family-optimal envy-free matching (see Corollary 3).

32

Round 1 Round 2 Round 3 Round 4 Round 5
f1 → `2 3 f1 → `2 7 f1 → `1 3 f1 → `1 3 f1 → `1 3

f2 → `1 3 f2 → `1 3 f2 → `1 7 f2 → `3 7 f2 → `4 3

f3 → `1 7 f3 → `2 3 f3 → `2 3 f3 → `2 3 f3 → `2 3

f4 → `1 7 f4 → `3 3 f4 → `3 3 f4 → `3 3 f4 → `3 3

Table 1: KDA algorithm applied to Example 3.

priority and a size of two, f2 is tentatively accepted while the other two families are perma-

nently rejected. In Round 2, families f3 and f4 propose to their second-choice localities `2

and `3 respectively. Families f1 and f3 compete for the single unit of capacity in locality

`2. Family f3 is tentatively accepted as f3 has a higher priority than f1; therefore f1 is

permanently rejected. In Round 3, family f1 proposes to its second-choice locality `1 and

competes with f2. As locality `2 has a capacity of two but families f1 and f2 joint size

is three, only the family with the highest priority (i.e., f1) is tentatively accepted. Hence,

locality `1 permanently rejects family f2. In Round 4, family f2 proposes to locality `3 and is

also permanently rejected since f4 has a higher priority than f2. In Round 5, f2 finally pro-

poses to `4. There are no permanent rejections; therefore, all families are now permanently

matched and the algorithm ends.

Example 3 sheds light on two important aspects of the KDA algorithm. First, Example 3

shows how some units of capacity can remain unused. In Round 1, families f3 and f4 are

permanently rejected because f2 is taking both units of locality `1’s capacity. In Round 3,

however, family f2 is permanently rejected by locality `1 because `1 receives a proposal from

f1. As family f1’s size is one, locality `1’s second unit of capacity remains unused although

this unit could be used by families f3 or f4. In the case when there is only one dimension,

the maximum number of units that remain unused in each locality is equal to the largest size

of any family minus one. In our example, the largest size is two (family f2’s size) so at most

one unit of capacity may end up unused at each locality. If there are multiple dimensions,

this bound remains valid for at least one dimension in each locality. The number of unused

units for other dimensions may be larger.

Second, Example 3 also reveals that the KDA algorithm is not strategy-proof. To see

this, suppose that family f2 reports locality `3 to be its first choice. Then, all families are

tentatively accepted in the first round since locality `1 has two units of capacity and families

f3 and f4 each require one unit; f1 and f2 are the only families that propose to `2 and to `3,

respectively. The KDA outcome is (
f1 f2 f3 f4

`2 `3 `1 `1

)
.

33

Algorithm 4: Threshold Knapsack Deferred Acceptance (TKDA)

Round i ≥ 1

Step 1 : Every family f proposes to its favorite locality ` that has not permanently
rejected f yet.

Step 2 : Every locality ` permanently rejects any proposing family f if f ’s pri-
ority rank among all families that are proposing to ` is strictly greater than f ’s
threshold at ` (calculated by Algorithm 5).

Step 3 : If at least one family has been permanently rejected in Step 2, continue
to Round i + 1. Otherwise permanently match every family to the locality to
which the family is proposing and end.

The following result is an immediate consequence of this observation.

Proposition 7. There is no strategy-proof and family-optimal weakly envy-free mechanism.

The driving force behind Proposition 7 is that the acceptance rule (choice function) of

localities induced by the KDA algorithm does not satisfy the cardinal monotonicity condition

(Alkan, 2002; Alkan and Gale, 2003; Fleiner, 2003; Hatfield and Milgrom, 2005).30 Cardinal

monotonicity requires that the number of tentatively accepted families grows monotoni-

cally with the number of proposing families. Cardinal monotonicity is crucial for designing

strategy-proof matching mechanisms (Hatfield and Milgrom, 2005). Let us see how cardinal

monotonicity is violated in Example 3. If families f3 and f4 were to propose to locality

`1, they would be tentatively accepted. However, if families f3, f4, and f2 were to propose

to locality `1 together, then only family f2 would be tentatively accepted. Subsequent to

family f3’s permanent rejection, there is a rejection chain that leads to family f2’s being

permanently rejected by locality `1. At the same time, having been permanently rejected by

locality `1, family f4 ends up competing with f2 at `3. Therefore, f2 is not only permanently

rejected by its first-choice locality, but also faces more competition in its second-choice local-

ity. As a result, f2 has the incentive to misreport its preferences and propose directly to `3

in order avoid being adversely affected by the two rejection chains. If cardinal monotonicity

is satisfied, then f2’s proposal can create at most one rejection chain.

34

Algorithm 5: Threshold Calculator

For every locality ` ∈ L, let Π` be the set of families that are currently proposing
to `.

Step 1 : For every family f ∈ F and every locality ` ∈ L, calculate the temporary
threshold of f at `, denoted by θ̃f` , as follows:

� If ` can weakly accommodate f alongside F̂ f
` , let θ̃f` =∞.

� If ` cannot weakly accommodate f alongside Π` ∩ F̂ f
` , let θ̃f` = 0.

� Otherwise, find the unique n ∈ Z>0, such that

(i) ` can weakly accommodate f alongside all sets of families G ⊆ F̂ f
` such

that |G| = n− 1 and (Π` ∩ F̂ f
`) ⊆ G, and

(ii) ` cannot weakly accommodate f alongside a set of families G′ ⊆ F̂ f
`

such that |G′| = n and (Π` ∩ F̂ f
`) ⊆ G′;

and let θ̃f` = n.

Step 2 : For every family f ∈ F and every locality ` ∈ L, calculate the threshold
of f at `, θf` , as follows:

� If θ̃f` =∞, let θf` =∞.

� Otherwise, let θf` = ming∈F̂ f
` ∪{f}

θ̃g` .

35

5.5 A weakly envy-free and strategy-proof mechanism

In this section, we introduce the Threshold Knapsack Deferred Acceptance (TKDA) algo-

rithm (Algorithm 4). We show that the TKDA mechanism is weakly envy-free and strategy-

proof. A direct consequence of Proposition 7 is that the TKDA algorithm will not always

produce the family-optimal weakly envy-free matching, but, in Online Appendix A.1 we show

that both the KDA and TKDA algorithms are guaranteed to match a minimum number of

families (Proposition 9).

The TKDA algorithm follows the structure of the KDA algorithm. In each round, ev-

ery family proposes to its most preferred locality from which the family has not yet been

permanently rejected. Localities tentatively accept some proposals and permanently reject

others. This process continues until all proposals are tentatively accepted. In that round,

all families are permanently matched to the last locality to which they proposed and the

algorithm ends.

The key part of the TKDA algorithm is the choice rule that decides whether a proposal

is tentatively accepted or permanently rejected (Algorithm 5). In order to ensure that the

TKDA algorithm is strategy-proof, the choice rule of localities needs to satisfy cardinal

monotonicity. That is, for each locality, the choice rule ensures that as the set of proposing

families expands, the number of families that are tentatively accepted by the locality weakly

increases. The choice rule could therefore result in fewer families being tentatively accepted

than the locality can weakly accommodate. Consequently, the matching produced by the

TKDA algorithm may not be family-optimal in general and additional capacity may remain

unused as a result.

At a high level, the choice rule works as follows (see Step 2 of Algorithm 4). In every

round, every locality assigns every family (not just those that are proposing) a threshold. For

every proposing family, the locality then compares the family’s threshold with its priority

rank among proposing families. The family is tentatively accepted so long as its priority

rank does not exceed its threshold, otherwise the family is permanently rejected.

The details of the threshold calculation are more involved (Algorithm 5). First, every

locality ` assigns every family f a temporary threshold (Step 1 of Algorithm 5). If locality

` can weakly accommodate f alongside all higher-priority families F̂ f
` (whether or not they

are proposing), f ’s temporary threshold at ` is ∞ (ensuring that ` will tentatively accept

a proposal from f no matter which other families are proposing). If ` cannot weakly ac-

commodate f alongside all higher-priority families F̂ f
` that are currently proposing to `, f ’s

temporary threshold at ` is 0 (ensuring that ` will permanently reject any future proposal

30In other contexts, cardinal monotonicity has been referred to as “size monotonicity” (Alkan and Gale,
2003) and the “Law of Aggregate Demand” (Hatfield and Milgrom, 2005).

36

Round 1 Round 2 Round 3 Round 4 Round 5
f1 → `2 [1] 3 `2 [0] 7 `1 [∞] 3 `1 [∞] 3 `1 [∞] 3

f2 → `1 [1] 3 `1 [1] 3 `1 [0] 7 `3 [0] 7 `4 [∞] 3

f3 → `1 [0] 7 `2 [∞] 3 `2 [∞] 3 `2 [∞] 3 `2 [∞] 3

f4 → `1 [0] 7 `3 [∞] 3 `3 [∞] 3 `3 [∞] 3 `3 [∞] 3

Table 2: TKDA algorithm applied to the market from Example 3 with true reporting.
Thresholds are in square brackets.

from f since matching f to ` would create strong envy from at least one of the families that

are currently proposing). Otherwise, f ’s threshold is a positive integer, calculated as follows.

We consider all sets of higher-priority families that contain those higher-priority families that

are currently proposing to `. Then, we assign f a temporary threshold n for which (i) ` can

weakly accommodate f alongside all such sets containing n − 1 families but (ii) ` cannot

weakly accommodate f alongside at least one such set of n families. The threshold of family

f at ` is the smallest temporary threshold among its own and the temporary thresholds

of all families with a higher priority than f at `.31 The calculation of thresholds can be

done in polynomial time, which ensures that the TKDA algorithm is practical even for large

markets.32

Theorem 6. The TKDA mechanism is strategy-proof and weakly envy-free.

In Example 3, the TKDA algorithm follows the same deferred acceptance procedure and

produces the same matching as the KDA algorithm. The TKDA algorithm for Example 3

is displayed in Table 2. In Round 1, families f2, f3, and f4 propose to locality `1. The

thresholds of families f3 and f4 are 0 since locality `1 cannot weakly accommodate either

one of those families alongside f2. Hence, families f3 and f4 are permanently rejected by

locality `1. In Rounds 2-4, families f1 and f2 are assigned a threshold of 0 (at locality `2 and

at localities `1 and `3 respectively) and are permanently rejected by these localities. The

algorithm ends in Round 5, in which no permanent rejections occur because every family’s

threshold is infinity.33

31This step precludes any priority violation among families with a finite threshold, which is essential to
preserve cardinal monotonicity; however, the matching produced by the TKDA algorithm may still not be
envy-free as families with an infinite threshold can still be envied by higher-priority families with finite
thresholds.

32Take each dimension for which f ’s size is at least one and order the families with a higher priority from
largest to smallest size for that dimension. Starting from the largest family, add one family at a time until the
families’ total size for that dimension (including f ’s) exceeds the capacity. A number of families is obtained
in this way for each dimension, n is the minimum among these numbers.

33Example 3 is simple and aimed at illustrating the main difference between KDA and TKDA. For a full
worked out example of the TKDA algorithm, see Online Appendix B.3.

37

Round 1 Round 2 Round 3
f1 → `2 [1] 3 f1 → `2 [1] 3 f1 → `2 [1] 3

f2 → `3 [1] 3 f2 → `3 [0] 7 f2 → `4 [∞] 3

f3 → `1 [1] 3 f3 → `1 [1] 3 f3 → `1 [1] 3

f4 → `1 [1] 7 f4 → `3 [∞] 3 f4 → `3 [∞] 3

Table 3: TKDA algorithm applied to the market from Example 3 with a misreport. Thresh-
olds are in square brackets.

Even though both algorithms produce the same matching, the TKDA algorithm removes

family f2’s incentive to misreport its preferences that f2 has in the KDA algorithm. Sup-

pose that family f2 manipulates its preferences report to �f2 : `3, `4, Under the KDA

algorithm, such a manipulation allowed family f2 to be matched to locality `3 instead of `4.

This is no longer possible in the TKDA algorithm as we illustrate in Table 3.

In Round 1, following family f2’s manipulation, families f3 and f4 propose to `1. Local-

ity `1 can weakly accommodate both families but cannot weakly accommodate either one

alongside f2; therefore the threshold of both families is 1. Locality `1 therefore tentatively

accepts the proposing family with the highest priority (f3) but permanently rejects the one

with the second-highest priority (f4). This is the key step in which TKDA differs from KDA:

locality `1 permanently rejects family f4 in Round 1 whether or not it receives a proposal

from f2. In Round 2, families f2 and f4 propose to locality `3. As family f4 has the highest

priority for `3, its threshold is ∞ and f4 is tentatively accepted by `3. In contrast, locality

`3 cannot weakly accommodate family f2 alongside f4; therefore family f2’s threshold is 0

and f2 is permanently rejected by `3. In Round 3, family f2 proposes to locality `4 and the

algorithm ends as no family is permanently rejected. Note that family f2’s manipulation has

benefited f1 and f3, which are matched to their first- rather than second-choice localities.

However, family f2 has not managed to benefit from its own manipulation and has remained

matched to locality `4.

One might be concerned that Theorem 6 does not provide a lower bound on the effi-

ciency of the TKDA mechanism. In Online Appendix A.1, we derive a lower bound for the

efficiency of the TKDA algorithm (Proposition 9). Finally, we provide a way to improve the

efficiency of the TKDA mechanism without affecting its properties (Algorithm 7). Before the

TKDA algorithm is run, we identify family-locality pairs that will necessarily be matched

together. For every such pair, the family clinches the locality and is no longer considered

by less-preferred localities. In the TKDA algorithm, clinching may allow us to raise the

thresholds of the remaining families. As a result, the matching found by the TKDA with

Clinching (TKDAC) mechanism weakly Pareto dominates the matching found by the TKDA

mechanism (see Online Appendix A.2 for details).

38

5.6 Properties of mechanisms in a one-dimensional setting

As we have showed in Section 5.3, even when |D| = 1, there exist matchings that are weakly

envy-free but not envy-free (footnote 26). However, it turns out that neither the KDA nor

the TKDA algorithm will ever produce such a matching.

Proposition 8. If |D| = 1, then the KDA and TKDA mechanisms are envy-free.

Since the KDA algorithm produces the family-optimal weakly envy-free matching (Theo-

rem 5), we know from Proposition 8 that this matching must also be envy-free when |D| = 1.

As all envy-free matchings are weakly envy-free and there exists a unique family-optimal

envy-free matching (Proposition 5), the KDA algorithm produces the family-optimal envy-

free matching.

Corollary 3. If |D| = 1, then the family-optimal envy-free matching and the family-optimal

weakly envy-free matching coincide.

6 Data and Simulations

Our theoretical results leave important empirical questions open about how our mechanisms

perform in practice. To get those questions, here we simulate our mechanisms using data

from HIAS. We begin with the analysis of one-dimensional environment in which each locality

only has a constraint on the number of refugees—this is closest to HIAS’s current practice.

We then consider how our matching mechanisms perform in a three-dimensional setting.

Data. We use anonymized data on refugees resettled by HIAS from October 2016 to Octo-

ber 2017. There are 839 refugees partitioned into 329 families that were matched across 20

localities. To preserve anonymity, our data contain only the number of senior, (working-age)

adult, and child family members. Following Nguyen et al. (2019) and Trapp et al. (2020), we

conservatively treat each locality’s quota as the total number of refugees that HIAS actually

resettled in that locality in 2017. The total number of refugees resettled in a locality varied

between 5 and 99.34 There were 332 children, 498 adults, and 9 seniors in our data. The

largest family had 8 members and there were 157 families with only 1 member. We use

expected employment estimates from Trapp et al. (2020) to determine priorities: for each

family we add the employment likelihoods of all working-age adults to determine the ex-

pected employment weight of each family and localities rank families from highest to lowest

34The annual quotas were abruptly adjusted following a change in the Presidential administration in
January 2017.

39

Preferences vs. Priorities
Correlated Uncorrelated

Preferences
Correlated Type 4 Type 1

Uncorrelated Type 3 Type 2

Table 4: Preference types for simulations.

expected employment weight. Since families that have high employment weights in some

localities are likely to have high employment weights in other localities, induced priorities

are naturally correlated. We make an exception for the KTTCE mechanism, where local-

ities give a higher priority to families in their endowment (but otherwise rank families in

decreasing likelihood of employment).

Simulated preferences. As HIAS does not currently collect preferences from refugees,

we have to simulate preferences for our analysis. We assume that the utility of family f

associated with being assigned to locality ` takes the form

Uf` = δVf` + βY` + γEf`,

where Vf` is the (normalized to [0,1]) employment weight of family f in locality `, Y` is a

locality-specific term, and the pure noise term Ef`. Terms Y` (for each locality) and Ef` (for

each family-locality pair) are drawn independently from U(0, 1) in each simulation round.

We consider four types of preferences, which are summarized in Table 4.

� Type 1: β = 1, δ = γ = 0. In each simulation round, we draw a value for each locality

that determines all of the family preferences. Therefore, preferences are perfectly

correlated among families but uncorrelated with the priorities of localities.

� Type 2: γ = 1, β = δ = 0. In each simulation round, we draw a value for each family-

locality pair. Therefore, preferences are uncorrelated among families and uncorrelated

with priorities.

� Type 3: δ = γ = 1, β = 0. In each simulation round, family preferences are a sum

of their employment weight and a noise term. Therefore, preferences are uncorrelated

among families but correlated with priorities.

� Type 4: δ = β = 1, γ = 0. In each simulation round, family preferences are a sum

of their employment weight and a locality-specific term. Therefore, preferences are

correlated among families and correlated with priorities.

40

Preference type Type 1 Type 2 Type 3 Type 4

Families made better off 6.57 39.45 39.05 21.54

Table 5: Number of families made better off by the KTTCE mechanism (one dimension).
Averages over 100 simulation rounds.

For each preference type, in each of the 100 simulation rounds, we computed the outcome of

KDA, TKDA, KTTC, and KTTCE (where the endowment is the employment-maximizing

allocation) algorithms.35 In this section, we report means for various statistics taken over

all the simulation rounds.

6.1 Performance of the KTTCE mechanism.

We begin by analyzing the performance of the KTTCE mechanism, as we see that mecha-

nism as representing a first step towards incorporating preferences in refugee resettlement

processes. We take the employment-maximizing matching as the endowment; that is, every

family is endowed with the locality to which it is matched under the matching that maximizes

total refugee employment. Each locality prioritizes the families that are in its endowment

over those that are not and, within each tier, ranks family from highest to lowest expected

employment. Note that in this setting, Theorem 4 does not apply because priorities are not

lexicographic. Therefore, our theoretical results do not guarantee KTTCE that would find

any Pareto improvements from the endowment.

The results are presented in Table 5. The number of families that the KTTCE mechanism

makes better off is small for Type 1 preferences, with just under 7 families helped on average.

The reason is that Type 1 families cannot trade with each other as they have identical

preferences; therefore the only improvements that the KTTCE mechanism finds are closed

chains, in which a family takes advantage of unused capacity in a more preferred locality.

The KTTCE mechanism performs best with Type 2 and Type 3 preferences because family

preferences are uncorrelated, which creates the possibility of many mutually beneficial trades.

Overall, the simulation results in Table 5 are encouraging—they suggest that the KTTCE

mechanism would find at least some of the Pareto improvements in practice even when it is

not guaranteed to.

A part of the design of the KTTCE mechanism that we leave open is the order in

which families are picked in the Rejection Stage. In our main simulations, that order is

determined randomly (with an equal probability for each possible order). We also test two

alternative rules: ordering families from largest to smallest and from smallest to largest

35Our code is available at https://github.com/nhhai196/Refugee-Resettlement.

41

Preference type Type 1 Type 2 Type 3 Type 4

Largest-to-smallest family 6.57 39.67 40.56 21.87
Smallest-to-largest family 4.89 10.61 11.85 8.11

Table 6: Number of families made better off for different orderings in the Rejection Stage of
the KTTCE (one dimension). Averages over 100 simulation rounds.

(same-size families continue to be ordered randomly). The results of the two alternative

family orderings in the Rejection Stage are displayed in Table 6. We see that the largest-to-

smallest ordering is more efficient than the smallest-to-largest ordering. Intuitively, larger

families are more likely to cause a cycle not to be feasible (see Algorithm 2) as the locality

at which they are pointing may not be able to accommodate them. Therefore, by rejecting

larger families first, the algorithm needs to reject fewer families before finding a feasible cycle.

Compared to a random order, one would then naturally expect rejecting larger families first

to have a positive impact on efficiency and rejecting smaller families first to have a negative

one. Why is the efficiency gain of the largest-to-smallest ordering small relative to a random

ordering? The reason is that families that can be rejected in the Rejection Stage tend to be

large, meaning that, when families are ordered randomly, it is likely that larger families will

be picked first and the algorithm will find a feasible cycle before picking one of the few small

families. Consequently, a random ordering does not result in large efficiency losses compared

to the largest-to-smallest ordering.

6.2 Comparison of the KTTC, KDA, and TKDA mechanisms

We next turn to our three remaining mechanisms: KTTC, KDA, and TKDA. We compare

those mechanisms in terms of strong envy and efficiency. The results are presented in Table 7

and Figure 3.

To count the number of strong envy violations in each simulation round, we count the

number of family pairs (f1, f2) such that f1 strongly envies f2.
36 In line with Theorems 5

and 6, the number of strong envy violations for the KDA and TKDA mechanisms is 0 because

they are weakly envy-free. For the KTTC mechanism, the number of strong envy violations is

very small for Type 1 preferences (so KTTC mechanism coincides with a serial dictatorship).

The reason is that the preferences of all families are identical so strong envy violations only

occur when a larger family cannot be accommodated in a locality but a smaller family with a

lower priority can.37 The number of strong envy violations increases for Type 2 and Type 3

36As the ordering of the two families matter, there are 3292 = 108241 such pairs.
37For example, suppose that locality ` has a capacity 2 with |D| = 1. There are two families f1 and f2

who want to be matched to `, such that f1 has a higher priority but is of size 3 while f2 is of size 2. The

42

Preference type Type 1 Type 2 Type 3 Type 4

Strong envy violations
KTTC 39 762 730 3639
KDA 0 0 0 0

TKDA 0 0 0 0
Number of matched families

KTTC 308 312 312 309
KDA 305 315 315 308

TKDA 276 265 265 271
Fraction of unfilled capacity

KTTC 7.0% 4.8% 5.6% 7.2%
KDA 10.5% 7.7% 7.7% 10.0%

TKDA 18.6% 20.9% 20.7% 19.6%

Table 7: Outcomes of KTTC, KDA, and TKDA algorithms (one dimension). Averages over
100 simulation rounds. Numbers in the top and middle panels are rounded to nearest integer;
numbers in the bottom panel are rounded to 1 d.p.

43

(a
)

T
y
p

e
1

(b
)

T
y
p

e
2

(c
)

T
y
p

e
3

(d
)

T
y
p

e
4

F
ig

u
re

3:
P

re
fe

re
n
ce

d
is

tr
ib

u
ti

on
s

fo
r

ou
tc

om
es

u
n
d
er

d
iff

er
en

t
m

at
ch

in
g

m
ec

h
an

is
m

s
(o

n
e

d
im

en
si

on
).

