
Comparative Statics for Size-Dependent Discounts in

Matching Markets∗
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Abstract

We prove a natural comparative static for many-to-many matching markets in which

agents’ choice functions exhibit size-dependent discounts: reducing the extent to which

some agent discounts additional partners leads to improved outcomes for the agents on

the other side of the market, and worsened outcomes for the agents on the same side

of the market. Our argument draws upon recently developed methods bringing tools

from choice theory into matching.
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1 Introduction

Delacrétaz et al. (2019) introduced a general family of valuation functions with size-

dependent discounts, under which each agent’s value for sets of potential partners is given by

an additive valuation over individual agents, discounted by a term that depends on the total

number of agents in the set. The additivity of a’s valuations ensures that each agent with

whom a may partner is evaluated independently from any other agent in the set; thus, there

are no externalities among potential partners. Meanwhile, the discount term captures the

idea that agent a’s marginal value for partners decreases as his number of partners increases;

thus, there is competition among potential partners.

Valuations with size-dependent discounts naturally expand the class of preferences that

agents are usually allowed to express in two-sided matching markets with capacity con-

straints:1 In prior two-sided models of matching with capacity constraints, the capacity

constraints are “hard,” in the sense that they are fixed irrespective of which partners are

available. Moreover, those prior models often assume a coarse form for the language a school

may use to express its preferences over students, such as a single rank-order list (with the

resulting preferences being responsive; see Roth (1985)). Under size-dependent discount

valuations, by contrast, the number of available seats (and associated cut-offs) can be more

flexible. For instance, an “n”-flexible-capacity school could accommodate anywhere between

N −n and N +n students, where the number of admitted students is more finely calibrated

via a series of increasing size-dependent discount factors δN−n ≤ . . . ≤ δN ≤ . . . δN+n, with

the interpretation that a group of N students can be admitted, but only if all of their ap-

plication scores are above δN .2 Note that the ability to express “soft” capacity constraints

may help open up the possibility of achieving fair and non-wasteful assignments of students

to schools (Ehlers et al., 2014).3

We study many-to-many matching markets with size-dependent discounts and investigate

the welfare implications of a discount reduction, under which an agent becomes more willing

to accept additional trading partners. Our main result (Theorem 1) formally shows the

intuitive comparative static that a decrease in one agent’s discounts makes all other agents

1For a recent survey of the matching with constraints literature, see Kamada and Kojima (2017).
2To embed hard constraints, such as a school’s maximal physical capacity N + n, it suffices to set the

discount term δN+n to a very high value (higher than the cumulative score of any group of N +n students).
3The general family of valuation functions with size-dependent discounts of Delacrétaz et al. (2019) allows

for various “blocks” of objects, where each block corresponds to, e.g., a different commodity. Ehlers et al.
(2014) allow for various student types that may be determined by, e.g., ethnicity or some other socioeconomic
criteria. Here, for simplicity, we consider the one-block version of the size-dependent discounts valuation of
Delacrétaz et al. (2019), corresponding to same types in Ehlers et al. (2014).
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on his side of the market worse off, and all agents on the other side of the market better off.

To prove our main result, we draw upon recently developed methods that bring tools from

choice theory into matching: First, we show that valuation functions with size-dependent

discounts induce path-independent choice functions; moreover, discount reductions lead to

expansions of those choice functions. Then, to complete our proof, we invoke a powerful

comparative static result of Chambers and Yenmez (2017) that applies to all expansions of

path-independent choice functions. We also show that our main conclusion continues to hold

if the discounts of all agents on one side of the market decrease (Corollary 1). However,

the effect of a simultaneous reduction in the discounts of agents on opposite sides of the

market is ambiguous, even if the discounts decrease by the exact same amount (Example 1).

Finally, we show that our main findings can be sharpened to cover deferred-acceptance-like

mechanisms by comparing side-optimal matchings (Corollary 2).

2 Model

There are finite sets of workers W and firms F . The full set of agents is I, where I = W ∪F
(and W ∩ F = ∅). We denote by |A| the number of agents in A ⊆ I, and write P(I) = 2I

for the set of all subsets of agents.

For each agent a ∈ I, worker or firm, we let

Īa ≡

F a ∈ W

W a ∈ F

denote the set of agents on the other side of the market from a; we refer to the set of agents

Ia = I \ Īa as being on the same side of the market as a.