L
ab

el
le

d
n
u
m

b
er

s:
fr

ac
ti

on
s

of
m

at
ch

ed
fa

m
il
ie

s)
.

A
ve

ra
ge

s
ov

er
10

0
si

m
u
la

ti
on

ro
u
n
d
s.

44

preferences because heterogeneous preferences means that more priority trades are possible,

which may create strong envy violations. Type 4 preferences capture an intermediate “worst-

case” scenario for strong envy: as preferences are correlated there are not many opportunities

for trade, however, since priorities and preferences are correlated many families that do not

get their top-choice localities are likely to envy lower-priority families that ended up in these

localities.

Figure 3 illustrates the efficiency of the three mechanisms. Recall that Theorems 5 and 6

imply that every family is weakly better off under the KDA mechanism than under the TKDA

mechanism. Figure 3 shows that the KDA mechanism is substantially more efficient than

the TKDA mechanism, especially when preferences are uncorrelated (Type 2 and Type 3).

In addition, the two bottom panels in Table 7 show that the KDA mechanism more families

and leaves less unfilled quota than the TKDA mechanism. Overall, our simulations suggest

that the strategy-proofness of TKDA could come a significant efficiency cost.

Our theoretical results are silent about whether the efficiency ranking between KTTC

and KDA mechanisms and indeed our simulations suggest that, depending on the preference

type, some families can be better off under either mechanism. However, as the KTTC

mechanism is Pareto-efficient, we should expect it to be more efficient “on average” than

the Pareto-inefficient KDA mechanism. Figure 3 confirms this intuition for all preference

types. However, Figure 3 also suggests that the difference between the KTTC and KDA

mechanisms is small compared to the difference between the KDA and TKDA mechanisms.

Consequently, our simulations indicate that in practice the efficiency cost of imposing weak

envy-freeness may not be particularly large.

6.3 Comparison of mechanisms under three-dimensional constraints

The previous section considered a one-dimensional setting in which the only constraint is

on the number of refugees that each locality can resettle. The one-dimensional setting is

in line with current practice at HIAS and other US resettlement agencies. However, as we

mention in Section 3.1, the possibility of accounting for multidimensional constraints can

offer resettlement agencies greater flexibility in resettlement matching. In this section, we

thus test our mechanisms in an environment with multidimensional constraints. Our data

contains information on the number of children, adults, and seniors in each family, which

we use to construct our three constraint dimensions.38 That is, each family’s size is a three-

KTTC mechanism will match f2 to ` so f3 will strongly envy f2 while the KDA and TKDA mechanisms will
not match either family to `.

38We imagine here that localities could limit the total number of refugees of different ages because of
age-relevant local constraints such as kindergarten places, employment training, or elderly care.

45

Preference type Type 1 Type 2 Type 3 Type 4

Families made better off 22.39 81.62 83.55 46.73

Table 8: Number of families made better off by the KTTCE mechanism (three dimensions).
Averages over 100 simulation rounds.

dimensional vector consisting of the number of children, adults, and senior family members

and the capacity of each locality is a three-dimensional vector consisting of the number

of children, adults, and seniors that the locality resettled in 2017. The three-dimensional

setting is strictly more constrained than the one-dimensional setting.39 However, as Table 13

and Figure 10 in Online Appendix C show, the results for the KTTC, KDA, and TKDA

algorithms for the three-dimensional setting are qualitatively similar to the results in the

one-dimensional setting.

Table 8 summarizes the performance of the KTTCE mechanism in the three-dimensional

environment.40 The number of families made better off on average is more than double

than in the one-dimensional environment across all preference types. This result may look

counterintuitive at first sight because one might assume that tougher constraints make it

harder for the KTTCE mechanism to find improvements. However, the integer optimization

program that determines the employment-maximizing endowment matching also faces more

constraints and therefore leaves a large number of families unmatched. As a result, the

KTTCE mechanism is able to take advantage of the unfilled capacity to make more families

better off.

Finally, we assess the efficiency gain associated with using our solution concept of weak

envy-freeness as opposed to envy-freeness. We modify the KDA algorithm so that it produces

the family-optimal envy-free matching and the TKDA algorithm so that it produces an envy-

free matching (that is, by only replacing “weak accommodation” with “accommodation” in

Algorithms 3 and 5). With one dimension, the KDA and TKDA mechanisms are envy-free

(Proposition 8) but in the presence of multidimensional constraints, weak envy-freeness is

strictly less demanding. Figure 4 shows that the impact of using weak envy-freeness on

efficiency is substantial both for the KDA and the TKDA algorithms.

39By construction, a matching that satisfies the three constraints also satisfies the original constraint on
the number of refugees. Therefore, the three-dimensional setting is equivalent to a four-dimensional setting
in which the dimensions are: number of refugees, number of children, number of adults, and number of
seniors.

40Sizes are not monotonic since a family can have more adults but fewer children than another family.

46

(a
)

T
y
p

e
1

(b
)

T
y
p

e
2

(c
)

T
y
p

e
3

(d
)

T
y
p

e
4

F
ig

u
re

4:
P

re
fe

re
n
ce

d
is

tr
ib

u
ti

on
s

fo
r

K
D

A
an

d
T

K
D

A
al

go
ri

th
m

s
w

h
en

u
si

n
g

ac
co

m
m

o
d
at

io
n

v
s.

w
ea

k
ac

co
m

m
o
d
at

io
n

(t
h
re

e
d
im

en
si

on
s)

.

47

7 Conclusion

Refugee resettlement presents a real opportunity for marketplace design: policymakers and

resettlement agencies are already working with market design experts to improve matching

outcomes in ways that—if we do this work well—stand to improve the lives of millions of dis-

enfranchised people worldwide (Andersson, 2017; Jones and Teytelboym, 2017b; Kominers

et al., 2017; Roth, 2018). Recent efforts have focused on maximizing short-run employment

outcomes; we show how to take this work further by integrating refugees’ preferences and

localities’ priorities into the assignment process. As we have highlighted, the trade-off among

respecting priorities of localities, maximizing refugee welfare, and strategy-proofness is ex-

acerbated by the presence of (possibly multidimensional) knapsack constraints in refugee

resettlement matching.

We proposed four matching mechanisms for refugee resettlement: KTTC, which modifies

the classical Top Trading Cycles (TTC) algorithm to account for knapsack constraints—and,

like TTC, is strategy-proof and finds a Pareto efficient outcome; KTTCE, which further

extends KTTC to incorporate endowments; KDA, a variant of deferred acceptance that

is weakly envy-free and family-optimal in our context; and TKDA, which trades off some

efficiency relative to KDA in exchange for strategy-proofness. We have also simulated our

mechanisms with data from a resettlement agency to explore how our mechanisms might

perform in practice.

Incorporating refugees’ preferences into refugee matching will serve not just to improve

the quality of assignment outcomes, but also to give refugees a larger role in the resettlement

process. Moreover, collecting information about refugees’ preferences will enable us to better

understand what constitutes a high-quality refugee–locality match. Locality priorities are

similarly important: if we want localities to be willing to host a large number of refugees,

then we must do what we can to respond to their desires and constraints. The hope is that

a well-designed resettlement matching system will increase localities’ overall willingness to

host refugees, boosting resettlement overall.

Although our simulations already illuminate the key trade-offs between our mechanisms,

it will be essential to test the mechanisms using actual preference data. Additionally, we

will need to think carefully about how static matching frameworks should account for the

dynamic nature of refugee arrival and resettlement (Andersson et al., 2018; Caspari, 2019).

Refugee resettlement matching provides an opportunity for market design to make a real

difference into people’s lives. While the long-term success of resettlement programs depends

on many factors, improving match quality will make sure that as many refugees as possible

get off to a good start.

48

References

Abdulkadiroğlu, A. (2005). College admissions with affirmative action. International Journal

of Game Theory 33 (4), 535–549.

Abdulkadiroğlu, A., P. A. Pathak, and A. E. Roth (2009). Strategyproofness versus efficiency

in matching with indifferences: Redesigning the NYC high school match. American Eco-

nomic Review 99 (5), 1954–1978.

Abdulkadiroğlu, A. and T. Sönmez (2003). School choice: A mechanism design approach.

American Economic Review 93 (3), 729–747.

Alkan, A. (2002). A class of multipartner matching markets with a strong lattice structure.

Economic Theory 19, 737–746.

Alkan, A. and D. Gale (2003). Stable schedule matching under revealed preference. Journal

of Economic Theory 112 (2), 289–306.

Andersson, T. (2017). Refugee matching as a market design application. Working Paper

2017:16, Lund University.

Andersson, T. and L. Ehlers (2020). Assigning refugees to landlords in Sweden: Efficient

stable maximum matchings. Scandinavian Journal of Economics 122 (3), 937–965.

Andersson, T., L. Ehlers, and A. Martinello (2018, October). Dynamic refugee matching.

Working Paper 2018:7, Lund University.

Åslund, O., P.-A. Edin, P. Fredriksson, and H. Grönqvist (2011). Peers, neighborhoods, and

immigrant student achievement: Evidence from a placement policy. American Economic

Journal: Applied Economics 3 (2), 67–95.

Åslund, O. and P. Fredriksson (2009). Peer effects in welfare dependence quasi-experimental

evidence. Journal of Human Resources 44 (3), 798–825.

Åslund, O., J. Östh, and Y. Zenou (2010). How important is access to jobs? Old question,

improved answer. Journal of Economic Geography 10 (3), 389–422.

Åslund, O. and D.-O. Rooth (2007). Do when and where matter? Initial labour market

conditions and immigrant earnings. The Economic Journal 117 (518), 422–448.

Aygün, O. and I. Bó (2020, forthcoming). College admission with multidimensional priv-

ileges: The Brazilian affirmative action case. American Economic Journal: Microeco-

nomics .

49

Aziz, H., J. Chen, S. Gaspers, and Z. Sun (2018). Stability and pareto optimality in refugee

allocation matchings. In Proceedings of the 17th International Conference on Autonomous

Agents and MultiAgent Systems, pp. 964–972. International Foundation for Autonomous

Agents and Multiagent Systems.

Balinski, M. and T. Sönmez (1999). A tale of two mechanisms: Student placement. Journal

of Economic Theory 84 (1), 73–94.

Bansak, K., J. Ferwerda, J. Hainmueller, A. Dillon, D. Hangartner, D. Lawrence, and J. We-

instein (2018). Improving refugee integration through data-driven algorithmic assignment.

Science 359 (6373), 325–329.

Biró, P., T. Fleiner, R. W. Irving, and D. F. Manlove (2010). The college admissions problem

with lower and common quotas. Theoretical Computer Science 411 (34), 3136 – 3153.

Biró, P. and E. McDermid (2014). Matching with sizes (or scheduling with processing set

restrictions). Discrete Applied Mathematics 164, 61–67.

Budish, E. (2011). The combinatorial assignment problem: Approximate competitive equi-

librium from equal incomes. Journal of Political Economy 119 (6), 1061–1103.

Caspari, G. (2019, November). An alternative approach to asylum assignment. Mimeo.

Cechlárová, K., T. Fleiner, D. F. Manlove, I. McBride, and E. Potpinková (2015). Modelling

practical placement of trainee teachers to schools. Central European Journal of Operations

Research 23 (3), 547–562.

Corcoran, S. P., J. L. Jennings, S. R. Cohodes, and C. Sattin-Bajaj (2018). Leveling the

playing field for high school choice: Results from a field experiment of informational

interventions. Technical report, National Bureau of Economic Research.

Damm, A. P. (2014). Neighborhood quality and labor market outcomes: Evidence from

quasi-random neighborhood assignment of immigrants. Journal of Urban Economics 79,

139–166.

Delacrétaz, D. (2019, January). Stability in matching markets with sizes. Mimeo.

Delacrétaz, D., S. D. Kominers, and A. Teytelboym (2016, November). Refugee resettlement.

Mimeo.

Dur, U. and M. U. Ünver (2015, March). Two-sided matching with balanced exchange:

Tuition and worker exchanges.

50

Echenique, F. and M. B. Yenmez (2007). A solution to matching with preferences over

colleagues. Games and Economic Behavior 59 (1), 46–71.

Ehlers, L. (2008). Truncation strategies in matching markets. Mathematics of Operations

Research 33 (2), 327–335.

Fernandez, M. (2017, October). Deferred acceptance and regret-free truthtelling: A charac-

terization result. Technical report.

Feywerda, J. and J. Gest (2016). Location, location: Refugee resettlement and integration

outcomes in the United States. Mimeo.

Fleiner, T. (2003). A fixed-point approach to stable matchings and some applications. Math-

ematics of Operations Research 28, 103–126.

Fragiadakis, D., A. Iwasaki, P. Troyan, S. Ueda, and M. Yokoo (2016). Strategyproof match-

ing with minimum quotas. ACM Transactions on Economics and Computation 4 (1), 6.

Gale, D. and L. S. Shapley (1962). College admissions and the stability of marriage. American

Mathematical Monthly 69 (1), 9–15.

Goto, M., N. Hashimoto, A. Iwasaki, Y. Kawasaki, S. Ueda, Y. Yasuda, and M. Yokoo

(2014). Strategy-proof matching with regional minimum quotas. In Proceedings of the

2014 international conference on Autonomous agents and multi-agent systems, pp. 1225–

1232. International Foundation for Autonomous Agents and Multiagent Systems.

Haake, C.-J. and B. Klaus (2009). Stability and Nash implementation in matching markets

with couples. Theory and Decision 69 (4), 537–554.

Hafalir, I. E., M. B. Yenmez, and M. A. Yildirim (2013). Effective affirmative action in

school choice. Theoretical Economics 8 (2), 325–363.

Hastings, J. S., R. Van Weelden, and J. Weinstein (2007). Preferences, information, and

parental choice behavior in public school choice. Technical report, National Bureau of

Economic Research.

Hatfield, J. W. and P. Milgrom (2005). Matching with contracts. American Economic

Review 95 (4), 913–935.

Jones, W. and A. Teytelboym (2017a). The International Refugee Match: A system that

respects refugees’ preferences and the priorities of states. Refugee Survey Quarterly 36 (2),

84–109.

51

Jones, W. and A. Teytelboym (2017b). The Local Refugee Match: Aligning refugees’ pref-

erences with the capacities and priorities of localities. Journal of Refugee Studies 31 (2),

152–178.

Kamada, Y. and F. Kojima (2020, June). Fair matching under constraints: Theory and

applications. Mimeo.

Klaus, B. and F. Klijn (2005). Stable matchings and preferences of couples. Journal of

Economic Theory 121 (1), 75–106.

Klaus, B., F. Klijn, and J. Massó (2007). Some things couples always wanted to know about

stable matchings (but were afraid to ask). Review of Economic Design 11 (3), 175–184.

Kojima, F. (2012). School choice: Impossibilities for affirmative action. Games and Economic

Behavior 75 (2), 685–693.

Kojima, F. (2015). Finding all stable matchings with couples. Journal of Dynamics and

Games 2 (3/4), 321–330.

Kominers, S. D., A. Teytelboym, and V. P. Crawford (2017). An invitation to market design.

Oxford Review of Economic Policy 33 (4), 541–571.

Martén, L., J. Hainmueller, and D. Hangartner (2019). Ethnic networks can foster the eco-

nomic integration of refugees. Proceedings of the National Academy of Sciences , 201820345.

McDermid, E. J. and D. F. Manlove (2010). Keeping partners together: algorithmic results

for the hospitals/residents problem with couples. Journal of Combinatorial Optimiza-

tion 19 (3), 279–303.

Mennle, T. and S. Seuken (2014). An axiomatic approach to characterizing and relaxing

strategyproofness of one-sided matching mechanisms. In Proceedings of the 15th ACM

Conference on Economics and Computation (EC). Citeseer.

Milgrom, P. and I. Segal (2020). Clock auctions and radio spectrum reallocation. Journal

of Political Economy 128 (1), 1–31.

Moraga, J. F.-H. and H. Rapoport (2014). Tradable immigration quotas. Journal of Public

Economics 115, 94–108.

Nguyen, T., H. Nguyen, and A. Teytelboym (2019). Stability in matching markets with

complex constraints. In Proceedings of the 2019 ACM Conference on Economics and

Computation, pp. 61–61. ACM.

52

Nguyen, T., A. Peivandi, and R. Vohra (2016). Assignment problems with complementarities.

Journal of Economic Theory 165, 209–241.

Nguyen, T. and R. Vohra (2018). Near-feasible stable matchings with couples. American

Economic Review 108 (11), 3154–69.

Pápai, S. (2000). Strategyproof assignment by hierarchical exchange. Econometrica 68 (6),

1403–1433.

Pápai, S. (2003). Strategyproof exchange of indivisible goods. Journal of Mathematical

Economics 39 (8), 931–959.

Pápai, S. (2007). Exchange in a general market with indivisible goods. Journal of Economic

Theory 132 (1), 208–235.

Pycia, M. and M. U. Ünver (2017). Incentive compatible allocation and exchange of discrete

resources. Theoretical Economics 12 (1), 287–329.

Roth, A. E. (1984a). The evolution of the labor market for medical interns and residents: A

case study in game theory. Journal of Political Economy 92 (6), 991–1016.

Roth, A. E. (1984b). Stability and polarization of interests in job matching. Economet-

rica 52 (1), 47–57.

Roth, A. E. (2015, 9 March). Migrants aren’t widgets. Politico.

https://www.politico.eu/article/migrants-arent-widgets-europe-eu-migrant-refugee-

crisis/.

Roth, A. E. (2018). Marketplaces, markets, and market design. American Economic Re-

view 108 (7), 1609–58.

Roth, A. E. and E. Peranson (1999). The redesign of the matching market for Ameri-

can physicians: Some engineering aspects of economic design. American Economic Re-

view 89 (4), 748–780.

Schuck, P. H. (1997). Refugee burden-sharing: A modest proposal. Yale Journal of Inter-

national Law 22, 243.

Shapley, L. and H. Scarf (1974). On cores and indivisibility. Journal of Mathematical

Economics 1 (1), 23–37.

Sönmez, T. (1997). Manipulation via capacities in two-sided matching markets. Journal of

Economic Theory 77 (1), 197–204.

53

Sotomayor, M. (1996). A non-constructive elementary proof of the existence of stable mar-

riages. Games and Economic Behavior 13 (1), 135–137.

Trapp, A., A. Teytelboym, A. Martinello, T. Andersson, and N. Ahani (forthcoming, 2020).

Placement optimization in refugee resettlement. Operations Research.

UNHCR (2019a, June). Global Resettlement Needs 2020. Technical report, United Nations

High Commissioner for Refugees.

UNHCR (2019b, June). Resettlement Fact Sheet January-June 2019. Technical report,

United Nations High Commissioner for Refugees.

UNHCR (2020). Global trends: Forced displacement in 2019. Technical report, United

Nations High Commissioner for Refugees, Geneva.

Westkamp, A. (2013). An analysis of the German university admissions system. Economic

Theory 53 (3), 561–589.

Wiswall, M. and B. Zafar (2017). Preference for the workplace, investment in human capital,

and gender. The Quarterly Journal of Economics 133 (1), 457–507.

Wu, Q. and A. E. Roth (2018). The lattice of envy-free matchings. Games and Economic

Behavior 109, 201–211.

54

Appendix: Proofs

Proof of Proposition 1

Recall that µi is the current matching in Round i for the KTTC algorithm. We first verify
that the output of the KTTC mechanism does not violate any capacity constraint; that is,
for all ` ∈ L, ` can accommodate µKTTC(`). Notice that, in any Round i ≥ 1, a locality
` permanently rejects any family that ` cannot accommodate alongside µi(`). Therefore,
if ` can accommodate µi(`), then ` can accommodate µi+1(`). Since ` can accommodate
µ1(`) = ∅, it follows by induction that ` can accommodate the families currently matched
to ` in every Round i ≥ 1. As µKTTC is the current matching in the last round, ` can
accommodate µKTTC(`). We next show that the KTTC mechanism is Pareto-efficient (PE)
and strategy-proof (SP).

Proof of (PE) For every Round i = 1, . . . , N , let F i be the set of families that have been
permanently matched by the end of Round i − 1. (Note that F 1 = ∅ and FN+1 = F .)
The proof proceeds by induction, with the following hypothesis: there does not exist any
matching µ such that µ(f) �f µi(f) for all f ∈ F i and µ(f) �f µi(f) for some f ∈ F i.
Our induction hypothesis trivially holds for i = 1 since F 1 = ∅. We now show that if our
induction hypothesis holds for some i = 1, . . . , N , then it also holds for i+ 1.

Towards a contradiction, suppose there exists a matching µ such that µ(f) �f µi+1(f)
for all f ∈ F i+1 and µ(f) �f µi+1(f) for some f ∈ F i+1. Note that, for all f ∈ F i,
µi(f) = µi+1(f). If, for some f ∈ F i, µ(f) �f µi+1(f), the induction hypothesis implies that
there exists of a family f ′ ∈ F i such that µi+1(f ′) �f ′ µ(f ′), a contradiction. Therefore,
µi+1(f) = µ(f) for all f ∈ F i. Note that, for all f ∈ F i+1 \ F i, f is permanently matched
to µi+1(f) in Round i; therefore µi+1(f) is the locality f prefers among those that have
not permanently rejected f . If, for some f ∈ F i+1 \ F i, µ(f) �f µi+1(f), then µ(f) has
permanently rejected f so it must be that µ(f) cannot accommodate f alongside µi(µ(f)).
Therefore, there exists a family f ′ ∈ F i such that µi(f ′) 6= µ(f ′), a contradiction.

By induction, there does not exist any matching µ such that µ(f) �f µN+1(f) for all
f ∈ FN+1 and µ(f) �f µN+1(f) for some f ∈ FN+1. As µN+1 = µKTTC and FN+1 = F , this
implies that µKTTC is Pareto-efficient.

Proof of (SP) The result is implied by the fact that the KTTCE mechanism is strategy-
proof (Theorem 3) and the fact that µKTTCE = µKTTC when every family is endowed ∅
(Proposition 3).

Proof of Theorem 1

The proof is by counterexample. There are four families, four localities, and one dimension.
The endowment is

µE =

(
f1 f2 f3 f4
`2 `2 `3 `4

)
.

55

Figure 5: Counterexample for the proof of Theorem 1. f → `: ` is f ’s first choice. f ⇢ `: ` is
f ’s second choice and f prefers ` to its endowment. ` → f : ` is f ’s endowment. Superscripts
denote sizes and capacities, respectively.

The preferences of families are as follows:

�f1 : `3, `1, `2, . . . �f2 : `4, `1, `2, . . . �f3 : `2, `3, . . . �f4 : `2, `4, . . . ,

where a family’s endowment locality is denoted in boldface. The family sizes and locality
capacities are

ν =
(f1 f2 f3 f4

d1 1 1 2 2
)

κ =
(`1 `2 `3 `4

d1 1 2 2 2
)
.

For ease of exposition, we illustrate this counterexample in Figure 5.
We show that there are two individually rational (IR) and chain-efficient (CE) matchings:

µ =

(
f1 f2 f3 f4
`1 `4 `3 `2

)
and µ′ =

(
f1 f2 f3 f4
`3 `1 `2 `4

)
.

It is easy to check that matchings µ and µ′ are IR and Pareto-efficient; hence they are IR
and CE. It remains to show that no other IR matching is CE.

First, consider the case where f1 is matched to `3. Then, f3 must be matched to `2 and
f4 must be matched to `4. Therefore, `1 must be matched to f2, yielding µ′; hence µ′ is the
only IR (and CE) matching where f1 is matched to `3. Analogous reasoning allows us to
conclude that µ is the only IR (and CE) matching where f2 is matched to `4.

Second, consider the case where f1 is matched to its endowment locality `2. Then, f3
and f4 must also be matched to their respective endowments, `3 and `4. Hence, f2 must be
matched to either `2 or `1. Matching f2 to `2 yields µE. Since f2 prefers `1 to `2 and `1 is not
matched to any family, µE is wasteful, hence not CE. Matching f2 to `1 yields a matching
that is not CE as it contains the Pareto-improving chain f1 → `3 → f3 → `2. Therefore,
there is no IR and CE matching where f1 is matched to `2. Analogous reasoning allows us
to reach the same conclusion for f2.

Third, consider the case where f1 is matched to `1. Then, f2 must be matched to either
`4 or `2, which by our previous argument yields either µ or µE. We therefore conclude that
µ and µ′ are the only two IR and CE matchings.

Suppose now that f1 misreports its preferences by ranking `1 below `2, i.e., �′f1 : `3, `2,
Using analogous reasoning as for the true preference profile, it is easy to check that µ′ is the

56

Figure 6: Counterexample for the proof of Proposition 2. f → `: ` is f ’s first choice.
f ⇢ `: ` is f ’s second choice and f prefers ` to its endowment. ` → f : ` is f ’s endowment.
Superscripts denote sizes and capacities, respectively.

only IR and CE matching for the manipulated preference profile (�′f1 ,�−f1). Similarly, µ is
the only IR and CE matching for the manipulated preference profile (�′f2 ,�−f2) where f2
misreports its preferences by ranking `1 below `2, i.e., �′f2 : `4, `2,

We can now show that no IR and CE mechanism is strategy-proof. Let ϕ be an IR and
CE mechanism. If all families report their preferences truthfully, then either ϕ(�) = µ or
ϕ(�) = µ′ because µ and µ′ are the only two IR and CE matchings. If f1 reports �′f1 ,
then ϕ(�′f1 ,�−f1) = µ′. Similarly, if f2 reports �′f2 , then ϕ(�′f2 ,�−f2) = µ. If ϕ(�) = µ,
then ϕ(�′f1 ,�−f1)(f1) �f1 ϕ(�)(f1) but if ϕ(�) = µ′, then ϕ(�′f2 ,�−f2)(f2) �f2 ϕ(�)(f2).
Therefore ϕ is not strategy-proof.

Proof of Proposition 2

The proof is by counterexample. There are four families, three localities, and one dimension.
The endowment is

µE =

(
f1 f2 f3 f4
`2 `2 `3 `4

)
.

The preferences of families are as follows:

�f1 : `3, `4, `2, . . . �f2 : `4, `3, `2, . . . �f3 : `2, `3, . . . �f4 : `2, `4, . . .

where a family’s endowment locality is denoted in boldface. The family sizes and locality
capacities capacities are

ν =
(f1 f2 f3 f4

d1 1 1 2 2
)

κ =
(`2 `3 `4

d1 2 2 2
)
.

For ease of exposition, we illustrate this counterexample in Figure 6.

57

We show that there are exactly two matchings that Pareto dominate µE:

µ =

(
f1 f2 f3 f4
`3 `3 `2 `4

)
and µ′ =

(
f1 f2 f3 f4
`4 `4 `3 `2

)
.

Matching µ (resp. µ′) Pareto dominates µE since it matches family f4 (resp. f3) to
its endowment and make the other three families better off. We now show that no other
matching Pareto dominates µE. Towards a contradiction, suppose there exists a matching
µ̃ that Pareto dominates µE and is different from both µ and µ′. Consider the case where
µ̃(f3) �f3 µE(f3). Then we must have that µ̃(f3) = `2. Therefore, locality `2 cannot
accommodate any other family so µ̃(f4) = `4. In turn, locality `4 cannot accommodate any
other family so µ̃(f1) = µ̃(f2) = `3 and µ̃ = µ. Analogously, we have that µ̃(f4) �f4 µE(f4)
implies µ̃ = µ′. Therefore, µ̃(f3) = `3 and µ̃(f4) = `4. Hence, neither `3 nor `4 can
accommodate another family so µ̃(f1) = µ̃(f2) = `2 and µ̃ = µE, a contradiction.

We have established that µ and µ′ are the only two matchings that Pareto dominate µE

with respect to the true preferences. We now consider consider a preference manipulation
by f1. Suppose that f1 misreports its true preferences by ranking `4 below `2, i.e., f1
reports �′f1 : `3, `2, We claim that if all other families report truthfully, then µ is the
only matching that Pareto dominates µE with respect to the manipulated preference profile
(�′f1 ,�−f1). Suppose again towards a contradiction that there exists a matching µ̃ that
Pareto dominates µE and is different from µ. There are three cases. First, if µ̃(f3) �f3 µE(f3),
then µ̃(f3) = `2 and µ̃(f4) = `4. Therefore, we must have that µ̃(f1) = µ̃(f2) = `3 so µ̃ = µ,
a contradiction. Second, if µ̃(f4) �f4 µE(f4), then µ̃(f4) = `2 and µ̃(f3) = `3. Since neither
`2 nor `3 can accommodate another family, f1 must be matched to a less-preferred locality
than µE(f1) = `2 (according to f1’s manipulated report) hence µ̃ does not Pareto dominate
µE, a contradiction. Third, if µ̃(f3) = `3 and µ̃(f4) = `4, then µ̃ = µE, a contradiction. We
therefore conclude that there is no matching that Pareto dominates µE for the preference
profile (�′f1 ,�−f1) and that is different from µ. By analogous reasoning, one can verify that
if f2 manipulates its preferences by reporting �′f2 : `4, `2, . . . and all other families report
truthfully, then µ′ is the only matching that Pareto dominates µE for the preference profile
(�′f2 ,�−f2).

We can now show that there is no strategy-proof mechanism that Pareto improves upon
µE. Let ϕ be a mechanism that Pareto improves upon µE. If all families report their
preferences truthfully, then either ϕ(�) = µ or ϕ(�) = µ′ because µ and µ′ are the only
two matchings that Pareto dominate µE for the true preference profile. If f1 reports �′f1 ,
then ϕ(�′f1 ,�−f1) = µ. Similarly, if f2 reports �′f2 , then ϕ(�′f2 ,�−f2) = µ′. If ϕ(�) = µ,
then ϕ(�′f2 ,�−f2)(f2) �f2 ϕ(�)(f2) but if ϕ(�) = µ′, then ϕ(�′f1 ,�−f1)(f1) �f1 ϕ(�)(f1).
Therefore, ϕ is not strategy-proof.

Proof of Theorem 2

The proof is by counterexample. There are four families, three localities, and two dimensions.
The endowment is

µE =

(
f1 f2 f3 f4
`2 `2 `3 `4

)
.

58

Figure 7: Counterexample for the proof of Theorem 2. f → `: ` is f ’s first choice. f ⇢ `: ` is
f ’s second choice and f prefers ` to its endowment. ` → f : ` is f ’s endowment. Superscripts
denote sizes and capacities, respectively.

The preferences of families are as follows:

�f1 : `3, `2, . . . �f2 : `4, `2, . . . �f3 : `2, `4, `3, . . . �f4 : `2, `3, `4, . . .

where a family’s endowment locality is denoted in boldface. The family sizes and locality
capacities are

ν =

(f1 f2 f3 f4

d1 2 1 2 3
d2 1 2 3 2

)
κ =

(`2 `3 `4

d1 3 3 4
d2 3 3 4

)
.

For ease of exposition, we illustrate this counterexample in Figure 7.
Observe that µE is non-wasteful but not chain-efficient as it contains three Pareto-

improving chains:

(f2, `4, f4, `3, f3, `2), (f1, `3, f3, `4, f4, `2), and (f3, `4, f4, `3).

Executing any one of these Pareto-improving chains on µE yields one of the following three
matchings:

µ =

(
f1 f2 f3 f4
`2 `4 `2 `3

)
, µ′ =

(
f1 f2 f3 f4
`3 `2 `4 `2

)
, and µ′′ =

(
f1 f2 f3 f4
`2 `2 `4 `3

)
.

We first show that µ, µ′, and µ′′ are the only matchings that Pareto dominate the endowment
µE.

Suppose towards a contradiction that there exists a matching µ̃ that Pareto dominates
µE. There are three cases.

First, consider the case where µ̃(f3) = `3. Then, neither f1 nor f4 can be matched to `3;
hence µ̃(f1) = `2 and µ̃(f4) = `4. Therefore, we must have that µ̃(f2) = `2. It follows that
µ̃ = µE, a contradiction.

Second, consider the case where µ̃(f3) = `2. Then, f2 cannot be matched to `2 so
µ̃(f2) = `4. As a result, f4 cannot be matched to either `2 or `4, hence µ̃(f4) = `3. It follows
that f1 cannot be matched to `3; therefore µ̃(f3) = `2 and µ̃ = µ, a contradiction.

Third, consider the case where µ̃(f3) = `4. Neither f2 nor f4 can be matched to `4;
therefore µ̃(f2) = `2 and we must have that either µ̃(f4) = `2 or µ̃(f4) = `3. If µ̃(f4) = `2,

59

then µ̃(f1) = `3 and µ̃ = µ′. If µ̃(f4) = `3, then µ̃(f1) = `2 and µ̃ = µ′′, a contradiction.
We have established that µ, µ′, and µ′′ are the only matchings that Pareto dominate

µE. Suppose that f3 misreports its preferences by ranking `4 below `3, i.e., by reporting
�′f3 : `2, `3, . . ., then µ is the unique matching that Pareto dominates µE for the manipulated
preference profile (�′f3 ,�−f3). Similarly, suppose that f4 misreports its preferences by rank-
ing `3 below `4, i.e., by reporting �′f4 : `2, `4, . . ., then µ′ is the unique matching that Pareto
dominates µE for the manipulated preference profile (�′f4 ,�−f4).

We can now show that there is no strategy-proof mechanism that Pareto improves upon
µE. Let ϕ be a mechanism that Pareto improves upon µE. If all families report their
preferences truthfully, then ϕ(�) ∈ {µ, µ′, µ′′} because µ, µ′, and µ′′ are the only three
matchings that Pareto dominate µE for the true preference profile. If f3 reports �′f3 , then
ϕ(�′f3 ,�−f3) = µ. If f4 reports �′f4 , then ϕ(�′f4 ,�−f4) = µ′. If ϕ(�) ∈ {µ, µ′′}, then
ϕ(�′f4 ,�−f4)(f4) �f4 ϕ(�)(f4). If ϕ(�) ∈ {µ′, µ′′}, then ϕ(�′f3 ,�−f3)(f3) �f3 ϕ(�)(f3).
Therefore, ϕ is not strategy-proof.

Proof of Theorem 3

We first verify that the output of the KTTCE mechanism does not violate any capacity
constraint; that is, for all ` ∈ L, ` can accommodate µKTTCE(`). Note that, in any Round i ≥
1, the current matching µi is only updated when a feasible cycle is carried out. By definition,
every family f that moves to locality ` as part of a feasible cycle can be accommodated by
` alongside all the families that remain at ` after the cycle is carried out; therefore, if ` can
accommodate µi(`), then ` can accommodate µi+1(`). By assumption, the endowment does
not violate any capacity constraint; hence, by induction, ` can accommodate the families
currently matched to ` in every Round i ≥ 1. As µKTTCE is obtained by carrying out
feasible cycles from the current matching in the last round of the KTTCE algorithm, then
` can accommodate µKTTCE(`).

We next show that the KTTCE mechanism is individually rational (IR) and strategy-
proof (SP).

Proof of (IR) Consider a family f , its endowment `, and let i be the round of the KTTCE
algorithm in which f is permanently matched. We need to show that µKTTCE(f) �f `.
By construction, any family that is not permanently matched is currently matched to its
endowment; thus f is currently matched to ` at the start of Round i, i.e., f ∈ µi(`). Recall
that in any round, locality ` can accommodate families currently matched to `, in particular
` can accommodate µi(`). As a result, ` has not permanently rejected f . By definition, f
points at its most preferred locality that has not permanently rejected f yet. Therefore, f
points at a locality that f weakly prefers to `. As f is permanently matched in Round i, f
points at µKTTCE(f). Therefore, µKTTCE(f) �f `, which is what IR requires.

Proof of (SP) Consider a family f with true preferences �f , let �′f be an alternative
report, and fix the reports of all other families to �−f . Denote by ` = ϕKTTCE(�f ,�−f)(f),
respectively `′ = ϕKTTCE(�′f ,�−f)(f), the locality with which f is matched if it reports
�f , respectively �′f . We need to show that ` �f `′. Let m = 1, . . . , N , respectively m′ =

60

1, . . . , N , be the round in which f gets permanently matched with report �f , respectively
�′f .

Case 1 : m ≤ m′. Whether it reports �f or �′f , f is not permanently matched at the
start of Round m. Let Lmf be the set of localities that have not permanently rejected f at
the start of Round m (this set is nonempty as we have already shown that a family is never
permanently rejected by its endowment). Notice that, in any given round, f ’s report does
not impact whether or not a given locality permanently rejects f ; therefore Lmf is the same
whether f reports �f or �′f . In addition, permanent rejections are irreversible; therefore,
with either report, f will be matched to a locality in Lmf ; therefore, `, `′ ∈ Lmf . If f reports
truthfully, it points at its most preferred locality in Lmf and is permanently matched to it.
Hence, ` is f ’s most preferred locality in Lmf , which implies that ` �f `′.

Case 2 : m > m′. As before, observe that, whether it reports �f or �′f , f is not

permanently matched at the start of Round m′ and let Lm
′

f be the set of localities that have
not permanently rejected f at the start of Round m′. If f reports �′f , f points at `′ in
Round m′. A feasible cycle f → `′ → f2 → `2 → . . . → fn → `n → f appears and f is
permanently matched to `′. By construction, in the KTTCE algorithm, the report of family
f affects other families’ pointing behavior only after f is permanently matched. Thus, as f
is not matched until Round m > m′ when it reports �f and every family and locality can
be part of at most one cycle, none of f2, . . . , fn and `′, `1, . . . , `n are in a cycle in Round m′,
hence none of them are permanently matched in Round m′.

We next show that none of f2, . . . , fn and `′, `1, . . . , `n are permanently matched before
the start of Round m. By assumption, the cycle f → `′ → f2 → `2 → . . . → fn → `n → f
is feasible, which means that for all j = 2, . . . , n − 1, `j can accommodate fj alongside
µm

′
(`j) \ {fj+1}. Therefore, `j does not permanently reject fj in any Rejection Stage before

Round m. Analogously, `1 does not permanently reject f and `n does not permanently reject
fn in any Rejection Stage before Round m. Therefore, in Round m, all families f2, . . . , fn
and all localities `′, `2, . . . , `n continue to point as they did in Round m′, meaning that f
is permanently matched to `′ if f points at `′. Since `′ has not permanently rejected f by
Round m, f is permanently matched to either `′ or to a more preferred locality. Therefore,
f can do no worse by reporting �f than by reporting �′f .

Proof of Proposition 3

We first show that all cycles that appear in the KTTCE algorithm are feasible. Towards a
contradiction, suppose that an infeasible cycle f1 → `1 → f2 → `2 → . . . → fn → `n → f1
appears in some Round i. Then, there exists j = 1, . . . , n such that `j cannot accommodate
fj alongside µi(`j)\{fj+1} (letting fn+1 = f1). As ∅ can accommodate all families, `j 6= ∅ so
µE(`j) = ∅; hence fj+1 is not in `j’s endowment. Moreover, fj+1 is not permanently matched
at the start of Round i as otherwise `j would not point at fj+1; therefore f ∈ µi(∅), which
implies f /∈ µi(`j). Then, µi(`j)\{fj+1} = µi(`j); hence `j cannot accommodate fj alongside
µi(`j). As µE(`j) = ∅, by construction all families in µi(`j) have been permanently matched
to `j before the start of Round i. Therefore, at the start of Round i, `j permanently rejects
fj as `j cannot accommodate fj alongside all the families permanently matched to `j. We
conclude that fj does not point to `j in Round i, a contradiction.

We have showed that all cycles that appear in the KTTCE algorithm are feasible, which

61

implies that every round ends in the Matching Stage. Therefore, the KTTCE algorithm car-
ries out all the cycles that appear in every round and the algorithm never enters the Rejection
Stage. As a result, each round of the KTTCE algorithm coincides with the corresponding
round of the KTTC algorithm.

Proof of Theorem 4

Consider an instance in which the sizes of families are monotonic, the priorities of localities
are lexicographic, and the endowment is µE. Suppose that for this instance the KTTCE
mechanism produces the endowment, i.e., µKTTCE = µE. Since the KTTCE mechanism
does not Pareto improve upon this endowment, we need to show that µE is chain-efficient.
Let N be the total number of rounds of the KTTCE algorithm. The fact that the KTTCE
algorithm produces µE implies that the current matching is the same in every round: µE =
µ1 = µ2 = . . . = µN = µN+1 = µKTTCE. Let M∗ be the set of matchings that can be
obtained by starting from µE and carrying out exactly one Pareto-improving chain. Now µE

is chain-efficient if and only if M∗ = ∅; therefore it remains to show that M∗ = ∅.
We proceed by induction with the following hypothesis: if a locality ` has permanently

rejected a family f by the start of Round i, then for all µ∗ ∈ M∗, µ∗(f) 6= `. Our inductive
hypothesis trivially holds for i = 1 since no permanent rejection occurs before the start of
Round 1. Assuming that the inductive hypothesis holds for some i = 1, . . . , N , we show that
it holds for i+ 1.

Consider a family f that has been permanently matched before the start of Round i.
Recall that µE = µi, so f is permanently matched to its endowment µE(f); therefore f has
been permanently rejected by all localities it prefers to µE(f). By the induction hypothesis,
we have that, for all µ∗ ∈ M∗, µ∗(f) = µE(f). We can therefore conclude that all families
that are permanently matched before the start of Round i are matched to their endowment
in all matchings contained in M∗.

Now consider a locality ` that permanently rejects a family f in Round i. We need to
show that µ∗(f) 6= ` for all µ∗ ∈ M∗. The fact that ` permanently rejects f in Round i
implies that, at the start of Round i, f is not permanently matched and ` has not permanently
rejected f yet. There are two cases in which ` can permanently reject f : (1) at the beginning
of Round i, or (2) in the Rejection Stage of Round i.

Case 1 : ` permanently rejects f at the beginning of Round i. By definition, ` cannot
accommodate f alongside all the families permanently matched to `. Since all families that
are permanently matched before the start of Round i are matched to their endowment in all
matchings contained in M∗, we have that all the families that are permanently matched to
` at the start of Round i are also matched to ` in all matchings contained in M∗. Therefore,
µ∗(f) 6= ` for all µ∗ ∈M∗.

Case 2 : ` permanently rejects f in the Rejection Stage of Round i. By definition, ` cannot
accommodate f alongside µE(`) \ {f ′} (where f ′ is the family at which ` is pointing, if any).
Since a family is never permanently rejected by its endowment, we have that ` 6= µE(f). By
construction of the KTTCE algorithm, a locality does not point at any family if the locality
has permanently rejected all families that are not permanently matched. Then the fact that
` has not permanently rejected f yet and that f is not permanently matched implies that
` does point at some family f ′ ∈ F . By construction, f ′ has the highest priority among all

62

families that are not permanently matched and have not been permanently rejected by `.
We consider two sub-cases: (2.1) f ′ /∈ µE(`), and (2.2) f ∈ µE(`).

Sub-case 2.1 : f ′ /∈ µE(`). As priorities are lexicographic, all families in µE(`) have a
higher priority than f ′. The fact that ` points at f ′ implies that all families in µE(`) either
have been permanently rejected by ` or have been permanently matched to `. As a family
cannot be permanently rejected by its endowment, all families in µE(`) are permanently
matched to ` at the start of Round i. Recall that ` cannot accommodate f alongside
µi(`) \ {f ′}. Since µi(`) = µE(`) and f ′ /∈ µE(`), ` cannot accommodate f alongside µi(`).
Therefore, ` permanently rejects f at the beginning of Round i, contradicting our assumption
that the permanent rejection occurs in the Rejection Stage.

Sub-case 2.2 : f ′ ∈ µE(`). Towards a contradiction, suppose there exists a matching
µ∗ ∈ M∗ such that µ∗(f) = `. Recall that ` cannot accommodate f alongside µE(`) \ {f ′};
therefore ` cannot accommodate f alongside µE(`). This implies the existence of a family
f̃ ∈ µE(`) such that µ∗(f̃) 6= `. In fact, because µ∗ is obtained by carrying out exactly one
Pareto-improving chain, there exists exactly one such family f̃ . If f̃ .` f

′, then the fact that `
points at f ′ implies that f̃ is permanently matched to ` at the start of Round i. Following the
argument in Sub-case 2.1, we must therefore have that µ∗(f̃) = µE(f̃) = `, a contradiction.
Therefore, we have that f ′ .` f̃ or f ′ = f . Since f ′, f̃ ∈ µE(`), sizes are monotonic and

priorities are lexicographic, by definition we have that νf
′

d ≥ ν f̃d for all d ∈ D. Therefore, the
fact that ` cannot accommodate f alongside µE(`)\{f ′} implies that ` cannot accommodate
f alongside µE(`) \ {f̃}, a contradiction. We conclude that µ∗(f) 6= ` for all µ∗ ∈M∗.

We can now conclude that our induction hypothesis holds at the beginning of Round i+1.
By induction, if a locality ` permanently rejects a family f at some point in the KTTCE
algorithm, then, for all µ∗ ∈ M∗, µ∗(f) 6= `. Therefore, every family matched to its endow-
ment at the end of the algorithm is matched to its endowment under any matching µ∗ ∈M∗.
By assumption, all families are matched to their respective endowments at the end of the
KTTCE algorithm, meaning that M∗ does not contain any matching other than µE. As
µE /∈M∗ by definition, we conclude that M∗ = ∅ as desired.

Proof of Proposition 4

Suppose that sizes are monotonic and the priority profile is aligned. We introduce the
Sequential Deferred Acceptance (SDA) algorithm (Algorithm 6) and show that it produces
a stable matching. We show that the alignment of the priority profile allows us to divide
the families into groups such that (i) all families in the same group have the same size and
(ii) any two groups can be compared in terms of priority in the sense that all families in one
group have a higher priority at all localities than all families in the other group. The SDA
algorithm considers one of these groups at a time in order of priority and runs the family-
proposing Deferred Acceptance (DA) algorithm for the families in that group, considering
the capacities that remain after families in higher-priority groups have been permanently
matched.

Claim 1. The Sequential Deferred Acceptance algorithm produces a stable matching µSDA.