For each agent a ∈ I, the valuation function va : Īa → R assigns a value to each individual

agent on the other side of the market. We assume that each agent a can withdraw from the

market at some cost, which for simplicity we normalize to 0, i.e., va(∅) = 0.

We extend each agent a’s valuation over individual agents to sets of agents by as-

suming size-dependent discounts : we require that there exists a vector of discounts δa =

(δa1 , . . . , δ
a
j , . . . δ

a
|Īa|), with δa1 = 0, δaj−1 ≤ δaj for each 1 < j ≤ |Īa|, and such that for each
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A ⊆ Īa,

vaδ (A) =
∑
x∈A

va(x)−
|A|∑
j=1

δaj .
4 (1)

We assume that each agent’s valuation and discounts are such that the induced preferences

over sets of agents on the other side of the market are strict.5

The lists of size-dependent discounts δa and valuations vaδ for each agent a give rise to

the discount profile δ = (δa)a∈I and associated valuation profile vIδ = (vaδ )a∈I .

For each agent a ∈ I, and each A ⊆ Īa, the choice function induced by a’s valuation

selects his most preferred set of other-side agents, i.e.,

Ca
δ (A) = arg max

A′⊆A
{vaδ (A′)}.

Note that since the induced preferences are strict, the set of agents selected by the choice

function Ca
δ is unique, so we may think of Ca

δ (A) as a set of agents.

A (many-to-many) matching µ assigns to each agent a a set of agents on the other side of

the market Īa, allowing for the possibility that a remains alone. That is, µ(a) ∈ P(Īa) and

b ∈ µ(a) if and only if a ∈ µ(b). A matching µ is individually rational if no agent a prefers

to unilaterally drop some of the agents with whom he is matched at µ(a), i.e., if for each

a ∈ I, Ca
δ (µ(a)) = µ(a). A matching µ is unblocked if there does not exist a nonempty set of

worker-firm pairs X ⊆ W ×F such that, for every a ∈ I, letting X
a ≡ {b ∈ Īa : {a, b} ∈ X},

we have X
a ∩ µ(a) = ∅ and X

a ⊆ Ca
δ (µ(a) ∪ Xa

). A matching µ is stable if it is both

individually rational and unblocked. A matching µ is (revealed) preferred to a matching µ′

by an agent a if Ca
δ (µ(a) ∪ µ′(a)) = µ(a).

3 Results

Our main result shows that under stable matching, reducing an agent’s discounts leads to

worse outcomes for agents on the same side of the market, and better outcomes for agents

on the other side of the market.

Formally, for an agent a with discounts δa, a discount reduction occurs when we de-

crease some subset of the agent’s discount values, i.e., we replace a’s discounts δa with

4For simplicity, with some abuse of notation we write vaδ instead of vaδa .
5As we noted in Footnote 3, our size-dependent discounts condition thus corresponds to the “one block”

non-monotonic version of Delacrétaz et al. (2019).
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εa ≡ (εa1, . . . , ε
a
k, . . . ε

a
|Īa|) such that εak ≤ δak for each 1 ≤ k ≤ |Īa| (and εa1 = δa1 = 0).6 We use

the standard notation v−aδ = v
I\{a}
δ , and denote by (vaε , v

−a
δ ) the “post-discount-reduction”

valuation profile obtained from vIδ by replacing vaδ with vaε .

Our main result is then as follows.

Theorem 1. Consider any profile of size-dependent discounts δ with associated valuation

profile vIδ . Fix any agent a ∈ I, and consider any post-discount-reduction profile (vaε , v
−a
δ ).

For every matching µ that is stable under vIδ , there exists a matching µ′ stable under (vaε , v
−a
δ )

such that:

1. µ′ is preferred to µ by all agents on the other side of the market from a; and,

2. µ is preferred to µ′ by all agents (other than a) on the same side of the market as a.

To prove Theorem 1, we appeal to a series of powerful comparative static results that

Chambers and Yenmez (2017) proved for matching markets in which all agents have path-

independent choice functions. We first show that if agents’ valuations exhibit size-dependent

discounts, then: (i) the induced choice functions are path-independent; (ii) following a weak

decrease in one of the discounts of an agent a, the resulting choice function is an expansion

of a’s initial choice function. Together with results of Chambers and Yenmez (2017), (i) and

(ii) allow us to prove Theorem 1.