First, if there is a directed cycle (f1, f2, . . . , fn) in graph G1, then, for every ` ∈ L \ {∅},
f1 .` f2 .`` fn .` f1, a contradiction. Therefore, G1 is an acyclic directed graph. By

63

Algorithm 6: Sequential Deferred Acceptance

Construct a directed graph G1 as follows. Each of the |F | vertices represents a
family. For every pair of families (f, f ′), let there be a directed edge from f to f ′

if νf 6= νf
′
and f .` f

′ for all ` ∈ L.

For every locality `, set a counter c1` = κ`.

Round i ≥ 1

Let F̃ i be the set of families at which no other family is pointing in graph Gi.

Permanently match the families in F̃ i to the localities using the family-proposing
Deferred Acceptance algorithm setting the capacity of every locality ` to its
counter ci`.

If all families have been permanently matched, end.

Otherwise, construct Gi+1 by removing from Gi all vertices representing families
in F̃ i and all edges adjacent to them. For every ` ∈ L, let F̃ i

` be the set of families
that have been permanently matched to ` in Round i. Update the counter of every
locality ` as follows: ci+1

` = ci` −
∑

f∈F̃ i
`
νf . Continue to Round i+ 1.

construction, for all i > 1, Gi is an directed acyclic graph for since Gi is constructed from
Gi−1 by removing some vertices (families) and edges. Therefore, in every Round i, the set of

families F̃ i at which no family is pointing is nonempty. Therefore, at least one family gets
permanently matched in every round; hence the algorithm ends after at most |F | rounds.

Second, suppose that in Round i, there exist f, f ′ ∈ F̃ i such that νf 6= νf
′
. Since the

priority profile is aligned, either f .` f
′ for all ` ∈ L \ {∅} or f ′ .` f for all ` ∈ L \ {∅}.

Therefore, either f points at f ′, in which case f ′ /∈ F̃ i, or f ′ points at f , in which case
f /∈ F̃ i, a contradiction. We conclude that in every Round i we have that νf = νf

′
for all

families f, f ′ ∈ F̃ i.
We now show that the matching µSDA produced by the SDA algorithm is stable. Consider

any family f and any locality ` such that ` �f µSDA(f). We need to show that ` cannot

accommodate f alongside F̂ f
` ∩ µSDA(`).

Suppose that family f is permanently matched to µSDA(f) in Round i, i.e., f ∈ F̃ i.
Consider the Round i “submarket”, in which the DA algorithm permanently matches the
families in F̃ i to the localities and the counter of each locality ` is ci`. By construction, all

families in the Round i submarket have the same size, i.e., νf
′
= νf for all f ′ ∈ F̃ i. Therefore,

for each locality, there is a maximum number of families that the locality can accommodate,
which makes the submarket isomorphic to a school choice problem. As the DA algorithm
produces a stable matching in the school choice problem (Abdulkadiroğlu and Sönmez, 2003),
the DA algorithm produces a stable matching in the Round i submarket. Therefore, f and
` do not form a blocking pair in the Round i submarket. As ` �f µSDA(f) by assumption, it
follows that `’s Round i counter does not allow ` to accommodate f alongside higher-priority
families permanently matched to ` in Round i, i.e., alongside F̂ f

` ∩ F̃ i
` . By construction, all

64

families that have been permanently matched to ` before Round i, i.e., all families in ∪i−1j=1F̃
j,

have a higher priority at ` than f . Hence, ` cannot accommodate f alongside all families
that have a higher priority than f and with which ` has been permanently matched by the
end of Round i, i.e., ` cannot accommodate f alongside F̂ f

` ∩ (∪ij=1F̃
j
`). By construction, all

families that are permanently matched to ` in any round of the SDA algorithm are matched
to ` at µSDA, which implies that ∪ij=1F̃

j
` ⊆ µSDA(`). We therefore conclude that ` cannot

accommodate f alongside F̂ f
` ∩ µSDA(`), as required.

Proof of Proposition 5

Consider the following modification of the KDA algorithm. In each round, every locality `
tentatively accepts a proposing family f if ` can accommodate (instead of weakly accommo-
date) f alongside all families with a higher priority than f at ` that are proposing to ` or
have been permanently rejected by `. To see that this modified KDA algorithm produces the
family-optimal envy-free matching, follow the proof of Theorem 5 verbatim having replaced
“weakly accommodate” with “accommodate”.

Proof of Proposition 6

Let µ be a matching that is non-wasteful and not stable. We need to show that µ is not
weakly envy-free. As µ is not stable, there exists a family f and a locality ` such that
` �f µ(f) and ` can accommodate f alongside F̂ f

` ∩ µ(`), that is, for all d ∈ D,

νfd +
∑

g∈(F̂ f
` ∩µ(`))

νgd ≤ κ`d. (1)

However, as µ is non-wasteful, there exists d ∈ D such that

νfd +
∑
g∈µ(`)

νgd > κ`d. (2)

Consider now the families in µ(`) \ F̂ f
` whose size in dimension d is at least one. Equa-

tions (1) and (2) imply that the set of such families is nonempty. Let f ′ be the lowest-priority

family in µ(`) \ F̂ f
` whose size in dimension d is at least one (equivalently, f ′ is the lowest-

priority family in µ(`) such that νf
′

d > 0). Then,

νfd + νf
′

d +
∑

g∈(F̂ f ′
` ∩µ(`))

νgd = νfd +
∑
g∈µ(`)

νgd > κ`d. (3)

Inequality (3) and the fact that νf
′

d > 0 imply that ` cannot weakly accommodate f ′

alongside {f} ∪ (F̂ f ′

` ∩ µ(`)). Note that all families in {f} ∪ (F̂ f ′

` ∩ µ(`)) have a higher
priority at ` than f ′ and weakly prefer ` to the locality to which they are matched, i.e.,

({f} ∪ (F̂ f ′

` ∩ µ(`))) ⊆ {g ∈ F : g .` f
′ and ` �g µ(g)},

65

so ` cannot weakly accommodate f ′ alongside {g ∈ F : g .` f
′ and ` �g µ(g)}. Since

` �f µ(f) and f .` f
′, f strongly envies f ′ and µ is not weakly envy-free.

Proof of Theorem 5

We first verify that the output of the KDA algorithm does not violate any capacity constraint;
that is, we show that, for all ` ∈ L, ` can accommodate µKDA(`). Consider a locality ` ∈ L.
By construction, all families in µKDA(`) propose to and are tentatively accepted by ` in
the last round of the KDA algorithm. Therefore, ` can weakly accommodate every family
f ∈ µKDA(`) alongside µKDA(`) ∩ F̂ f

` . Towards a contradiction, suppose that ` cannot

accommodate µKDA(`). Then, there exists d ∈ D such that
∑

f∈µKDA(`) ν
f
d > κ`d. Let g ∈ F

be the lowest-priority family such that g ∈ µKDA(`) and νgd > 0. (Such a family exists since∑
f∈µKDA(`) ν

f
d > κ`d ≥ 0.) Then,

νgd +
∑

f∈µKDA(`)∩F̂ g
`

νfd > κ`d and νgd > 0;

therefore, ` cannot weakly accommodate g alongside µKDA(`) ∩ F̂ g
` (see Definition 9), a

contradiction.
We next show that µKDA is weakly envy-free; towards a contradiction, suppose the con-

trary. Then, by definition, there exists a family f ′ matched to a locality `′ (µKDA(f ′) = `′)

such that `′ cannot weakly accommodate f ′ alongside Ĝ = {g ∈ G : g .`′ f
′ and `′ �g

µKDA(g)}. Suppose that the KDA algorithm terminates in Round N . Let R̂N
f ′(`

′) denote the
set of families that have a higher priority than f ′ at `′ and propose in Round N to either
`′ or a less-preferred locality (because they have already been permanently rejected by `′ in
a previous round). Since all families are matched to the locality to which they propose in

Round N , R̂N
f ′(`

′) is also the set of families that have a higher priority than f ′ at `′ and
are matched to either `′ or to less-preferred localities at the end of the algorithm; therefore
R̂N
f ′(`

′) = Ĝ. Since `′ tentatively accepts f ′ in Round N , `′ can weakly accommodate f ′

alongside R̂N
f ′(`

′) = Ĝ, a contradiction.

We finally show that µKDA dominates all other weakly envy-free matchings. Towards a
contradiction, suppose that there exists a weakly envy-free matching µ such that µ(f1) �f1
µKDA(f1) for some f1 ∈ F . We proceed by induction. Our assumption implies that µ(f1)
permanently rejects f1 in some Round i1 of the KDA algorithm. For the induction argument,
suppose that for some n ∈ Z>0, there exists a family fn such that µ(fn) permanently rejects
fn in some Round in of the KDA algorithm. We want to show that there exists a family fn+1

such that µ(fn+1) permanently rejects fn+1 in some Round in+1 < in. By construction, µ(fn)

cannot weakly accommodate fn alongside R̂in
fn

(µ(fn)) and all families in R̂in
fn

(µ(fn)) are either

matched to µ(fn) or a less-preferred locality at µKDA. Suppose that, at µ, all families in

R̂in
fn

(µ(fn)) are either matched to µ(fn) or a less-preferred locality. Then, µ cannot be weakly

envy-free since µ(fn) cannot weakly accommodate fn alongside R̂in
fn

(µ(fn)).41 Therefore,

there exists a family fn+1 ∈ R̂in
fn

(µ(fn)) such that µ(fn+1) �fn+1 µ(fn). Since fn+1 proposes

41Recall that part (iii) of Definition 10 implies parts (i) and (ii) of Definition 10.

66

to µ(fn) in some Round j ≤ in of the KDA algorithm, µ(fn+1) permanently rejects fn+1 in
some Round in+1 < in. Iterating this argument inductively, we find that some family fm is
permanently rejected by µ(fm) in Round im such that im < 1, which is impossible.

Proof of Theorem 6

We first verify that the output of the TKDA mechanism does not violate any capacity
constraint; that is, for all ` ∈ L, ` can accommodate µTKDA(`). Consider a locality ` ∈ L.
By construction, all families in µTKDA(`) propose to and are tentatively accepted by ` in the
last round of the TKDA algorithm. Hence, for any f ∈ µTKDA(`),

θf` ≥ |µ
TKDA(`) ∩ F̂ f

` |+ 1 ≥ 1.

If ` cannot weakly accommodate f alongside µTKDA(`) ∩ F̂ f
` , then by construction (see

Algorithm 5) θf` = 0, which contradicts the fact that θf` ≥ 1. Therefore, ` can weakly

accommodate every family f ∈ µTKDA(`) alongside µTKDA(`) ∩ F̂ f
` . As we showed in the

proof of Theorem 5, this implies that ` can accommodate µTKDA(`).
We now prove that the TKDA mechanism is strategy-proof and weakly envy-free.

TKDA is strategy-proof

Consider a locality ` ∈ L and a subset of families G ⊆ F . To simplify notation, let us
define, for every f ∈ F , Ĝf

` = G ∩ F̂ f
` to be the families in G that have a higher priority for

` than f . We also denote by θf` (G) the threshold of family f at locality ` if, in some round

of the TKDA algorithm, families in G propose to `. (That is, θf` (G) is obtained by running
the Threshold Calculator defined in Algorithm 5 with Π` = G.)

We define the choice function of locality `, C` : 2F → 2F , as follows: for every G ⊆ F ,
C`(G) = {f ∈ G : |Ĝf

` | + 1 ≤ θf` (G)}. That is, C`(G) contains the families that ` does not
permanently reject if families in G propose to ` in some round of the TKDA algorithm. One
way to interpret the choice function is that locality ` “chooses” the families in C`(G) when
it receives proposals from all families in G.

We now fix a locality ` ∈ L and two subsets of families G ⊆ H ⊆ F and define two
properties of the choice function:

� Substitutability (S): C`(H) ∩G ⊆ C`(G), and

� Cardinal Monotonicity (CM): |C`(G)| ≤ |C`(H)|.

Hatfield and Milgrom (2005) analyze properties of the Deferred Acceptance (DA) algo-
rithm, in which localities (“hospitals” in their terminology) have choice functions. In each
round of the DA algorithm, families propose to their most preferred locality that has not
permanently rejected them yet. Localities tentatively accept or permanently reject proposals
based on their choice functions, i.e., if locality ` receives proposals from families in G, families
in C`(G) are tentatively accepted and families in G \ C`(G) are permanently rejected.

Theorems 3 and 11 of Hatfield and Milgrom (2005) imply that the DA algorithm is
strategy-proof for families if the choice function of all localities satisfy the (S) and (CM)

67

conditions. By construction, the TKDA algorithm in our setting corresponds to deferred
acceptance in the Hatfield and Milgrom (2005) setting with the choice function we have just
defined. Therefore, in order to show that the TKDA algorithm is strategy-proof, it remains
to prove that the choice function of every locality satisfies the (S) and (CM) conditions.

The following lemma shows three properties of the choice function, which we subsequently
use to prove that the choice function satisfies the (S) and (CM) conditions.

Lemma 1. For every G ⊆ H ⊆ F , every f, g ∈ F , and every ` ∈ L:

(i) θf` (G) =∞ if and only if θf` (H) =∞,

(ii) If θf` (H) ∈ Z>0, then θf` (G) ≤ θf` (H) ≤ θf` (G) + |Ĥf
` | − |Ĝ

f
` |, and

(iii) If g .` f and θf` (G) 6=∞, then

◦ θg` (G) ≥ θf` (G), and

◦ f ∈ C`(G) implies that g ∈ G⇔ g ∈ C`(G).

Part (i) of Lemma 1 states that if the threshold of family f at ` is infinite, then it remains
so no matter which families are proposing to `. Part (ii) states that if the threshold of family
f at ` is non-zero and finite, then removing some families from the set of families proposing
to ` may reduce f ’s threshold at ` by at most the number of proposing families that were
removed. Part (iii) states that if the threshold of family f at ` is finite, then any family g
with a higher priority than f at ` has a weakly larger threshold than f and is chosen by `
whenever f is chosen by `.

Proof of (S) Consider any family f ∈ C`(H) ∩G; we need to show that f ∈ C`(G). The
fact that f ∈ C`(H) implies that θf` (H) 6= 0 and, if θf` (H) = ∞, Lemma 1(i) implies that

θf` (G) = ∞, hence f ∈ C`(G). It remains to show that f ∈ C`(H) whenever θf` (H) ∈ Z>0.
In that case, using Lemma 1(ii), we have that

θf` (H) ≤ θf` (G) + |Ĥf
` | − |Ĝ

f
` |.

Since f ∈ C`(G), the definition of a choice function implies that

θf` (H) ≥ |Ĥf
` |+ 1.

Combining the two inequalities yields θf` (G) ≥ |Ĝf
` |+ 1 so f ∈ C`(G), as required.

Proof of (CM) We need to show that |C`(G)| ≤ |C`(H)|. Let m = |H \G| and arbitrarily
label the families in H \G such that H = G ∪ {f1, . . . , fm}.

Claim 2. For every i = 1, . . . ,m, |C`(G ∪ {f1, . . . , fi−1})| ≤ |C`(G ∪ {f1, . . . , fi−1, fi})|.

Claim 2 implies that

|C`(G)| ≤ |C`(G ∪ {f1})| ≤ |C`(G ∪ {f1, f2})| ≤ . . . ≤ |C`(G ∪ {f1, . . . , fm})| = |C`(H)|,

68

which implies the desired result. Therefore, it remains to prove Claim 2.
Fix some i = 1, . . . ,m and define G′ = G∪{f1, . . . , fi−1} and H ′ = {f1, . . . , fi−1, fi}. We

need to show that |C`(G′)| ≤ |C`(H ′)|. We have that

|C`(H ′)| − |C`(G′)| = |C`(H ′) \ C`(G′)| − |C`(G′) \ C`(H ′)|,

so we need to show that

|C`(H ′) \ C`(G′)| ≥ |C`(G′) \ C`(H ′)|. (4)

By definition, H ′ = G′ ∪ {fi} and, by (S), C`(H
′) ∩G′ ⊆ C`(G

′); therefore,

C`(H
′) \ C`(G′) ⊆ {fi}.

There are two cases: fi /∈ C`(H ′) and fi ∈ C`(H ′).
Case 1 : fi /∈ C`(H ′). In this case, C`(H

′) \ C`(G′) = ∅ so, by inequality (4), we need
to show that C`(G

′) \ C`(H ′) = ∅. Towards a contradiction, suppose to the contrary that
there exists a family g ∈ C`(G′) \ C`(H ′). Since g ∈ C`(G′), by the definition of the choice
function, we have that

θg` (G
′) ≥ |Ĝ′g` |+ 1, (5)

but, since g /∈ C`(H ′), we also have that

θg` (H
′) < |Ĥ ′g` |+ 1. (6)

We now consider two subcases: g .` fi and fi .` g.
Sub-case 1.1 : g .` fi. In this case, as H ′ = G′ ∪{fi}, Ĝ′g` = Ĥ ′g` so |Ĝ′g` | = |Ĥ

′g
` | and, as a

family’s threshold only depends on higher-priority families (Algorithm 5), θg` (G
′) = θg` (H

′).
Combining these observations with inequalities (5) and (6) yields

θg` (G
′) ≥ |Ĝ′g` |+ 1 = |Ĥ ′g` |+ 1 > θg` (H

′) = θg` (G
′),

a contradiction.
Sub-case 1.2 : fi .` g. On the one hand, inequality (6) implies that θg` (H

′) 6=∞ so we can
apply Lemma 1(i) to obtain that θg` (G

′) 6=∞ and Lemma 1(iii) to obtain that

θfi` (G′) ≥ θg` (G
′). (7)

On the other hand, by the assumption that fi /∈ C`(H ′) in Case 1, we have that

θfi` (H ′) < |Ĥ ′fi` |+ 1. (8)

As H ′ = G′ ∪ {fi}, Ĝ′fi` = Ĥ ′fi` so |Ĝ′fi` | = |Ĥ ′fi` | and, as a family’s threshold only depends

on higher-priority families (Algorithm 5), θfi` (G′) = θfi` (H ′). Combining these observations
with inequality (8) yields

θfi` (G′) = θfi` (H ′) < |Ĥ ′fi` |+ 1 = |Ĝ′fi` |+ 1. (9)

69

Combining inequality (9) with the fact that |Ĝ′fi` | ≤ |Ĝ
′g
` | (as fi . g) and inequality (5) yields

θfi` (G′) < |Ĝ′fi` |+ 1 ≤ |Ĝ′g` |+ 1 ≤ θg` (G
′).

We conclude that θfi` (G′) < θg` (G
′), which contradicts inequality (7).

Case 2 : fi ∈ C`(H
′). In this case, we have that C`(H

′) \ C`(G′) = {fi}; hence, by
inequality (4), we need to show that |C`(G′)\C`(H ′)| ≤ 1. Towards a contradiction, suppose
that there exist two distinct families g1, g2 ∈ C`(G′) \C`(H ′). Without loss of generality, we
assume that g1 .` g2. Since g1, g2 ∈ C`(G′), by the definition of the choice function, we have
that

θg1` (G′) ≥ |Ĝ′g1` |+ 1 and θg2` (G′) ≥ |Ĝ′g2` |+ 1, (10)

but, since g1, g2 /∈ C`(H ′), we also have that

θg1` (H ′) < |Ĥ ′g1` |+ 1 and θg2` (H ′) < |Ĥ ′g2` |+ 1. (11)

We now consider two subcases: g1 .` fi and fi .` g1.
Sub-case 2.1 : g1 .` fi. In this case, as H ′ = G′ ∪ {fi}, Ĝ′g1` = Ĥ ′g1` so |Ĝ′g1` | = |Ĥ

′g1
` | and,

as a family’s threshold only depends on higher-priority families (Algorithm 5), θg1` (G′) =
θg1` (H ′). Combining these observations with inequalities (10) and (11) yields

θg1` (G′) ≥ |Ĝ′g1` |+ 1 = |Ĥ ′g1` |+ 1 > θg1` (H ′) = θg1` (G′),

a contradiction.
Sub-case 2.2 : fi .` g1. Inequality (11) implies that θg2` (H ′) 6= ∞ so we can apply

Lemma 1(i) to obtain that θg2` (G′) 6=∞ and Lemma 1(iii) to obtain that θg1` (G′) ≥ θg2` (G′).

Moreover, as g1 .` g2 and g1 ∈ G, we have that Ĝg1
` ⊂ Ĝg2

` so |Ĝg1
` | < |Ĝ

g2
` |. Combining theses

observations with inequality (10) yields

θg1` (G′) ≥ θg2` (G′) ≥ |Ĝ′g2` |+ 1 > |Ĝ′g1` |+ 1.

We therefore conclude that
θg1` (G′) ≥ |Ĝ′g1` |+ 2. (12)

Since θg1` (H ′) 6=∞, we have two cases to consider: θg1` (H ′) = 0 and θg1` (H ′) ∈ Z>0.
Sub-sub-case 2.2.1 : θg1` (H ′) = 0. In this case, by the definition of thresholds (Algo-

rithm 5), there exists a family h ∈ F such that (i) either h = g1 or h .` g1 and (ii) ` cannot

weakly accommodate h alongside Ĥ ′h` . First, as h has a weakly higher priority than g1 and
θg1` (G′) 6=∞ (by inequality (11) and Lemma 1(i)), we can apply Lemma 1(iii) to obtain that

θg1` (G′) ≤ θh` (G′). Second, as G′ ⊆ H ′, we have that Ĝ′h` ⊆ Ĥ ′h` ; therefore, Ĥ ′h` is a subset

of F̂ h
` that contains all families in Ĝ′h` and alongside which ` cannot weakly accommodate

h. By the definition of thresholds (Algorithm 5), it follows that θh` (G′) ≤ |Ĥ ′h` |. Third, as

H ′ = G′ ∪ {fi}, we have that |Ĥ ′h` | ≤ |Ĝ′h` | + 1. Fourth, as h has a weakly higher priority

than g1, we have that |Ĝ′h` | ≤ |Ĝ
′g1
` |. Combining these four observations yields

θg1` (G′) ≤ θh` (G′) ≤ |Ĥ ′h` | ≤ |Ĝ′h` |+ 1 ≤ |Ĝ′g1` |+ 1,

70

which contradicts inequality (12).
Sub-sub-case 2.2.2 : θg1` (H ′) ∈ Z>0. In this case, we can apply Lemma 1(ii) to obtain

that θg1` (H ′) ≥ θg1` (G′). Moreover, as H ′ = G′ ∪ {fi} and fi ∈ Ĥ ′g1` (by the assumption of

Sub-case 2.2), fi .` g1), we have that |Ĥ ′g1` | = |Ĝ
′g1
` |+ 1. Combining these observations with

inequality (12) yields

θg1` (H ′) ≥ θg1` (G′) ≥ |G′g1` |+ 2 = |H ′g1` |+ 1,

which contradicts inequality (11) and completes the proof of Claim 2.

TKDA is Weakly Envy-free

Towards a contradiction, suppose that µTKDA is not weakly envy-free. Then, by Defini-
tion 10(iii), there exists a family f ′ ∈ F matched to a locality `′ ∈ L (i.e., µTKDA(f ′) = `′)

such that `′ cannot weakly accommodate f ′ alongside Ĝ = {g ∈ F : g .`′ f
′ and `′ �g

µTKDA(g)}. Let N be the last round of the TKDA algorithm and, for all i = 1, . . . , N ,

denote by Πi
`′ the set of families that propose to `′ and by θf

′

`′ (Πi
`′) the threshold of family

f ′ for locality `′ in Round i.
Consider Round N . By construction, `′ does not permanently reject any family and

µTKDA(`′) = ΠN
`′ . If θf

′

`′ (ΠN
`′) = ∞, then locality `′ can weakly accommodate f ′ alongside

F̂ f ′

`′ . This is a contradiction since Ĝ ⊆ F̂ f ′

`′ . Therefore, θf
′

`′ (ΠN
`′) 6=∞.

Suppose now that, throughout the algorithm, `′ does not permanently reject any family
that has a higher priority than f ′ (i.e., `′ does not permanently reject any family in F̂ f ′

`′).

In that case, all families in F̂ f ′

`′ are matched to either `′ or a more preferred locality so

Ĝ = ΠN
`′ ∩ F̂

f ′

`′ . Since `′ does not permanently reject f ′, `′ can weakly accommodate f ′

alongside Ĝ = ΠN
`′ ∩ F̂

f ′

`′ , a contradiction.

We have therefore established that θf
′

`′ (ΠN
`′) 6=∞ and that locality `′ permanently rejects

at least one family that has a higher priority than f ′. Let g be the highest-priority family that
`′ permanently rejects (by assumption, g.`′ f

′) and let i = 1, . . . , N−1 be the round in which
`′ permanently rejects g. All families that have a higher priority than g and that propose to `′

at some point in the algorithm must also propose to `′ in Round N so (Πi
`′∩F̂

g
`′) ⊆ (ΠN

`′ ∩F̂
g
`′).

There are two remaining cases to consider: θg`′(Π
i
`′) = 0 and θg`′(Π

i
`′) ∈ Z>0.

Case 1 : θg`′(Π
i
`′) = 0. By definition, locality `′ cannot weakly accommodate g alongside

Πi
`′ ∩ F̂

g
`′ ; therefore `′ cannot weakly accommodate g alongside ΠN

`′ ∩ F̂
g
`′ , meaning that

θg`′(Π
N
`′) = 0. By Lemma 1(iii), θf

′

`′ (ΠN
`′) = 0 so `′ permanently rejects f ′ in Round N , a

contradiction.
Case 2 : θg`′(Π

i
`′) ∈ Z>0. By assumption, locality `′ permanently rejects g in Round i.

First, since (Πi
`′ ∩ F̂

g
`′) ⊆ (ΠN

`′ ∩ F̂
g
`′), Lemma 1(ii) applies and yields

θg`′(Π
N
`′ ∩ F̂

g
`′) ≤ θg`′(Π

i
`′ ∩ F̂

g
`′) + |ΠN

`′ ∩ F̂
g
`′ | − |Π

i
`′ ∩ F̂

g
`′|. (13)

Second, from Algorithm 5, the threshold of a family at a given locality only depends on

71

families with a higher priority at that locality; therefore

θg`′(Π
i
`′) = θg`′(Π

i
`′ ∩ F̂

g
`′) and θg`′(Π

N
`′) = θg`′(Π

N
`′ ∩ F̂

g
`′). (14)

Finally, by Lemma 1(iii), we have that

θf
′

`′ (ΠN
`′) ≤ θg`′(Π

N
`′). (15)

Combining (13), (14), and (15), we obtain that

θf
′

`′ (ΠN
`′) ≤ θg`′(Π

N
`′) ≤ θg`′(Π

i
`′) + |ΠN

`′ ∩ F̂
g
`′ | − |Π

i
`′ ∩ F̂

g
`′ |. (16)

Finally, the fact that g .`′ f
′ implies that |ΠN

`′ ∩ F̂
g
`′| ≤ |ΠN

`′ ∩ F̂
f ′

`′ | and the fact that `′

permanently rejects g in Round i implies that θg`′(Π
i
`′) < |Πi

`′ ∩ F̂
g
`′|+ 1, or, equivalently, that

θg`′(Π
i
`′)− |Πi

`′ ∩ F̂
g
`′ | < 1. Therefore, we have that

θg`′(Π
i) + |ΠN

`′ ∩ F̂
g
`′| − |Π

i
`′ ∩ F̂

g
`′ | < |Π

N
`′ ∩ F̂

f ′

`′ |+ 1. (17)

Combining (16) and (17) yields θf
′

`′ (ΠN
`′) < |ΠN

`′ ∩ F̂
f ′

`′ |+ 1. Therefore, `′ permanently rejects
f ′ in Round N , a contradiction.

Proof of Lemma 1

Proof of (i) If θf` (G) =∞, then ` can weakly accommodate f alongside F̂ f
` , which implies

θf` (H) =∞. The converse is proved analogously.

Proof of (ii) We have assumed that θf` (H) ∈ Z>0. We first show that θ̃f` (H), θ̃f` (G), θf` (G) ∈
Z>0. If either θ̃f` (H) =∞, θ̃f` (G) =∞, or θf` (G) =∞, ` can weakly accommodate f along-

side F̂ f
` , which implies that θf` (H) = ∞, a contradiction. It remains to show that none of

θ̃f` (H), θ̃f` (G), or θf` (G) are equal to 0. Since θ̃f` (H) 6= ∞, θf` (H) ≤ θ̃f` (H) by definition

(Algorithm 5); therefore θ̃f` (H) = 0 implies θf` (H) = 0, a contradiction. If θ̃f` (G) = 0, then `

cannot weakly accommodate f alongside Ĝf
` . Since Ĝf

` ⊆ Ĥf
` , ` cannot weakly accommodate

f alongside Ĥf
` so θ̃f` (H) = 0, a contradiction. If θf` (G) = 0 and θ̃f` (G) 6= 0, then there exists

g ∈ F̂ f
` such that θ̃g` (G) = 0. Since G ⊆ H, we have that θ̃g` (H) = 0. Hence, as g ∈ F̂ f

` , we

have that θf` (H) = 0, a contradiction.

Having established that θ̃f` (H), θ̃f` (G), θf` (G) ∈ Z>0, we next show that θ̃f` (G) ≤ θ̃f` (H).

As θ̃f` (H) ∈ Z>0, there exists a subset of families F̃ such that Ĥf
` ⊆ F̃ ⊆ F̂ f

` and |F̃ | = θ̃f` (H)

alongside which ` cannot weakly accommodate f . Since G ⊆ H, we have that Ĝf
` ⊆ Ĥf

` and

therefore Ĝf
` ⊆ Ĥf

` ⊆ F̃ . Hence, we obtain that θ̃f` (G) ≤ |F̃ | = θ̃f` (H) as required.

We next show that θ̃f` (H) ≤ θ̃f` (G) + |Ĥf
` | − |Ĝ

f
` |. As θ̃f` (G) ∈ Z>0, there exists a

subset of families F̃ such that Ĝf
` ⊆ F̃ ⊆ F̂ f

` and |F̃ | = θ̃f` (G) alongside which ` cannot

weakly accommodate f . Therefore, ` cannot weakly accommodate f alongside F̃ ∪ Ĥf
` so

θ̃f` (H) ≤ |F̃ ∪ Ĥf
` |. By construction, |F̃ ∪ Ĥf

` | = |F̃ |+ |Ĥ
f
` | − |F̃ ∩ Ĥ

f
` | and Ĝf

` ⊆ (F̃ ∩ Ĥf
`)

72

so |Ĝf
` | ≤ |F̃ ∩ Ĥ

f
` |. Combining the preceding results with the fact that |F̃ | = θ̃f` (G) yields

θ̃f` (H) ≤ |F̃ ∪ Ĥf
` | = |F̃ |+ |Ĥ

f
` | − |F̃ ∩ Ĥ

f
` | ≤ |F̃ |+ |Ĥ

f
` | − |Ĝ

f
` | = θ̃f` (G) + |Ĥf

` | − |Ĝ
f
` |.

We have now established that θ̃f` (G) ≤ θ̃f` (H) ≤ θ̃f` (G) + |Ĥf
` |− |Ĝ

f
` |. Since f was chosen

arbitrarily, we have

min
g∈F̂ f

` ∪{f}
θ̃g` (G) ≤ min

g∈F̂ f
` ∪{f}

θ̃g` (H) ≤ min
g∈F̂ f

` ∪{f}

{
θ̃g` (G) + |Ĥg

` | − |Ĝ
g
` |
}
. (18)

Let h = arg ming∈F̂ f
` ∪{f}

θ̃g` (G). Then, we have that

min
g∈F̂ f

` ∪{f}

{
θ̃g` (G) + |Ĥg

` | − |Ĝ
g
` |
}
≤ θ̃h` (G) + |Ĥh

` | − |Ĝh
` |. (19)

In addition, we have that

|Ĥh
` | − |Ĝh

` | = |Ĥh
` \ Ĝh

` | ≤ |Ĥ
f
` \ Ĝ

f
` | = |Ĥ

f
` | − |Ĝ

f
` |, (20)

where the two equalities follow from the fact that Ĝh
` ⊆ Ĥh

` and Ĝf
` ⊆ Ĥf

` while the fact

that (Ĥh
` \ Ĝh

`) ⊆ (Ĥf
` \ Ĝ

f
`) (as h ∈ F̂ f

`) implies the inequality. Combining (18), (19), and
(20), we obtain

min
g∈F̂ f

` ∪{f}
θ̃g` (G) ≤ min

g∈F̂ f
` ∪{f}

θ̃g` (H) ≤ θ̃h` (G) + |Ĥf
` | − |Ĝ

f
` |. (21)

Finally, using the fact that θf` (G), θf` (H) ∈ Z>0 and the definition of θf` from Algorithm 5,
we obtain that

θf` (G) = min
g∈F̂ f

` ∪{f}
θ̃g` (G) = θ̃h` (G) and θf` (H) = min

g∈F̂ f
` ∪{f}

θ̃g` (H). (22)

Combining (21) and (22) yields

θf` (G) ≤ θf` (H) ≤ θf` (G) + |Ĥf
` | − |Ĝ

f
` |,

as required.

Proof of (iii) We have assumed that g .` f and θf` (G) 6= ∞. To prove the first part of

the statement, we need to show that θg` (G) ≥ θf` (G). If θg` (G) =∞, the result is immediate

since θf` (G) is finite. If θg` (G) 6=∞, the definition of thresholds in Algorithm 5 implies that

θf` (G) = min
h∈Ĝf

`

θ̃h` and θg` (G) = min
h∈Ĝg

`

θ̃h` .

73

Then, the fact that g .` f implies Ĝg
` ⊆ Ĝf

` ; therefore

θg` (G) = min
h∈Ĝg

`

θ̃h` ≥ min
h∈Ĝf

`

θ̃h` = θf` (G),

as required.
To prove the second part of the statement we need to show that g ∈ G ⇔ g ∈ C`(G)

under the additional assumption that f ∈ C`(G). By definition of a choice function, if
g ∈ C`(G), then g ∈ G. It remains to show that f ∈ C`(G) and g ∈ G imply that g ∈ C`(G).

By definition of a choice function, g ∈ C`(G) whenever θg` (G) ≥ |Ĝg
` |+ 1 or, equivalently,

whenever θg` (G) − |Ĝg
` | ≥ 1. We have already established in the first part of the statement

that θg` (G) ≥ θf` (G). Additionally, since g .` f and g ∈ G, we have that Ĝg
` ⊂ Ĝf

` , and

therefore |Ĝg
` | < |Ĝ

f
` |. Taken together, these results imply that

θg` (G)− |Ĝg
` | > θf` (G)− |Ĝf

` |. (23)

Since f ∈ C`(G) by assumption, we have that θf` (G) ≥ |Ĝf
` | + 1 (by definition of a choice

function). Combining θf` (G)− |Ĝf
` | ≥ 1 with (23) yields

θg` (G)− |Ĝg
` | > θf` (G)− |Ĝf

` | ≥ 1.

We can conclude that θg` (G) > |Ĝg
` | + 1. By definition of a choice function, we have that

g ∈ C`(G), which completes the proof.

Proof of Proposition 8

We denote by d the unique dimension (i.e., D = {d}), and consider each mechanism sepa-
rately.

Proof that the KDA mechanism is envy-free Let N be the number of rounds after
which the KDA algorithm ends and let µ be the outcome of the KDA algorithm. We use a
piece of notation that was introduced in the proof of Theorem 5. For any family f ∈ F , any
locality ` ∈ L, and any Round i = 1, . . . , N , R̂i

f (`) denotes the set of families that have a
higher priority than f at ` and propose in Round i either to ` or to a less-preferred locality.

Towards a contradiction, suppose that µ is not envy-free. Then, by definition, there exist
two families f and f ′ such that f envies f ′. Letting `′ = µ(f ′), we have that `′ �f µ(f) and
f .`′ f

′. By construction, there exists a Round i in which `′ rejects f ; hence `′ cannot weakly
accommodate f alongside R̂i

f (`
′). Again by construction, we have that R̂i

f (`
′) ⊆ R̂N

f (`′) so

we conclude that `′ cannot weakly accommodate f alongside R̂N
f (`′).

As d is the only dimension, it must be that νfd > 0, and therefore the fact that `′ cannot

weakly accommodate f alongside R̂N
f (`′) implies by definition that νfd +

∑
g∈R̂N

f (`′) ν
g
d > κ`

′

d .

As f . f ′, it follows that νf
′

d +
∑

g∈R̂N
f ′ (`

′) ν
g
d > κ`

′

d . Therefore, `′ cannot weakly accommodate

f ′ alongside R̂N
f ′(`

′) and we conclude that, in Round N , either f ′ does not propose to `′

74

or `′ permanently rejects f ′; either conclusion contradicts the assumption that `′ = µ(f ′),
completing the proof.

Proof that the TKDA mechanism is envy-free Let N be the number of rounds after
which the TKDA algorithm ends and let µ be the outcome of the TKDA algorithm. We
use two pieces of notation that were introduced in the proof of Theorem 6. First, for any
Round i = 1, . . . , N and any locality ` ∈ L, Πi

` denotes set of families that propose to
locality ` in Round i. Second, for any family f ∈ F , any locality ` ∈ L, and any set of
families G ⊆ F , θf` (G) denotes f ’s threshold for ` (calculated by Algorithm 5) when the
families in G propose to `. Moreover, we will invoke Lemma 1, which was also introduced in
the proof of Theorem 6.

Towards a contradiction, suppose that µ is not envy-free. Then, by definition, there
exist two families f and f ′ such that f envies f ′. Without loss of generality, let f be the
highest-priority family among those that envy f ′. Formally, letting `′ = µ(f ′), we have that
`′ �f µ(f), that f .`′ f

′, and that for any f̃ 6= f such that `′ �f̃ µ(f̃), f .`′ f̃ . As `′ �f µ(f),
by construction there exists a Round i in which `′ permanently rejects f so we have that

θf`′(Π
i
`′) < |Πi

`′ ∩ F̂
f
`′ |+ 1. (24)

The next step consists of showing that the following inequality holds:

θf`′(Π
N
`′) < |ΠN

`′ ∩ F̂
f
`′ |+ 1. (25)

If θf`′(Π
N
`′) =∞, then by Lemma 1(i), θf`′(Π

i
`′) =∞, which contradicts (24) and, if θf`′(Π

N
`′) =

0, (25) holds trivially. Therefore, it remains to show that (25) holds in the case where
θf`′(Π

N
`′) ∈ Z>0. As f has the highest-priority among the families that envy f ′, by construc-

tion f is also the highest-priority family that `′ permanently rejects throughout the TKDA
algorithm; hence we have that Πi

`′ ∩ F̂
f
`′ ⊆ ΠN

`′ ∩ F̂
f
`′ . By Lemma 1(ii), it follows that

θf`′(Π
N
`′ ∩ F̂

f
`′) ≤ θf`′(Π

i
`′ ∩ F̂

f
`′) + |ΠN

`′ ∩ F̂
f
`′ | − |Π

i
`′ ∩ F̂

f
`′ |.

By construction (see Algorithm 5), f ’s threshold at `′ only depends on higher-priority families

so θf`′(Π
N
`′ ∩ F̂

f
`′) = θf`′(Π

N
`′) and θf`′(Π

i
`′ ∩ F̂

f
`′) = θf`′(Π

i
`′); hence we have that

θf`′(Π
N
`′) ≤ θf`′(Π

i
`′) + |ΠN

`′ ∩ F̂
f
`′ | − |Π

i
`′ ∩ F̂

f
`′ |,

which, combined with (24), implies (25).
Having established that inequality (25) holds, we now use it to reach the contradiction.

We consider separately two cases: θf
′

`′ (ΠN
`′) 6=∞ and θf

′

`′ (ΠN
`′) =∞.

Case 1 : θf
′

`′ (ΠN
`′) 6=∞. As f .`′f

′, we have that ΠN
`′ ∩F̂

f
`′ ⊆ ΠN

`′ ∩F̂
f ′

`′ and, by Lemma 1(iii),

θf
′

`′ (ΠN
`′) ≤ θf`′(Π

N
`′). Then, (25) implies that θf

′

`′ (ΠN
`′) < |ΠN

`′ ∩ F̂
f ′

`′ | + 1. It follows that, in
Round N , either f ′ does not propose to `′ or `′ permanently rejects f ′, both of which
contradict the assumption that `′ = µ(f ′).

Case 2 : θf
′

`′ (ΠN
`′) = ∞. By definition (see Algorithm 5), the case assumption implies

that `′ can weakly accommodate f ′ alongside F̂ f ′

`′ . As d is the only dimension, we have that

75

νf
′

d > 0 so, by definition: νf
′

d +
∑

g∈F̂ f ′
`′
νgd ≤ κ`

′

d . It follows that νfd +
∑

g∈F̂ f

`′
νgd < κ`

′

d ; hence

`′ can (weakly) accommodate f alongside F̂ f
`′ . By definition (see Algorithm 5), we conclude

that θf`′(Π
N
`′) =∞, which contradicts (25).

76

Online Appendix

A Efficiency of the TKDA algorithm

A.1 Lower bound on the efficiency of KDA and TKDA mechanisms

We now show the lower bound on the efficiency of the KDA and TKDA mechanisms.

Proposition 9. The KDA and TKDA mechanisms match at least one family to a locality
in L \ {∅}. If all families can be accommodated on their own at all localities, then the KDA
and TKDA mechanisms match at least min{|F |, |L| − 1} families to localities in L \ {∅}.

The intuition for Proposition 9 is as follows. First, if a family f that can be accommodated
at some locality ` is matched to the null locality, then f has been permanently rejected
by `. Therefore, there exists a family f ′ with a higher priority than f at ` that (i) can
be accommodated on its own at ` and (ii) proposes to ` in some round of the KDA or
TKDA algorithm. In turn, family f ′ would only be matched to the null locality if there
is a yet another higher priority family f ′′ and, by induction, it is not possible that all
families be matched to the null locality. Second, consider the case where all families can be
accommodated on their own at all localities. If fewer than |L| − 1 families are matched to
non-null localities, then either there are fewer than |L| − 1 families in the market or at least
one family f is matched to the null locality while a non-null locality ` is not matched to any
family. This yields a contradiction since f proposes to and is permanently rejected by ` in
some round of the KDA or TKDA algorithms.

A.2 TKDA with Clinching algorithm

In this section, we present a modification of the TKDA algorithm that improves its effi-
ciency without affecting its properties. The TKDA with Clinching (TKDAC) algorithm
(Algorithm 7) starts with a Clinching Round that creates a new priority profile. The TKDA
algorithm is then run using the new priority profile.

Proposition 10. The TKDAC mechanism is strategy-proof and weakly envy-free. Moreover,
µTKDAC � µTKDA.

The idea of the TKDAC algorithm is to identify family-locality pairs that will necessarily
be matched together by the TKDA algorithm. If locality ` is family f ’s first preference and
` can weakly accommodate f alongside all higher-priority families, then µTKDA(f) = `: f
proposes to ` and ` tentatively accepts f ’s proposal throughout the algorithm because f ’s
threshold at ` is ∞. In the Clinching Round of the TKDAC algorithm, family f clinches
locality `. Then we construct a new priority profile in which f moves to the bottom of
the priority list of every locality `′ such that ` �f `′. The change in the priority profile
does not affect f ’s match in the TKDA algorithm, since f will be matched to `, no matter
what f ’s priority for less-preferred localities. However, the change in the priority profile may
positively affect families that propose to f ’s less-preferred localities since their thresholds at
these localities are no longer affected by f .

77

Round 1 Round 2 Round 3 Round 4
f1 → `1 [1] 3 `1 [0] 7 `2 [∞] 3 `2 [∞] 3

f2 → `2 [1] 3 `2 [1] 3 `2 [0] 7 `1 [∞] 3

f3 → `2 [1] 7 `1 [∞] 3 `1 [∞] 3 `1 [∞] 3

Table 9: TKDAC* algorithm applied to Example 4.

To illustrate how clinching can improve families’ welfare, consider a locality `1 and three
families f1, f2, and f3 such that .`1 : f1, f2, f3, There is only one dimension d1 and the
sizes and capacities are (f1 f2 f3 `1

d1 2 1 1 2
)
.

Consider what happens if f2 and f3 both propose to `1 in some round of the TKDA algorithm.
The thresholds are θf1`1 =∞ (since f1 has the highest priority for `1 and `1 can accommodate

f1 on its own) and θf2`1 = θf3`1 = 1 (since `1 can (weakly) accommodate each of f2 or f3 on its
own but not alongside f1). Therefore, `1 tentatively accepts f2’s proposal (since f2’s priority
rank among proposing families is 1 = θf2`1) and permanently rejects f3’s proposal (since f3’s

priority rank among proposing families is 2 > 1 = θf3`1). Observe that `1 permanently rejects
f3 even though `1 can (weakly) accommodate both proposing families.

Suppose, however, that f1’s first preference is another locality `2 and that `2 can (weakly)
accommodate f1 alongside all higher-priority families. Then, the clinching round identifies
this pair and f1 clinches `2. The Clinching Round produces a priority profile .̃ such that
f2 .̃`1f3 .̃`1f1. If the TKDA algorithm is run with the new priority profile .̃ and f2 and f3 both
propose to `1, we have that θf2`1 = θf3`1 =∞ since f2 and f3 now have the two highest priorities
for `1 and therefore `1 can accommodate both f2 and f3. As a consequence, following the
Clinching Round, `1 no longer permanently rejects f3 resulting into a Pareto improvement
over the original TKDA mechanism.

The TKDAC algorithm also allows families to clinch localities that are not their first
preferences. In Step 1 of the Clinching Round, locality ` rejects family f if ` cannot accom-
modate f on its own (as no clinches have occurred before the start of Step 1). If ` rejects f
and f receives a proposal from its second-preference locality `′, i.e., if `′ can weakly accom-
modate f alongside all higher-priority families, then it can be established that the TKDA
algorithm would match f to `′. Therefore, f clinches `′, i.e., f goes to the bottom of the
priority list of all of f ’s less-preferred localities. In Step 2, these localities may propose to
new families as a result. In addition, `′ now rejects every family with a lower priority than f
at `′ that `′ cannot weakly accommodate alongside f . The Clinching Round continues until
there is a step in which no family clinches any locality. Online Appendix B.4 provides an
example of the TKDAC algorithm.