Size-Dependent Discounts Induce Path-Independent Choice Functions

To show that size-dependent discounts induce path-independent choice functions, we show

that if agents’ valuations exhibit size-dependent discounts, then the agents’ choice func-

tions satisfy the well-known irrelevance of rejected contracts and substitutability conditions

(Lemmata 1 and 2), which together imply path-independence (Lemma 3).

First, we note that valuations exhibiting size-dependent discounts induce choice functions

that satisfy the irrelevance of rejected agents condition, which requires that an agent a’s

choice is unaffected by the removal of a set of agents that a was not choosing.

Definition 1. An agent a’s choice function Ca
δ satisfies the irrelevance of rejected agents

condition if for all A′, A ⊆ Īa such that Ca
δ (A) ⊆ A′ ⊆ A, we have Ca

δ (A) = Ca
δ (A′).7

6Our requirement that εa1 = δa1 = 0 is natural because it means that both vaδ and vaε correspond to the
same valuations va over individual agents.

7Blair (1988), Alkan and Gale (2003), and Chambers and Yenmez (2017) use the term “consistency”
instead of irrelevance of rejected agents (Aygün and Sönmez, 2013); we adopt the later terminology to avoid
any potential confusion with consistency as a normative requirement (see, e.g., Thomson (2020)).
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Lemma 1. If an agent’s valuation exhibits size-dependent discounts, then his choice function

satisfies the irrelevance of rejected agents condition.

Proof. Suppose Ca
δ (A′) 6= Ca

δ (A): then, since the induced preferences are strict, vaδ (C
a
δ (A)) 6=

vaδ (C
a
δ (A′)). Then, the fact that Ca

δ (A) ⊆ A′ implies that vaδ (C
a
δ (A)) < vaδ (C

a
δ (A′)) (because

Ca
δ (A) can be chosen but is not optimal when the agents in A′ are available). However, the

fact that Ca
δ (A′) ⊆ A′ ⊆ A implies that vaδ (C

a
δ (A)) > vaδ (C

a
δ (A′)) (because Ca

δ (A′) can be

chosen but is not optimal when the agents in A are available), a contradiction.

Next, we note that valuations exhibiting size-dependent discounts induce choice functions

that are substitutable in the sense that whenever the set of agents available to choose from

shrinks, all agents who were initially chosen and are still available remain chosen.

Definition 2. An agent a’s choice function is substitutable if for any distinct A′, A ⊆ Īa, we

have that Ca
δ (A′ ∪ A) = A′ implies a′ ∈ Ca

δ ({a′} ∪ A) for any a′ ∈ A′.8

Lemma 2 (Delacrétaz and Nichifor (2019)). If an agent’s valuation exhibits size-dependent

discounts, then his choice function is substitutable.

Finally, a choice function is path-independent if, when the set of agents available to

choose from is partitioned in two, the choice from the initial set of agents coincides with the

choice over the independent choices from each of the sets in the partition.

Definition 3. An agent a’s choice function Ca
δ is path-independent if for every A′, A ⊆ Īa,

we have Ca
δ (A′ ∪ A) = Ca

δ (Ca
δ (A′) ∪ Ca

δ (A)).9

Chambers and Yenmez (2017, Lemma 1) showed that choice functions are path-

independent if (and only if) they satisfy the independence of rejected agents and substi-

tutability conditions; hence, the following result is immediate from our Lemmata 1 and 2.

Lemma 3. If an agent’s valuation exhibits size-dependent discounts, then his choice function

is path-independent.

8Substitutability is essential for establishing the existence of stable outcomes in various two-sided match-
ing settings (see, e.g., Kelso and Crawford (1982) and Roth (1984)); moreover, under substitutability, as
shown by Hatfield and Milgrom (2005), simple deferred-acceptance-like auctions can be used to find a solu-
tion. Beyond two-sided settings, (full) substitutability remains an essential condition (Hatfield et al., 2013,
2018, 2019); for a history of substitutability, see Hatfield et al. (2019).