A.3 Why clinching any proposing locality affects incentives for truth-telling

As clinching improves efficiency, one might consider allowing families to clinch any locality
that proposes to them (whether or not they have been rejected by all of their more preferred
localities). Suppose we allowed family f to clinch a locality ` as long as ` can weakly

78

Algorithm 7: TKDA with Clinches (TKDAC)

Clinching Round

Step 0

No locality rejects or proposes to any family and no family clinches any locality.

Set .̃1 = . and continue to Step 1.

Step j ≥ 1

(a) Locality ` rejects family f if ` cannot weakly accommodate f alongside the
families that (i) clinched ` in Step j − 1 and (ii) are higher than f on .̃j`.

(b) Locality ` proposes to family f if ` can weakly accommodate f alongside all
families that are higher than f on .̃j`.

(c) Family f clinches locality ` if (i) ` proposed to f in part (b) and (ii) ` is f ’s
most preferred locality that did not reject f in part (a).

(d) If at least one clinch occurred in part (c) that did not occur in Step j − 1,
continue to part (e). Otherwise, set .̃ = .̃j and continue to the TKDA algorithm.

(e) Construct .̃j+1 as follows, then continue to Step j + 1. For every ` ∈ L and
every f, f ′ ∈ F with f .` f

′,

� f ′ .̃j+1
` f if, in part (c), (i) f clinched a locality that f strictly prefers to `

and (ii) f ′ did not clinch a locality that f ′ strictly prefers to `;

� f .̃j+1
` f ′ otherwise.

TKDA

Run the TKDA algorithm with the priority profile .̃.

accommodate f alongside all higher-priority families, even if there are other localities that
f prefers and that have not rejected f .

Formally, consider the following modification to the Clinching Round in Algorithm 7:
remove condition (ii) of part (c) in every Step j. We call TKDAC* algorithm the TKDAC
algorithm with the modified Clinching Round. Therefore, the TKDAC* algorithms differs
from the TKDAC algorithm by the fact that, in the Clinching Round, a family f clinches
any locality that proposes to f .

Unfortunately, the TKDAC* algorithm is not strategy-proof, as the following example
shows.

79

Example 4. There are three families, three localities, and one dimension. The preferences,
priorities, family sizes, and locality capacities are

�f1 : `1, `2, `3 �f2 : `2, `1, `3 �f3 : `1, `2, `3
.`1 : f2, f3, f1 .`2 : f1, f2, f3 .`3 : f1, f2, f3

ν =
(f1 f2 f3

d1 2 1 1
)

κ =
(`1 `2 `3

d1 2 2 2
)
.

Suppose that all families report truthfully. In the modified Clinching Round, every family
receives a proposal from its second-preference locality. Since `3 is every families’ third- and
last-preference locality, the modified Clinching Round does not affect the localities’ priorities.
As a result, the priority profile .̃ that is used in the TKDA algorithm is the same as the
original priority profile ..42

The TKDA algorithm—summarized in Table 4—yields the following matching:(
f1 f2 f3
`2 `1 `1

)
.

Suppose now that family f1 reports �′f1 : `1, `3, `2 while the other two families report their
true preferences. In the modified Clinching Round, f1 clinches `3 and drops to the bottom
of `2’s priority list; therefore, we have a new priority list .̃`2 : f2, f3, f1.

43 Families f2 and
f3 clinch locality f1, but this proposal is inconsequential since f3 already has the highest
priority for `3. Therefore, the modified Clinching Round does not modify the priorities of `1
and `3, i.e., .̃`1 = .`1 and .̃`3 = .`3 .

The TKDA algorithm is then run with the priority profile .̃. In the first round, f1
proposes to `1 and is tentatively accepted as θf1`1 = 1 and no other family proposes to `1.
Families f2 and f3 both propose to `2. Since f2 and f3 both now have a higher priority
than f1 and `2 can accommodate them together and `2 tentatively accepts both families (as
θf2`2 = θf3`2 =∞). The TKDA algorithm ends and yields the matching(

f1 f2 f3
`1 `2 `2

)
.

Clearly, f1’s manipulation has been successful since f1 is now matched to its first-
preference locality `1 instead of its second-preferences locality `2. The reason why f can
successfully manipulate is that by clinching `3, f1 allows f3 to be tentatively accepted by `2;
as a result, f3 does not compete with f1 for `1.

Note that the TKDAC algorithm precludes f1’s manipulation opportunity in Example 4
because the TKDAC algorithm only allows f1 to clinch a `3 when it has been established
that the TKDA algorithm will not match f1 to any locality that f1 prefers to `3 (i.e., `1).

42Family f1 also receives a proposal from `3, but this proposal is inconsequential since `3 is f1’s least-
preferred locality.

43Family f1 also receives a proposal from `2, but this proposal is inconsequential since `2 is f1’s reported
least-preferred locality.

80

A.4 Proofs

Proof of Proposition 9

We first show that the TKDA mechanism matches at least one family to a locality. Recall
that we assume throughout that for every family f ∈ F , there exists a locality ` ∈ L \ {∅}
such that ` can accommodate f on its own (see Section 3). Without loss of generality, let
f be the highest-priority family among those that ` can accommodate on their own. Recall
that we assume throughout that localities prioritize families they can accommodate on their
own over families that they cannot accommodate (see Section 3) so f has the highest priority
at ` among all families. Therefore, θf` =∞ throughout the TKDA algorithm, which means
that ` does not permanently reject f in any round of the TKDA algorithm. If f proposes to
`, µTKDA(f) = ` �f ∅; otherwise, f does not propose to `, so µTKDA(f) �f ` �f ∅. In both
cases, f is matched to a locality that is not the null.

We next show that if all families can be accommodated on their own at all localities
then the TKDA mechanism matches at least min{|F |, |L| − 1} families to a locality other
than the null. Towards a contradiction, suppose that |F \ µTKDA(∅)| < min{|F |, |L| − 1}.
Then, µTKDA(∅) 6= ∅ and there exists ` ∈ L \ {∅} such that µTKDA(`) = ∅. Since we
assume that ∅ is every family’s last preference and µTKDA(`) = ∅, ` receives at least one
proposal. Let f be the highest-priority family among those that propose to ` at least once
in the TKDA algorithm. Since the hypothesis states that ` can accommodate f on its own,
θf` ≥ 1 throughout the TKDA algorithm. In every round in which f proposes to `, f has
the highest priority among proposing families so ` never permanently rejects f . This means
that f ∈ µTKDA(`), which contradicts µTKDA(`) = ∅.

Since the KDA mechanism is family optimal, we have that µKDA � µTKDA. Moreover, ∅
is every family’s last preference. Hence, the result also holds for the KDA mechanism.

Proof of Proposition 10

First notice that the TKDAC algorithm simply runs the TKDA algorithm with a different
priority profile. Since the matching produced by the TKDA algorithm does not violate any
priority constraint (see the proof of Theorem 6), the same is true of the TKDAC algorithm,
i.e., for every ` ∈ L, ` can accommodate µTKDAC(`).

We next introduce some notation, which we use throughout the proof. Consider the
Clinching Round and let N be its total number of steps. We use throughout the convention
that .̃0 = .. For every Step j = 0, 1, . . . , N , every f ∈ F , and every ` ∈ L, let

� F̂ f
` (.̃j) be the set of families that are higher than f on .̃j`;

� ∆j
f be the set of localities that reject f in Step j;

� Γjf be the set of localities that propose to f in Step j; and

� Θj
` be the set of families that clinch ` in Step j.

Note that F̂ f
` (.̃0) = F̂ f

` (.̃1) = F̂ f
` (.) = F̂ f

` and F̂ f
` (.̃N) = F̂ f

` (.̃). Since no rejections,
proposals, or clinches occur in Step 0, we also have ∆0

f = Γ0
f = Θ0

` = ∅.

81

The following two lemmata are key to our analysis. Their proofs can be found directly
after the current proof.

Lemma 2. For every Step j = 1, . . . , N , every family f ∈ F , and every locality ` ∈ L:

(i) If f /∈ Θj−1
`′ for all `′ ∈ L such that `′ �f `, then F̂ f

` (.̃j) ⊆ F̂ f
` (.̃j−1);

(ii) ∆j−1
f ⊆ ∆j

f ;

(iii) If ` ∈ Γj−1f \ Γjf , then there exists `′ ∈ L such that `′ �f ` and f ∈ Θj−1
`′ ; and

(iv) Θj−1
` ⊆ Θj

`.

Part (i) of Lemma 2 says that if family f has not clinched a locality that f prefer to `,
then the set of families who are higher than f at ` shrinks throughout the Clinching Round.
Part (ii) says that the set of localities that are rejecting f grows throughout the Clinching
Round. Part (iii) says that if ` stops proposing to f , then f has clinched a more preferred
locality. Part (iv) says that the set of families that have cliched ` grows throughout the
Clinching Round.

Lemma 3. For every Step j = 1, . . . , N , every family f ∈ F , and every locality ` ∈ L:

(i) If ` ∈ ∆j
f , then µTKDAC(f) 6= `;

(ii) If ` ∈ Γjf , then µTKDAC(f) �f `; and

(iii) If f ∈ Θj
`, then µTKDAC(f) = `.

Part (i) of Lemma 3 says that if a locality ` rejects a family f in the Clinching Round,
then the TKDAC algorithm will not match f to `. Part (ii) says that if ` proposes to f in
the Clinching Round, then f will be matched to ` or a more preferred locality under the
TKDAC algorithm. Part (iii) says that if f clinches ` in the Clinching Round, then the
TKDAC algorithm will match f to `.

We now use Lemmata 2 and 3 to show that the TKDAC mechanism is strategy-proof
and weakly envy-free and that µTKDAC � µTKDA.

TKDAC is Strategy-proof

We consider a family f and a report �′f . We need to show that

ϕTKDAC(�)(f) � ϕTKDAC(�′f ,�−f)(f).

We use our usual notation—N , .̃j, ∆j
f , Γjf , and Θj

`—for the TKDAC algorithm run with the

preference profile �, i.e., when f reports truthfully. We denote by N , .j, ∆
j

f , Γ
j

f , and Θ
j

` the
counterparts in the TKDAC algorithm run with the preference profile (�′f ,�−f), i.e., when
f misreports its preferences.

Consider the Clinching Round when the preference profile is �. If f clinches a locality,
let Step m be the first step in which f clinches the locality; formally, f /∈ ∪`∈L{Θj

`} for

82

all j = 1, . . . ,m − 1 and f ∈ ∪`∈L{Θj
`} for all j = m, . . . , N . (By Lemma 2(iv), once a

family clinches a locality, it continues to clinch the same locality in all remaining steps so
m is well defined.) If f does not clinch any locality, let m =∞; formally, m =∞ whenever
f /∈ ∪`∈L{ΘN

` }. We define m analogously for the preference profile (�′f ,�−f). The following
lemma guarantees that the Clinching Round is unaffected by f ’s report until f clinches a
locality.

Lemma 4. Let q = min{m,m,N,N}. For every j = 1, . . . , q, every g ∈ F , and every ` ∈ L,

Θj
` \ {f} = Θ

j

` \ {f}, ∆j
g = ∆

j

g, Γjg = Γ
j

g, and .̃j = .j.

Moreover, if j < min{m,m}, then Θj
` = Θ

j

` for all ` ∈ L.

(The proof of Lemma 4 follows after the current proof.) There are four cases to consider.

Case 1 : m =∞ and m =∞. In this case, f does not clinch any locality in the Clinching
Round, irrespective of whether f reports �f or �′f . Then, q = min{N,N} < min{m,m}.
If N ≤ N , then q = N and ΘN−1

` = ΘN
` for all ` ∈ L since, by construction, the Clinching

Round ends when the same clinches occur in two consecutive steps. By Lemma 4, ΘN−1
` =

Θ
N−1
` and ΘN

` = Θ
N

` for all ` ∈ L; therefore, Θ
N−1
` = Θ

N

` for all ` ∈ L, which means that

N = N . Then, since .̃N = .N by Lemma 4, we conclude that .̃ = .. We have established
that, whether f reports �f or �′f , the Clinching Round ends in the same step and produces
the same adjusted priority profile. Then, ϕTKDAC(�)(f) is the matching produced by the
TKDA algorithm when the preference and priority profiles are � and .̃ respectively while
ϕTKDAC(�′f ,�−f)(f) is the matching produced by the TKDA algorithm when the preference
and priority profiles are (�′f ,�−f) and . = .̃ respectively. Since the TKDA algorithm is
strategy-proof (Theorem 6), we conclude that ϕTKDAC(�)(f) �f ϕTKDAC(�′f ,�−f)(f), as

required. Analogous reasoning yields the same result for the case where N ≥ N .

Case 2 : m ≤ min{m,N}. In this case, if f reports truthfully, then f clinches a locality
in Step m of the Clinching Round and, if f reports �′f , then f either clinches a locality

in Step m ≥ m or does not clinch any locality. Since m ≤ min{m,N}, q = min{m,N}.
Towards a contradiction, suppose that m > N . Then, q = N < min{m,m}. As the
Clinching Round ends whenever the same clinches occur in two consecutive rounds, we have

that ΘN−1
` = ΘN

` for all ` ∈ L. Moreover, Lemma 4 implies that ΘN−1
` = Θ

N−1
` and ΘN

` = Θ
N

`

for all ` ∈ L. It follows that Θ
N−1
` = Θ

N

` , so N = N , which contradicts our assumption that
N < m ≤ N .

We have established that m ≤ N ; hence q = m. When f reports truthfully, f clinches a
locality denoted by ` in Step m of the Clinching Round, i.e., f ∈ Θm

` . By Lemma 3(iii), we
have that ϕTKDAC(�)(f) = `. By construction (Step m(c) of the Clinching Round), f ∈ Θm

`

implies that, for all `′ ∈ L with `′ �f `, `′ ∈ ∆m
f . By Lemma 4, ∆m

f = ∆
m

f ; therefore `′ ∈ ∆
m

f

for all `′ ∈ L such that `′ �f `. By Lemma 3(i), it follows that ϕTKDAC(�′f ,�−f)(f) 6= `′

for all `′ ∈ L such that `′ �f `; therefore ` �f ϕTKDAC(�′f ,�−f)(f), as required.

Case 3 : m ≤ min{m,N}. In this case, if f reports �′f , then f clinches a locality in
Step m of the Clinching Round and, if f reports truthfully, then f either clinches a locality
in Step m ≥ m or does not clinch any locality. Since m ≤ {m,N}, q = min{m,N}. Using

83

analogous reasoning to Case 2, we establish that m ≤ N ; hence q = m. When f reports

�′f , f clinches a locality denoted by ` in Step m of the Clinching Round, i.e., f ∈ Θ
m

` .
By Lemma 3(iii), we have that ϕTKDAC(�′f ,�−f) = `. By construction (Step m(c) of the

Clinching Round), f ∈ Θ
m

` implies that ` ∈ Γ
m

f . By Lemma 4, Γmf = Γ
m

f so ` ∈ Γmf ; therefore,
by Lemma 3(ii), ϕTKDAC(�)(f) �f `, as required.

TKDAC is Weakly Envy-free

For ease of notation, let ` = µTKDAC(f).

Claim 3. For any family f ∈ F ,

{g ∈ F : g .` f and ` �g µTKDAC(g)} ⊆ {g ∈ F : g .̃`f and ` �g µTKDAC(g)}.

Consider a family f ∈ F and suppose, towards a contradiction, that there exists another
family h ∈ F such that

h ∈ {g ∈ F : g .` f and ` �g µTKDAC(g)} \ {g ∈ F : g .̃`f and ` �g µTKDAC(g)}.

By assumption, h .` f and f .̃` h; equivalently, f ∈ F̂ h
` (.̃) \ F̂ h

` . Therefore, there exists

a Step j = 1, . . . , N of the Clinching Round such that f ∈ F̂ h
` (.̃j) \ F̂ h

` (.̃j−1). By the
contrapositive of Lemma 2(i), it follows that h ∈ Θj−1

`′ for some `′ ∈ L such that `′ �h `.
By Lemma 3(iii), we have that µTKDAC(h) = `′. We conclude that µTKDAC(h) �h `, a
contradiction since, by assumption, ` �h µTKDAC(h). This establishes Claim 3.

We now show that µTKDAC is weakly envy-free. Towards a contradiction, suppose
µTKDAC is not weakly envy-free. Then, there exists a family f ∈ F such that ` cannot
weakly accommodate f alongside {g ∈ F : g .` f and ` �g µTKDAC(g)}. By Claim 3, it
follows that ` cannot weakly accommodate f alongside {g ∈ F : g .̃`f and ` �g µTKDAC(g)}.
As µTKDAC is by construction the result of running the TKDA algorithm with the priority
profile .̃, we conclude that the TKDA mechanism is not weakly envy-free, a contradiction
of Theorem 6.

µTKDAC � µTKDA

We first introduce some additional notation. Let M be the number of rounds of the
TKDA algorithm and, for every i = 1, . . . ,M and every ` ∈ L, let Πi

` be the set of families

that propose to ` in Round i. Similarly, let M̃ be the number of rounds of the TKDAC
algorithm; that is, the TKDAC algorithm consists of a Clinching Round, which lasts N
steps, and then the TKDA algorithm is run with the constructed priority profile .̃ and lasts
M̃ rounds. For every i = 1, . . . , M̃ and every ` ∈ L, let Π̃i

` be the set of families that propose
to ` in Round i of the TKDAC algorithm. By definition (Algorithm 5), the threshold of a

family f at a locality ` only depends on higher-priority families; therefore, θf` (Πi
`∩ F̂

f
`) is the

threshold of family f for locality ` in Round i of the TKDA algorithm and θf` (Π̃i
` ∩ F̂

f
` (.̃))

is the threshold of family f for locality ` in Round i of the TKDAC algorithm.

84

Claim 4. In every Round i = 1, . . . , M̃ of the TKDAC algorithm, every family f ∈ F
proposes to a locality that f weakly prefers to µTKDA(f).

By construction, for every family f ∈ F , µTKDAC(f) is the locality to which f proposes

in Round M̃ of the TKDAC algorithm. Therefore, Claim 4 implies that µTKDAC(f) �f
µTKDA(f) for all f ∈ F , as required. It remains to prove Claim 4.

In Round 1 of the TKDAC algorithm, every family proposes to its most preferred locality;
therefore Claim 4 holds for i = 1. The remainder of the proof is by induction. We suppose
that Claim 4 holds for some i = 1, . . . , M̃ − 1 (induction hypothesis) and show that Claim 4
holds for i+ 1.

Consider any family f ∈ F and, for ease of notation, let ` = µTKDA(f). We need to
show that, in Round i+ 1 of the TKDAC algorithm, f proposes to a locality that f weakly
prefers to `. By our induction hypothesis, f proposes to a locality that f weakly prefers to
` in Round i. If f proposes to a locality that f strictly prefers to ` in Round i, then ` does
not permanently reject f in Round i so f proposes to a locality that f weakly prefers to ` in
Round i + 1, as required. We therefore focus on the case where f proposes to ` in Round i
of the TKDAC algorithm and need to show that ` tentatively accepts f ’s proposal. That is,
by the construction of the TKDA part of the TKDAC algorithm, we need to show that

θf` (Π̃i
` ∩ F̂

f
`) ≥ |Π̃i

` ∩ F̂
f
` |+ 1. (26)

First, as f proposes to ` in Round i, ` �f µTKDAC(f) by construction. Then, by
Lemma 3(iii), f does not clinch any locality that f strictly prefers to ` in the Clinching

Round. By Lemma 2(i), it follows that F̂ f
` (.̃) ⊆ F̂ f

` .
Second, by construction, family f proposes to and is tentatively accepted by ` in the last

round of the TKDA algorithm; hence

θf` (ΠM
` ∩ F̂

f
`) ≥ |ΠM

` ∩ F̂
f
` |+ 1. (27)

There are two cases: θf` (ΠM ∩ F̂ f
`) =∞ and θf` (ΠM ∩ F̂ f

`) 6=∞.

Case 1 : θf` (ΠM ∩ F̂ f
`) = ∞. In this case, by the definition of thresholds (Algorithm 5),

` can weakly accommodate f alongside F̂ f
` . As F̂ f

` (.̃) ⊆ F̂ f
` , ` can weakly accommodate

f alongside F̂ f
` (.̃). Again, by the definition of thresholds (Algorithm 5), we have that

θf` (Π̃i ∩ F̂ f
` (.̃)) =∞; hence inequality (26) is satisfied, as required.

Case 2 : θf` (ΠM ∩ F̂ f
`) 6=∞. There are two sub-cases: ` permanently rejects at least one

family with a higher priority than f at ` in the TKDA algorithm and ` does not permanently
reject any family with a higher priority than f at ` in the TKDA algorithm.

Sub-case 2.1 : ` permanently rejects at least one family with a higher priority than f
at ` in the TKDA algorithm. In this case, let g ∈ F be the highest-priority family that `
permanently rejects in the TKDA algorithm. Therefore, there exists a Round j = 1, . . . ,M
of the TKDA algorithm, g ∈ Πj

` and

θg` (Π
j
` ∩ F̂

g
`) < |Πj

` ∩ F̂
g
` |+ 1. (28)

As g is the highest-priority family that ` permanently rejects in the TKDA algorithm, any

85

family with a higher priority that proposes to ` in Round j continues to propose to ` until
the end of the algorithm; therefore, Πj

` ∩ F̂
g
` ⊆ ΠM

` ∩ F̂
g
` .

We next show that the following inequality holds:

θg` (Π
M
` ∩ F̂

g
`) < |ΠM

` ∩ F̂
g
` |+ 1. (29)

First, inequality (29) holds trivially if θg` (Π
M
` ∩ F̂

g
`) = 0. Second, inequality (28) implies

that θg` (Π
j
` ∩ F̂

g
`) 6= ∞; hence Lemma 1(i) implies that θg` (Π

M
` ∩ F̂

g
`) 6= ∞. Third, if

θg` (Π
M
` ∩ F̂

g
`) ∈ Z>0, then, as Πj

` ∩ F̂
g
` ⊆ ΠM

` ∩ F̂
g
` , we can apply Lemma 1(ii) to obtain that

θg` (Π
M
` ∩ F̂

g
`) ≤ θg` (Π

j
` ∩ F̂

g
`) + |ΠM

` ∩ F̂
g
` | − |Π

j
` ∩ F̂

g
` |. (30)

Combined with inequality (28), inequality (30) implies inequality (29).

As g .` f , we have that ΠM
` ∩ F̂

g
` ⊆ ΠM

` ∩ F̂
f
` . Moreover, as a family’s threshold only

depends on higher-priority families (Algorithm 5), θg` (Π
M
` ∩ F̂

f
`) = θg` (Π

M
` ∩ F̂

g
`). Combining

these observations with inequalities (29) and (27) yields

θg` (Π
M
` ∩ F̂

f
`) = θg` (Π

M
` ∩ F̂

g
`) < |ΠM

` ∩ F̂
g
` |+ 1 ≤ |ΠM

` ∩ F̂
f
` |+ 1 ≤ θf` (ΠM

` ∩ F̂
f
`). (31)

By inequality (28), θg` (Π
M
` ∩ F̂

f
`) 6= ∞; hence θg` (Π

M
` ∩ F̂

g
`) 6= ∞. Hence, we can apply

Lemma 1(iii) to obtain that

θg` (Π
M
` ∩ F̂

f
`) ≥ θf` (ΠM

` ∩ F̂
f
`),

which contradicts inequality (31). We therefore conclude that Sub-case 2.1 cannot occur.

Sub-case 2.2 : ` does not permanently reject any family with a higher priority than
f at ` in the TKDA algorithm. In this case, we first show that Π̃i

` ∩ F̂
f
` ⊆ ΠM

` ∩ F̂
f
` .

Towards a contradiction, suppose that there exists a family g ∈ (Π̃i
` ∩ F̂

f
`) \ (ΠM

` ∩ F̂
f
`). As

(Π̃i
` ∩ F̂

f
`) \ (ΠM

` ∩ F̂
f
`) = (Π̃i

` \ ΠM
`) ∩ F̂ f

` , we have that g ∈ Π̃i
`, g /∈ ΠM

` , and g ∈ F̂ f
` .

First, by our induction hypothesis, g proposes in Round i of the TKDAC algorithm to
a locality that g weakly prefers to µTKDA(g); therefore, the fact that g ∈ Π̃i

` implies that
` �g µTKDA(g). Second, as the TKDA algorithm matches g to the last locality to which
g proposes, the fact that g /∈ ΠM

` implies that ` 6= µTKDA(g). Third, by the assumption

of Sub-case 2.2, the fact that g ∈ F̂ f
` implies that ` does not permanently reject g in

the TKDA algorithm, hence µTKDA(g) �g `. Combining these observations, we have that
` �g µTKDA(g), ` 6= µTKDA(g), and µTKDA(g) �g `, a contradiction.

Having established that Π̃i
` ∩ F̂

f
` ⊆ ΠM

` ∩ F̂
f
` and that F̂ f

` (.̃) ⊆ F̂ f
` , we conclude that

Π̃i
`∩F̂

f
` (.̃) ⊆ ΠM

` ∩F̂
f
` . It follows that |Π̃i

`∩F̂
f
` (.̃)| ≤ |ΠM

` ∩F̂
f
` |. Moreover, as θf` (ΠM

` ∩F̂
f
`) 6=

∞ by the assumption of Case 2, and as θf` (ΠM
` ∩ F̂

f
`) 6= 0 by inequality (27), we have that

θf` (ΠM
` ∩ F̂

f
`) ∈ Z>0 so we can apply Lemma 1(ii) to obtain that

θf` (ΠM
` ∩ F̂

f
`) ≤ θf` (Π̃i

` ∩ F̂
f
` (.̃)) + |ΠM

` ∩ F̂
f
` | − |Π̃

i
` ∩ F̂

f
` (.̃)|. (32)

Combining inequality (32) with inequality (27) yields inequality (26), as required.

86

Proof of Lemma 2

We prove the lemma by a single induction argument. To show that the lemma holds for
j = 1, note that (i) .̃0 = .̃1 = .,(ii) ∅ = ∆0

f ⊆ ∆1
f for every f ∈ F , (iii) ∅ = Γ0

f ⊆ Γ1
f for

every f ∈ F , and (iv) ∅ = Θ0
` ⊆ Θ1

` for every ` ∈ L.
For the induction step, let us assume that part (iv) of the lemma holds for some j =

1, . . . , N , i.e., Θj−1
` ⊆ Θj

` for every ` ∈ L and every j = 1, . . . , N . We will show that the
assumption implies parts (i)-(iv) of the lemma in Step j+1. That is, we consider an arbitrary
family f ∈ F and an arbitrary locality ` ∈ L and show the following:

(i) If f /∈ Θj
`′ for all `′ ∈ L such that `′ �f `, then F̂ f

` (.̃j+1) ⊆ F̂ f
` (.̃j);

(ii) ∆j
f ⊆ ∆j+1

f ;

(iii) If ` ∈ Γjf \ Γj+1
f , then there exists `′ ∈ L such that `′ �f ` and f ∈ Θj

`′ ; and

(iv) Θj
` ⊆ Θj+1

` .

Proof of (i) We prove the contrapositive. Suppose there exists a family g ∈ F̂ f
` (.̃j+1) \

F̂ f
` (.̃j), then f .̃j`g and g .̃j+1

` f . We need to show that f clinches a locality that f strictly
prefers to ` in Step j. There are two cases: f .` g and g .` f .

Case 1 : f .` g. Since g .̃j+1
` f , then by construction (Step j(e) of the Clinching Round)

we have that f clinches a locality that f strictly prefers to ` in Step j(c) of the Clinching
Round.

Case 2 : g .` f . Since f .̃j`g, then by construction (Step j(e) of the Clinching Round), g
clinches a locality that g strictly prefers to ` in Step j − 1(c) of the Clinching Round. Since
we have assumed that Θj−1

` ⊆ Θj
`, g continues to clinch that locality in Step j(c) of the

Clinching Round. Since g .̃j+1
` f , we have that f clinches a locality that f strictly prefers to

` in Step j(c) of the Clinching Round.

Proof of (ii) Suppose that ` ∈ ∆j
f , we need to show that ` ∈ ∆j+1

f . As ` ∈ ∆j
f , ` cannot

weakly accommodate f alongside Θj−1
` ∩ F̂ f

` (.̃j). Similarly, ` ∈ ∆j+1
f if ` cannot weakly

accommodate f alongside Θj
` ∩ F̂

f
` (.̃j+1). Therefore, it is sufficient to show that

(Θj−1
` ∩ F̂ f

` (.̃j)) ⊆ (Θj
` ∩ F̂

f
` (.̃j+1)).

Towards a contradiction, suppose that there exists a family

g ∈ (Θj−1
` ∩ F̂ f

` (.̃j)) \ (Θj
` ∩ F̂

f
` (.̃j+1)).

Since we have assumed that Θj−1
` ⊆ Θj

`, we have that

g ∈ (Θj−1
` ∩ F̂ f

` (.̃j)) \ F̂ f
` (.̃j+1) = Θj−1

` ∩ (F̂ f
` (.̃j) \ F̂ f

` (.̃j+1)).

Since g ∈ F̂ f
` (.̃j`)\F̂

f
` (.̃j+1), we have that g .̃j`f and f .̃j+1

` g. Therefore, f ∈ F̂ g
` (.̃j+1

`)\F̂ g
` (.̃j)

and, as a result, F̂ g
` (.̃j+1

`) 6⊆ F̂ g
` (.̃j). Then, the contrapositive of (i) implies that g ∈ Θj

`′ for

87

some `′ ∈ L such that `′ �g `. Since g ∈ Θj−1
` and we have assumed that Θj−1

` ⊆ Θj
`, it

follows that g clinches both ` and `′ in Step j. This is a contradiction since, by construction
(Step j(c) of the Clinching Round), a family can clinch at most one locality in any given
step of the Clinching Round.

Proof of (iii) Suppose that ` ∈ Γjf \ Γj+1
f . Then, ` can weakly accommodate f along-

side F̂ f
` (.̃j) but not alongside F̂ f

` (.̃j+1), which implies that F̂ f
` (.̃j+1) 6⊆ F̂ f

` (.̃j). By the
contrapositive of (i), we have that f ∈ Θj

`′ for some `′ ∈ L such that `′ �f `.

Proof of (iv) Suppose that f ∈ Θj
`, we need to show that f ∈ Θj+1

` . By construction
(Step j(c) of Clinching Round), ` proposes to f in Step j(b) and all localities that f prefers
to ` reject f in Step j(a); that is, ` ∈ Γjf and, for all `′ ∈ L such that `′ �f `, `′ ∈ ∆j

f . Since

a family can clinch at most one locality in each step, f /∈ Θj
`′ for all `′ ∈ L such that `′ �f `.

By the contrapositive of (iii), ` /∈ Γjf \ Γj+1
f ; therefore ` ∈ Γj+1

f . Moreover, by (ii), `′ ∈ ∆j+1
f

for all `′ ∈ L such that `′ �f `. Therefore, ` proposes to f in Step j + 1 and all localities
that f prefers to ` reject f in Step j + 1, which means that f clinches ` in Step j + 1, i.e.,
f ∈ Θj+1

` .

Proof of Lemma 3

For ease of notation, let µ = µTKDAC . We consider a Step j = 1, . . . , N of the Clinching
Round, a family f ∈ F , and a locality ` ∈ L. We prove each part of the lemma in turn.

Proof of (i) We first show that if a family g is rejected by µ(g) in Step i = 2, . . . , N of
the Clinching Round, then a family h is rejected by µ(h) in Step i− 1.

Suppose that a family g ∈ F is rejected by µ(g) in Step i = 2, . . . , N of the Clinching
Round. Since µ(g) rejects g in Step i(a) of the Clinching Round, µ(g) cannot weakly accom-

modate g alongside Θi−1
µ(g) ∩ F̂

g
µ(g)(.̃

i). If all families in Θi−1
µ(g) ∩ F̂

g
µ(g)(.̃

i) are matched to µ(g)

at the end of the TKDAC algorithm (i.e., if (Θi−1
µ(g) ∩ F̂

g
µ(g)(.̃

i)) ⊆ µ(µ(g))), then µ(g) can

accommodate (Θi−1
µ(g)∩ F̂

g
µ(g)(.̃

i))∪{g}. Therefore, µ(g) can weakly accommodate g alongside

Θi−1
µ(g)∩ F̂

g
µ(g)(.̃

i), a contradiction. We conclude that there exists a family h ∈ Θi−1
µ(g)∩ F̂

g
µ(g)(.̃

i)

such that µ(h) 6= µ(g). Since h ∈ Θi−1
µ(g), we have that h ∈ ΘN

µ(g) by Lemma 2(iv). It

follows that µ(g) proposes to h in Step N of the Clinching Round, which in turn implies

that µ(g) can weakly accommodate h alongside F̂ h
` (.̃N) = F̂ h

` (.̃). Then, in every round of
the TKDAC algorithm, h’s threshold at µ(g) is ∞ (see Algorithm 5). It follows that µ(g)
tentatively accepts any proposal from h so the fact that µ(h) 6= µ(g) implies that h does not
propose to µ(g) in the TKDAC algorithm, hence µ(h) �h µ(g). Finally, since h ∈ Θi−1

µ(g) and

µ(h) �f µ(g), µ(h) rejects h in Step i− 1(c) of the Clinching Round, as required.
Now, suppose towards a contradiction that µ(f) ∈ ∆j

f . The preceding argument implies,
by induction, that there exists a family f ′ such that µ(f ′) ∈ ∆1

f ′ , i.e., µ(f ′) rejects f ′

in Step 1 of the Clinching Round. Then, µ(f ′) cannot weakly accommodate f ′ alongside

Θ0
µ(f ′) ∩ F̂

f ′

µ(f ′)(.̃
1). Since Θ0

µ(f ′) = ∅, it follows that µ(f ′) cannot weakly accommodate f ′ on

its own. Therefore, the threshold of f ′ at µ(f ′) is 0 in every round of the TKDAC algorithm.

88

We conclude that µ(f ′) permanently rejects any proposal from f ′, which contradicts the
assumption that f ′ is matched to µ(f ′) at the end of the TKDAC algorithm.

Proof of (ii) Suppose that ` ∈ Γjf . We need to show that µ(f) �f `. Then, by

Lemma 2(iii), ` ∈ Γjf implies that one of the following two cases holds: either ` ∈ ΓNf
or f ∈ Θj−1

`′ for some `′ ∈ L such that `′ �f `.
Case 1 : ` ∈ ΓNf . In this case, by construction (Step N(c) of the Clinching Round), `

can weakly accommodate f alongside F̂ f
` (.̃N) = F̂ f

` (.̃). Therefore, in every round of the
TKDAC algorithm, f ’s threshold at ` is ∞ (see Algorithm 5). It follows that ` tentatively
accepts any proposal from f in the TKDAC algorithm, hence µ(f) �f `, as required.

Case 2 : f ∈ Θj−1
`′ for some `′ ∈ L such that `′ �f `. In this case, Lemma 2(iv), we have

that f ∈ ΘN
`′ for some `′ ∈ L such that `′ �f `. Then, by construction (Step N(c) of the

Clinching Round), `′ proposes to f in Step N of the Clinching Round, i.e., `′ ∈ ΓNf . Then,
f ’s threshold at `′ is ∞ in every round of the TKDAC algorithm, hence µ(f) �f `′ �f `, as
required.

Proof of (iii) Suppose that f ∈ Θj
`. Then, by construction (Step j(c) of the Clinching

Round) we have that ` ∈ Γjf and, for all `′ ∈ L such that `′ �f `, it is the case that `′ ∈ ∆j
f .

From parts (i) and (ii) of the lemma, we obtain that µ(f) �f ` and that µ(f) 6= `′ for all
`′ ∈ L such that `′ �f `. We conclude that µ(f) = `, as required.

Proof of Lemma 4

We prove the first part of the lemma by a single induction argument. For the initial step,

we have that Θ0
` = Θ

0

` = ∅ for all ` ∈ L.

For the induction step, let us assume that Θj−1
` \ {f} = Θ

j−1
` \ {f} holds for some

j = 1, . . . , q and all ` ∈ L. We will show that .̃j = .j, ∆̃j
g = ∆

j

g, Γ̃jg = Γ
j

g, and, finally, that

Θj
` \ {f} = Θ

j

` \ {f} for all g ∈ F and ` ∈ L.
Since j ≤ q, we have that j − 1 < min{m,m}. Therefore, f does not clinch any locality

in Step j − 1 of the Clinching Round with either report; therefore, Θj−1
` \ {f} = Θ

j−1
` \ {f}

for all ` ∈ L implies that Θj−1
` = Θ

j−1
` for all ` ∈ L. In Step j− 1(e) of the Clinching Round

the construction of .̃j only depends on which families have clinched which localities, hence

Θj−1
` = Θ

j−1
` for all ` ∈ L implies that .̃j = .j. In Step j(a), the fact that Θj−1

` = Θ
j−1
`

for all ` ∈ L and .̃j = .j implies that every locality rejects the same families under both

reports so ∆j
g = ∆

j

g for all g ∈ F . Similarly, in Step j(b), .̃j = .j implies that Γjg = Γ
j

g for all

g ∈ F . Finally, consider any family h 6= f in Step j(c). As ∆j
h = ∆

j

h, Γjh = Γ
j

h, and h does
not misreport its preferences (only f ’s report changes from �f to �′f), h clinches the same

locality (if any), whether f reports �f or �′f . We therefore conclude that Θj
` \{f} = Θ

j

` \{f}
for all ` ∈ L, as required.

We now turn to the second part of the lemma. Consider any j = 1, . . . , q with j < {m,m}.
We have established that Θj

` \ {f} = Θ
j

` \ {f} for all ` ∈ L. As j < {m,m}, whether f

89

reports �f or �′f , f does not clinch any locality in Step j of the Clinching Round. Therefore

Θj
` = Θ

j

` for all ` ∈ L, as required.

B Additional examples

B.1 Non-existence of stable outcomes

We reproduce an example from McDermid and Manlove (2010). There are three families,
two localities, and two dimensions. The family sizes and locality capacities are

ν =
(f1 f2 f3

d1 1 1 2
)

and κ =
(`1 `2

d1 2 1
)
.

The preferences and priorities are:

�f1 : `2, `1, ∅ �f2 : `1, `2, ∅ �f3 : `1, ∅, `2 .`1 : f1, f3, f2 .`2 f2, f1, f3.

Suppose, towards a contradiction, that there exists a stable matching µ in this example.
Since `2 cannot accommodate f3, either µ(f3) = `1 or µ(f3) = ∅. If µ(f3) = `1, then
µ(f2) = `2 as otherwise f2 and `2 form a blocking pair. Then, µ(f1) = ∅ so f1 and `1 form a
blocking pair and µ is not stable. If µ(f3) = ∅, then µ(f1) = `1 as otherwise f1 and `1 form
a blocking pair. In turn, f2 and `1 form a blocking pair unless µ(f2) = `1. However, this
matching is not stable since f2 and `2 form a blocking pair.

One way to understand this negative result is that the choice function induced by `1’s
priorities does not satisfy substitutability (Roth, 1984b) because of a complementarity be-
tween f1 and f2. If only f2 and f3 compete for `1, stability dictates that f3 be accepted
and f2 rejected. If f1 is also competing, stability dictates that f1 and f2 be accepted and f3
rejected. Thus, there is a complementarity between f1 and f2 in the sense that f2 is accepted
when f1 is also considered but not otherwise.

B.2 Knapsack Top Trading Cycles with Endowment

We illustrate the KTTCE algorithm using the example from the proof of Theorem 1. We
add the following lexicographic priorities:

.`1 : f1, f2,`2 : f1,f2,`3 : f3,`4 : f4, . . .

The KTTCE algorithm also depends on the order in which families are picked, should the
algorithm enter the Rejection Stage. With four families, there are 4! = 24 such orderings;
however, we will see that the only part of that ordering that matters for the outcome is
whether f3 or f4 is picked first. Therefore, we describe the KTTCE algorithm under two
different orderings: KTTCE3 picks f3 before f4 and KTTCE4 picks f4 before f3.

KTTCE3
The workings of KTTCE3 are displayed in Figure 8. In Round 1, the unique trading

cycle is f1 → `3 → f3 → `2 → f1. The unique trading cycle is not feasible since `2 cannot
accommodate f3 alongside f2. Therefore, the algorithm enters the Rejection Stage. As f1

90

and f2 require only one unit of capacity, they can replace any family at any locality; hence
no permanent rejection occurs if one of these families is picked. In contrast, neither f3 nor
f4 can replace f1 at `2. By assumption, f3 is picked before f4 and permanently rejected by
`2.

In Round 2, f3 points at its second preference `3 and the feasible (and trivial) cycle
f3 → `3 → f3 appears so f3 is permanently matched to `3. As a result, `3 is “full” and
permanently rejects all other families, including f1. In Round 3, f1 points at its second
preference `1 and is permanently matched to it, effectively taking advantage of `1’s unassigned
unit of capacity. In Round 4, since f1 has been permanently matched, `2 points at its second-
priority family f2. In addition, µ4(`2) = ∅ since f1 has left `2 to be permanently matched to
`1. As a result, the cycle f2 → `4 → f4 → `2 → f2 is feasible so both families are permanently
matched to the locality at which they are pointing. Since all families are permanently
matched, the algorithm ends and produces the following matching:(

f1 f2 f3 f4
`1 `4 `3 `2

)
.

KTTCE4
The workings of KTTCE4 are displayed in Figure 9. As for KTTCE3, the unique cycle

in Round 1 is f1 → `3 → f3 → `2 → f1, which is not feasible. The difference in KTTCE4
compared to KTTCE3 is that in the Rejection Stage f4 is picked and permanently rejected
by `2. In Round 2, f4 points at its second preference `4 (which points back at f4) so f4 is
permanently matched to `4. In Round 3, the unique cycle is again f1 → `3 → f3 → `2 → f1,
which is still infeasible. This time, `2 permanently rejects f3 (because f3 must be picked in
the Rejection Stage). In Round 4, f3 points at and is permanently matched to `3. In Round 5,
`3 is “full” and permanently rejects f1, which points at and is permanently matched to `1.
In Round 6 (not displayed), f2 and `2 points at one another and are permanently matched.
The algorithm ends and produces the following matching:(

f1 f2 f3 f4
`1 `2 `3 `4

)
.

Discussion
Observe first that both matchings Pareto dominate the endowment. This is not surpris-

ing since there is only one dimension and the priorities are lexicographic, hence Theorem 4
applies. Perhaps more surprising is the fact that KTTCE3 produces a chain-efficient match-
ing, which may appear at odds with Theorem 1. What is more, we showed in the proof
of Theorem 1 that no individually rational, chain-efficient, and strategy-proof mechanism
exists in this specific market. However, the fact that KTTCE3 produces a chain-efficient
matching in this instance does not mean it is a chain-efficient mechanism. In fact, one can
show that, if f1 reports its preferences to be `3, `2, . . ., KTTCE3 produces(

f1 f2 f3 f4
`2 `1 `3 `4

)
,

91

Figure 8: Workings of KTTCE3.

92

Figure 9: Workings of KTTCE4.

93

which is not chain-efficient.
Second, the matching produced by KTTCE3 Pareto dominates the one produced by

KTTCE4. This is due to the fact that picking f3 allows the algorithm to match f1 to `1
in Round 3, which makes the cycle f2 → `4 → f4 → `2 → f2 feasible in Round 4. In
contrast, picking f4 in KTTCE4 does not allow matching f2 to `1 in Round 3 (since `1
points at f1), and therefore the cycle f1 → `3 → f3 → `2 → f1 remains infeasible. One
might therefore wonder whether the picking order can be designed in a way that maximizes
the efficiency of the mechanism. This would require picking the “best family” (from an
efficiency point of view) every time the algorithm enters the Rejection Stage. Unfortunately,
what constitutes the best family depends on preferences; therefore such a mechanism would
violate strategy-proofness. In order for the mechanism to be strategy-proof, the picking
order must be entirely independent of preferences, which has an efficiency cost. Third, the
KTTCE mechanism may produce different outcomes with different priorities. If the priorities
are �`1 : f1, f2, . . . and �`2 : f2, f1, . . . (without changing the priorities of `3 and `4 so that
priorities remain lexicographic), KTTCE3 and KTTCE4 produce the same matchings as
they do in our example above. If the priorities are either �`1 : f2, f1, . . . and �`2 : f2, f1, . . . or
�`1 : f2, f1, . . . and �`2 : f1, f2, . . ., KTTCE3 and KTTCE4 respectively produce the following
matchings: (

f1 f2 f3 f4
`2 `1 `3 `4

)
and

(
f1 f2 f3 f4
`3 `1 `2 `4

)
.

B.3 Threshold Knapsack Deferred Acceptance

We illustrate the TKDA algorithm with the following example. There are seven families,
four localities, and two dimensions.

Preferences:

�f1 : `2, `3, . . . �f2 : `4, `1, . . . �f3 : `2, `1, . . . �f4 : `1, . . .
�f5 : `1, `2, . . . �f6 : `1, `2, `3, . . . �f7 : `4, . . .

Priorities:

.`1 : f1, f2, f3, f4, f5, f6, f7 .`2 : f5, f1, f2, f7, f6, f3, f4

.`3 : f4, f6, f1,`4 : f7, f2, . . .

Sizes and capacities:

ν =

(f1 f2 f3 f4 f5 f6 f7

d1 2 1 1 2 1 1 1
d2 1 0 0 0 1 0 0

)
κ =

(`1 `2 `3 `4

d1 4 4 3 1
d2 2 1 1 0

)
.

We show that, in this example, the TKDA algorithm produces the following matching:

µTKDA =

(
f1 f2 f3 f4 f5 f6 f7
`3 `1 `1 `1 `2 `3 `4

)
.

The TKDA algorithm lasts four rounds. The first three rounds are displayed in Table 10.
In Round 1, every family proposes to its first-preference locality. Families f4, f5, and f6

94

TKDA - Round 1

`1 (4, 2) θ
... `2 (4, 1) θ

... `3 (3, 1) θ
... `4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... ��@@f2 (1, 0) 0

f3 (1, 0) ∞ ... f2 (1, 0) ∞ ... f1 (2, 1) 1
...

...

f4 (2, 0) 2
... f7 (1, 0) 1

...
...

...

f5 (1, 1) 2
... f6 (1, 0) 1

...
...

��@@f6 (1, 0) 2
... ��@@f3 (1, 0) 1

...
...

f7 (1, 0) 0
... f4 (2, 0) 0

...
...

TKDA - Round 2

`1 (4, 2) θ
... `2 (4, 1) θ

... `3 (3, 1) θ
... `4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f2 (1, 0) ∞ ... f1 (2, 1) 1
...

...

f4 (2, 0) 3
... f7 (1, 0) 1

...
...

...

��@@f5 (1, 1) 0
... ��@@f6 (1, 0) 1

...
...

f6 (1, 0) 0
... f3 (1, 0) 1

...
...

f7 (1, 0) 0
... f4 (2, 0) 0

...
...

TKDA - Round 3

`1 (4, 2) θ
... `2 (4, 1) θ

... `3 (3, 1) θ
... `4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... ��@@f1 (2, 1) 0
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f2 (1, 0) ∞ ... f1 (2, 1) 2
...

...

f4 (2, 0) 3
... f7 (1, 0) 0

...
...

...

f5 (1, 1) 0
... f6 (1, 0) 0

...
...

f6 (1, 0) 0
... f3 (1, 0) 0

...
...

f7 (1, 0) 0
... f4 (2, 0) 0

...
...

Table 10: Rounds 1-3 of the TKDA algorithm. Sizes and capacities in parentheses. fi : fi

proposes and is tentatively accepted. ��SSfi : fi proposes and is permanently rejected.

95

propose to `1. The threshold at `1 of f1, f2, and f3 is ∞ since `1 can accommodate all
three families together. Family f4’s threshold at `1 is 2 because `1 can weakly accommodate
f4 alongside any one of f1, f2, or f3, but not alongside {f1, f2} or {f1, f3}. Family f5’s
threshold at `1 is also 2 since `1 can weakly accommodate f5 alongside f4 but not alongside
{f1, f4}. Family f6’s temporary threshold at `1 is 3 since `1 can weakly accommodate f6
alongside {f4, f5} but not alongside {f1, f4, f5}. However, f6’s threshold at `1 is 2 since
f6’s threshold at `1 cannot exceed f5’s because f5 has a higher priority and f6’s temporary
threshold is finite. Finally, f7’s threshold at `1 is 0 since `1 cannot weakly accommodate
f7 alongside {f4, f5, f6}. All three proposing families—f4, f5, and f6—have a threshold
of 2 at `1; therefore, `1 tentatively accepts the two higher-priority proposing families—f4
and f5—and permanently rejects the lowest-priority proposing family—f6. As `1 is able
to accommodate {f4, f5, f6}, one might be tempted to allow `1 to tentatively accept f6’s
proposal (as it would in the KDA algorithm). However, in this case, a choice function
consistent with weak envy-freeness violates cardinal monotonicity. Suppose that f1, f2, f4,
f5, and f6 propose to `1. Locality `1 cannot weakly accommodate f4 alongside {f1, f2}, f5
alongside {f1, f2, f4}, and f6 alongside {f1, f2, f4, f5}; therefore, weak envy-freeness dictates
that `1 must only tentatively accept two families: f1 and f2. However, cardinal monotonicity
dictates that at most two families can be tentatively accepted when f4, f5, and f6 propose.

Families f1 and f3 propose to `2. Family f5’s threshold at `2 is∞ since f5 has the highest
priority and `2 can accommodate f5 on its own. However, `2 cannot weakly accommodate
f1 alongside f5 as this would require two units of d2 and `2 has only one unit available;
therefore, f1’s threshold at `2 is 1. In contrast, f2’s threshold at `2 is∞ because `2 can weakly
accommodate f2 alongside {f1, f5}. (Recall from Algorithm 5 that if a family’s threshold
is ∞, then it is allowed to exceed the thresholds of higher-priority families.) This situation
illustrates how weak envy-freeness can improve efficiency over envy-freeness. Locality `2
cannot accommodate f2 alongside {f1, f5} as this would violate `2’s capacity for d2; however,
as f2 does not require any unit of d2, `2 can weakly accommodate f2 alongside {f1, f5}. The
temporary threshold of f7 at `2 is 3 since `2 can weakly accommodate f7 alongside either
one of {f1, f5} or {f1, f2}, but not alongside {f1, f2, f5}. However, since f1’s threshold is
1, we set f7’s threshold to 1 as well. The same reasoning applies to f6 and f3 while f4’s
threshold at `2 is 0 because `2 cannot weakly accommodate f4 alongside {f1, f3}. Locality
`2 tentatively accepts f1 but permanently rejects f3.

No family proposes to `3. The threshold of both f4 and f6 at `3 is ∞ since `3 can
accommodate {f4, f6}. Family f1’s threshold at `3 is 1 since `3 cannot weakly accommodate
f1 alongside f4. Finally, f2 and f7 propose to `4. As f7 has the highest priority for `4
and `4 can accommodate f7 on its own, f7’s threshold at `4 is ∞, which means that `4
tentatively accepts f7. In contrast, `4 cannot weakly accommodate f2 alongside f7; therefore
f2’s threshold at `4 is 0 and `4 permanently rejects f2.

In Round 2, f2 and f3 both propose to `1 after having been permanently rejected by
their respective first preferences (`4 and `2) in Round 1. As a result, f4’s threshold at `1
rises to 3. This situation illustrates how a family’s threshold can increase from one round
to the next. In Round 1, f4’s threshold at `1 is 2 because `1 cannot weakly accommodate
f4 alongside either one of {f1, f2} or {f1, f3}. However, in Round 2, f2 and f3 propose to
`1 but f1 does not. As `1 can weakly accommodate f4 alongside {f2, f3}, f4’s threshold at
`1 is 3. It follows that `1 continues to tentatively accept f4. In contrast, `4 cannot weakly

96

accommodate f5 alongside {f2, f3, f4}; therefore, f5’s threshold at `1 is 0 and `1 permanently
rejects f5. The third family that was permanently rejected in Round 1, f6, proposes to `2 in
Round 2. As f6’s threshold at `2 remains 1 and f6 has the second-highest priority (after f1)
among proposing families, `2 permanently rejects f6.

In Round 3, f5 proposes to `2 and is tentatively accepted since f5’s threshold at `2 is ∞.
As a result, however, `2 permanently rejects f1 which now has a threshold of 0. Family f6
proposes to `3 and is also tentatively accepted since f6’s threshold at `3 is∞. A consequence
of f6’s proposal to `3 is that f1’s threshold at `3 rises to 2 because `3 can weakly accommodate
f1 alongside f6. Therefore, in Round 4, `3 tentatively accepts f1’s proposal and the algorithm
ends.

B.4 Threshold Knapsack Deferred Acceptance with Clinches

We use the example introduced in Online Appendix B.3 to illustrate the TKDAC algorithm.
We show that

µTKDAC =

(
f1 f2 f3 f4 f5 f6 f7
`3 `1 `1 `1 `2 `2 `4

)
.

The only difference between µTKDA and µTKDAC is that µTKDA(f6) = `3 while µTKDAC(f6)
= `2. Since `2 �f6 `3, µTKDAC � µTKDA.

The three steps of the Clinching Round are displayed in Table 11. In Step 1(a), localities
`1, `2 and `3 do not reject any family since they can accommodate every family on its own.
Locality `4 rejects every family that requires either two units of d1 or one unit of d2, i.e.,
`4 rejects f1, f4, and f5. In Step 1(b), `1 is able to accommodate its three highest-priority
families, which all receive a proposal. Locality `1 cannot weakly accommodate any other
family alongside {f1, f2, f3} since every family takes up at least one unit of capacity in the
first dimension; therefore none of the other families receive a proposal from `1. Locality
`2 can accommodate f5 on its own but cannot weakly accommodate f1 alongside f5 since
both families require a unit of d2 and only one unit is available. In contrast, `2 can weakly
accommodate f2 alongside {f1, f5} because f2 does not require any units of d2. Therefore, `2
proposes to both f5 and f2. None of the other families receive a proposal as this would violate
the capacity of d1. Locality `3 is able to accommodate its two highest-priority families while `4
is only able to accommodate its highest-priority family. No other family receives a proposal
from either `3 or `4 as this would violate their respective capacities in both dimensions.
Family f7 is the only family to receive a proposal from its first-preference locality, `4. As
a result, f7 clinches `4 in Step 1(c). In Step 1(e), .̃2 is constructed by giving f7 the lowest
priority for `1, `2, `3. In particular, `2’s priority list is updated to

.̃2`2 : f5, f1, f2, f6, f3, f4, f7.

In Step 2(a), `4 rejects all families except f7 because f7 has clinched `4 and `4 cannot
weakly accommodate any family alongside f7. In particular, `4 rejects its second-priority
family f2. In Step 2(b), the same proposals occur as in Step 1; however, the fact that `4 has
rejected f2 means that `1 is now f2’s most preferred locality that has not rejected f2. As `1,
proposes to f2, f2 clinches `1 in Step 2(c). In Step 2(e), .̃3 is constructed by moving f2 to

97

Clinching Round - Step 1

`1 (4, 2)
... `2 (4, 1)

... `3 (3, 1)
... `4 (1, 0)

f1 (2, 1) 3
... f5 (1, 1) 3

... f4 (2, 0) 3
... f7 (1, 0) 3

f2 (1, 0) 3
... f1 (2, 1)

... f6 (1, 0) 3
... f2 (1, 0)

f3 (1, 0) 3
... f2 (1, 0) 3

... f1 (2, 1)
...

...

f4 (2, 0)
... f7 (1, 0)

...
...

...

f5 (1, 1)
... f6 (1, 0)

...
...

f6 (1, 0)
... f3 (1, 0)

...
...

f7 (1, 0)
... f4 (2, 0)

...
...

Clinching Round - Step 2

`1 (4, 2)
... `2 (4, 1)

... `3 (3, 1)
... `4 (1, 0)

f1 (2, 1) 3
... f5 (1, 1) 3

... f4 (2, 0) 3
... f7 (1, 0) 3

f2 (1, 0) 3
... f1 (2, 1)

... f6 (1, 0) 3
... f2 (1, 0) 7

f3 (1, 0) 3
... f2 (1, 0) 3

... f1 (2, 1)
...

...

f4 (2, 0)
... f6 (1, 0)

...
...

...

f5 (1, 1)
... f3 (1, 0)

...
...

f6 (1, 0)
... f4 (2, 0)

...
...

f7 (1, 0)
... f7 (1, 0)

...
...

Clinching Round - Step 3

`1 (4, 2)
... `2 (4, 1)

... `3 (3, 1)
... `4 (1, 0)

f1 (2, 1) 3
... f5 (1, 1) 3

... f4 (2, 0) 3
... f7 (1, 0) 3

f2 (1, 0) 3
... f1 (2, 1)

... f6 (1, 0) 3
... f2 (1, 0) 7

f3 (1, 0) 3
... f6 (1, 0) 3

... f1 (2, 1)
...

...

f4 (2, 0)
... f3 (1, 0)

...
...

...

f5 (1, 1)
... f4 (2, 0)

...
...

f6 (1, 0)
... f2 (1, 0)

...
...

f7 (1, 0)
... f7 (1, 0)

...
...

Table 11: Clinching Round of the TKDAC algorithm. Sizes and capacities in parentheses.
3: a locality proposes to a family. 7: a locality rejects a family. fi : family fi clinches a
locality.

98

the bottom of `2 and `3’s priorities. f2’s priority list is updated to

.̃3`2 : f5, f1, f6, f3, f4, f2, f7.

In Step 3(a), there are no new rejections as `1 can weakly accommodate any family
alongside f2. In Step 3(b), there is one new proposal: `2 proposes to f6 as `2 can weakly
accommodate f6 alongside {f1, f5}. This proposal was made possible by the fact that f2 and
f7 have both moved below f6 in `2’s priority list. However, `2 is f6’s second preference and
f6’s first preference, `1, has not rejected f6. It follows that no new clinch occurs in Step 3(c)
so the Clinching Round ends in Step 3(d) and outputs .̃ = .̃3 such that

.`1 : f1, f2, f3, f4, f5, f6, f7 .`2 : f5, f1, f6, f3, f4, f2, f7

.`3 : f4, f6, f1,`4 : f7, f2, . . .

With the priority profile .̃ constructed in the Clinching Round, the TKDA algorithm
lasts four rounds. The first three rounds are displayed in Table 12. Changing the priority
profile from . to .̃ affects the TKDA algorithm in one important way. With the constructed
priority profile .̃, f6 is the third highest-priority family at `2. Since `2 can accommodate
f6 alongside {f1, f5}, f6’s threshold at `2 is ∞. It follows that `2 tentatively accepts `6’s
proposal in Rounds 2-4, which is why µTKDAC(f6) = `2.

When the TKDA algorithm is run with the true priority profile ., f6 does not get a
threshold of ∞ at `2 because f2 and f7 remain above f6 on `2’s priority list. The Clinching
Round’s contribution in this example is to identify that f2 and f7 will necessarily be matched
to a more preferred locality, i.e., f2 will be matched to `1 (with `1 �f2 `2) and f7 will be
matched to `4 (with `4 �f7 `2). Thus, the Clinching Round identifies that f2 and f7 cannot
cause a violation of weak envy-freeness or cardinal monotonicity when f6 is matched to `2.

99

TKDAC - Round 1

`1 (4, 2) θ
... `2 (4, 1) θ

... `3 (3, 1) θ
... `4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... ��@@f2 (1, 0) 0

f3 (1, 0) ∞ ... f6 (1, 0) ∞ ... f1 (2, 1) 1
...

...

f4 (2, 0) 2
... ��@@f3 (1, 0) 1

...
...

...

f5 (1, 1) 2
... f4 (2, 0) 0

...
...

��@@f6 (1, 0) 2
... f2 (1, 0) 0

...
...

f7 (1, 0) 0
... f7 (1, 0) 0

...
...

TKDAC - Round 2

`1 (4, 2) θ
... `2 (4, 1) θ

... `3 (3, 1) θ
... `4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f6 (1, 0) ∞ ... f1 (2, 1) 1
...

...

f4 (2, 0) 3
... f3 (1, 0) 1

...
...

...

��@@f5 (1, 1) 0
... f4 (2, 0) 0

...
...

f6 (1, 0) 0
... f2 (1, 0) 0

...
...

f7 (1, 0) 0
... f7 (1, 0) 0

...
...

TKDAC - Round 3

`1 (4, 2) θ
... `2 (4, 1) θ

... `3 (3, 1) θ
... `4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... ��@@f1 (2, 1) 0
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f6 (1, 0) ∞ ... f1 (2, 1) 2
...

...

f4 (2, 0) 3
... f3 (1, 0) 0

...
...

...

f5 (1, 1) 0
... f4 (2, 0) 0

...
...

f6 (1, 0) 0
... f2 (1, 0) 0

...
...

f7 (1, 0) 0
... f7 (1, 0) 0

...
...

Table 12: Rounds 1-3 of the TKDAC algorithm. Sizes and capacities in parentheses. fi :

fi proposes and is tentatively accepted. ��SSfi : fi proposes and is permanently rejected.

100

Preference type Type 1 Type 2 Type 3 Type 4

Strong envy violations
KTTC 590 1282 1302 4303
KDA 0 0 0 0

TKDA 0 0 0 0
Number of matched families

KTTC 304 308 307 303
KDA 286 286 286 285

TKDA 236 230 230 232
Fraction of unfilled capacity

KTTC 11.6% 12.0% 12.4% 13.0%
KDA 17.5% 15.5% 15.5% 17.3%

TKDA 26.5% 27.2% 27.3% 27.0%

Table 13: Outcomes of KTTC, KDA, and TKDA algorithms (three dimensions). Averages
over 100 simulation rounds. Numbers in the top and middle panels are rounded to nearest
integer; numbers in the bottom panel are rounded to 1 d.p.

C Further simulation results

Table 13 and Figure 10 display the results for KTTC, KDA, and TKDA algorithms in the
three-dimensional environment. The results are consistent with that of Table 7 across prefer-
ence types and mechanisms. Figure 10 shows that the ranking of the mechanisms by efficiency
in the one-dimensional setting (Figure 3) is preserved in the three-dimensionalsetting. Com-
paring Tables 7 and 13, one can see that mechanisms tend not to perform as well in the
three-dimensional environment compared to the one-dimensional environment: the KTTC
mechanism generates more strong envy violations and all three mechanisms are less efficient.
These findings are intuitive in the sense that having three dimensions increases the hetero-
geneity among families’ sizes. Therefore, the KTTC mechanism has more difficulty finding
Pareto-improving trades and those trades are more likely to create strong envy violations;
moreover, in the KDA and TKDA mechanism, localities may have to reject more families in
order to prevent violations of strong envy.

D Relationships to prior models

Our model generalizes a number of existing matching models, including the following:

� School choice (Abdulkadiroğlu and Sönmez, 2003): Every student takes up a single
seat at any school. Let us relabel a student as a family and a school as a locality. In
our model, this corresponds to having only one dimension d (|D| = 1) and any family
having a size of one (νfd = 1 for all f ∈ F).

� Controlled school choice or college admissions with affirmative action and m type-
specific quotas (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu, 2005; Westkamp,
2013): Each student is one of m types and each school has a quota for each of the m
types. Let us again relabel a student as a family, a school as a locality and a type

101

(a
)

T
y
p

e
1

(b
)

T
y
p

e
2

(c
)

T
y
p

e
3

(d
)

T
y
p

e
4

F
ig

u
re

10
:

P
re

fe
re

n
ce

d
is

tr
ib

u
ti

on
s

fo
r

ou
tc

om
es

u
n
d
er

d
iff

er
en

t
m

at
ch

in
g

m
ec

h
an

is
m

s
(t

h
re

e
d
im

en
si

on
s)

.
L

ab
el

le
d

n
u
m

b
er

s:
fr

ac
ti

on
s

of
m

at
ch

ed
fa

m
il
ie

s
).

102

as a dimension. In our model, this corresponds to having m dimensions (|D| = m).
Each family takes up one unit of capacity in exactly one of the dimensions (νf is a
m-dimensional unit vectors for every f ∈ F).

� School choice with majority quotas (Kojima, 2012; Hafalir et al., 2013): Each student
is either a majority or a minority student. Each school has a overall cap on the
number of students, which includes a cap for majority students. Let us again relabel
a majority/minority student as a majority/minority family and a school as a locality.
Let us also relabel “any student seats” as dimension d1 and “majority student seats”
as dimension d2 (|D| = 2). In our model, the capacity of any locality for d1 is greater
than the capacity for d2 (κ`d1 > κ`d2 for all ` ∈ L). A majority family f takes up one
unit of capacity in each dimension (νf = (1, 1)) whereas a minority family f ′ only takes
up a unit of capacity in d1 (νf

′
= (1, 0)).

� Hungarian college admissions (Biró et al., 2010): Students take up a college seat as
well as a faculty seat. Both colleges and faculties have their own capacities. Let us
relabel a student as a family and a college as a locality. Let us also relabel “college
capacity” as the capacity of the locality in dimension d1 (κ`d1). Let us relabel the
faculties as the remaining dimensions D \ {d1}. Therefore, each family f ’s size is
νf = (1, 0, 0, . . . , 1, . . . , 0, 0) where the second “1” is the unit of capacity taken up in
d ∈ D \ {d1}.

� Allocation of trainee teachers to schools in Slovakia and Czechia (Cechlárová et al.,
2015): Teachers are required to teach two out of three subjects and each school has
a capacity for all three subjects. Let us relabel a teacher as a family, a school as
a locality, and a subject as a dimension. In our model, this corresponds to having
three dimensions (|D| = 3) and the size of every family f being either νf = (0, 1, 1),
νf = (1, 0, 1), or νf = (1, 1, 0)”.

� College admission with multidimensional privileges in Brazil (Aygün and Bó, 2020):
Students can claim any combination of three privileges. Colleges have quotas for each
privilege, but a single student can claim more than one privilege. Let us relabel a
student as a family, a college as a locality, and a privilege as a dimension. In our
model, this corresponds to having three dimensions (|D| = 3) and the size of every
family being an element of {0, 1}3.

� Object allocation (Nguyen et al., 2016) or course assignment (Budish, 2011): Agents
(students) demand a certain number of different objects (courses) that are supplied by
a single seller (a business school). Let us relabel agents (students) as families, different
objects (courses) as dimensions, and the single seller (the business school) as a single
locality. In our model, this corresponds to having only one locality (|L| = 1).

� Resident-hospital matching with sizes (McDermid and Manlove, 2010): Doctors apply
to hospitals, but the doctors can take up more than one seat at a hospital, e.g., because
they arrive as couples. Let us relabel doctors as families and hospitals as localities. In

103

our model, this corresponds to having one dimension (|D| = 1) and families having an
arbitrary size.44

Most of the models described above use further assumptions and develop solution ap-
proaches that suit their particular contexts but differ substantially from ours. Nevertheless,
as we note throughout the paper, several impossibility and complexity results established in
these papers will apply immediately to our framework.

44This model in turn generalizes the resident-hospital matching with inseparable couples (i.e., when cou-
ples have the same preference list and prefer to be unmatched to being in different hospitals) as well as
resident-hospital matching with couples which have “consistent” preferences (McDermid and Manlove, 2010,

Lemma 2.1). In both cases, we set |D| = 1 and νfd ∈ {1, 2} in our model.

104

	Introduction
	Institutional context
	Introducing preferences and priorities into refugee resettlement

	Model
	Knapsack constraints in practice

	Targeting efficiency
	The Knapsack Top Trading Cycles mechanism
	Improving efficiency from an endowment
	KTTC with Endowment
	Guaranteeing Pareto improvements in the KTTCE mechanism

	Accounting for priorities
	(Non-)existence of stable matchings
	Envy-free matchings
	Weakly envy-free matchings
	A family-optimal weakly envy-free mechanism
	A weakly envy-free and strategy-proof mechanism
	Properties of mechanisms in a one-dimensional setting

	Data and Simulations
	Performance of the KTTCE mechanism.
	Comparison of the KTTC, KDA, and TKDA mechanisms
	Comparison of mechanisms under three-dimensional constraints

	Conclusion
	Appendix: Proofs
	Efficiency of the TKDA algorithm
	Lower bound on the efficiency of KDA and TKDA mechanisms
	TKDA with Clinching algorithm
	Why clinching any proposing locality affects incentives for truth-telling
	Proofs

	Additional examples
	Non-existence of stable outcomes
	Knapsack Top Trading Cycles with Endowment
	Threshold Knapsack Deferred Acceptance
	Threshold Knapsack Deferred Acceptance with Clinches

	Further simulation results
	Relationships to prior models