9Path-independence, first formally introduced by Plott (1973), is a key property in the choice-theory
literature; for a survey, see Moulin (1985).
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Choice Expansion under Size-Dependent Discounts

Now, we prove Theorem 1 by way of comparative static results of Chambers and Yenmez

(2017) for path-independent choice functions. We first show by induction that if an agent a’s

valuation exhibits size-dependent discounts, then a discount reduction from δa to εa induces

a new choice function Ca
ε that is an expansion of Ca

δ , in the sense that for any set of agents

on the other side of the market, every agent chosen under Ca
δ is also chosen under Ca

ε .

Definition 4. An agent a’s choice function Ĉa is an expansion of Ca
δ if for every A ⊆ Īa,

we have Ĉa(A) ⊇ Ca
δ (A).10

Lemma 4. If an agent’s valuation exhibits size-dependent discounts, then a discount reduc-

tion for that agent leads to a choice function that is an expansion of the agent’s original

choice function.

Proof. First, we fix an agent a, a set of agents A ⊆ Īa, and a discount profile δ. Without

loss of generality, we index the agents in A in decreasing order of their individual values to

a: A = {b1, b2, . . . , b|A|} with va(b1) > va(b2) > . . . > va(b|A|).
11

Let ` ≡ |Ca
δ (A)| be the number of agents that a chooses. We show that Ca

δ (A) =

{b1, . . . , b`}. Suppose to the contrary that Ca
δ (A) 6= {b1, . . . , b`}. Then, there exist n ≤ `

such that bn /∈ Ca
δ (A) and m > ` such that bm ∈ Ca

δ (A), so

vaδ ((C
a
δ (A) ∪ {bn}) \ {bm}) = vaδ (C

a
δ (A)) + va(bn)− va(bm).

As n < m, va(bn) > va(bm). Therefore, vaδ ((C
a
δ (A) ∪ {bn}) \ {bm}) > vaδ (C

a
δ (A)), which

contradicts the assumption that Ca
δ (A) is the subset of A that maximizes vaδ .

Now, we let ε be a discount profile such that ε ≤ δ. To prove the lemma, we need to

show that Ca
δ (A) ⊆ Ca

ε (A). We have shown that Ca
δ (A) = {b1, . . . , b`}.

Letting `′ ≡ |Ca
ε (A)|, analogous reasoning shows that Ca

ε (A) = {b1, . . . , b`′}; therefore,

we need to show that `′ ≥ `. Suppose to the contrary that

`′ < `. (2)

In that case, we have

va(b`′+1) < εa`′+1, (3)

10Chambers and Yenmez (2017) list a number of practical situations in which choice function expansions
play an important role, such as in controlled school choice (Hafalir et al., 2013; Ehlers et al., 2014) and
residency matching (Kamada and Kojima, 2015).

11As the induced preferences are strict, agent a does not have the same value for any two agents in A.
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as otherwise we would have

vaε (C
a
ε (A) ∪ {b`′+1}) = vaε (C

a
ε (A)) + va(b`′+1)− εa`′+1 > vaε (C

a
ε (A)),

contradicting the fact that Ca
ε (A) is the subset of A that maximizes vaε .

Our hypothesis (2) implies that `′ + 1 ≤ `; hence, as ε ≤ δ and δa1 ≤ δa2 ≤ . . . ≤ δa|Īa|, (3)

implies that

δa`
b`∈Caδ (A)

≤ va(b`)
(2)

≤ va(b`′+1)
(3)
< εa`′+1

(ε≤δ)
≤ δa`′+1

(2)

≤ δa` ,

a contradiction.

Given Lemmata 3 and 4, Theorem 1 follows immediately from Theorem 2 of Chambers

and Yenmez (2017), which shows that an expansion induces the desired comparative static

so long as all agents’ choice functions are path-independent.

4 Discussion

We can apply our Theorem 1 iteratively to show that following a discount reduction for every

agent on one side of the market, all agents on the other side become better off—a result that

mirrors Corollary 2 of Chambers and Yenmez (2017).

Corollary 1. Suppose that all agents’ valuations exhibit size-dependent discounts and con-

sider any profile of size-dependent discounts δ with associated valuation profile vIδ . For each

firm f ∈ F , consider a discount reduction from δf to εf and denote the post-discount-

reduction valuation profile by (vFε , v
W
δ ). Then, for any matching µ that is stable under vIδ ,

there exists a matching µ′ that is stable under (vFε , v
W
δ ) such that every worker w prefers µ′

to µ.

By combining our results in Theorem 1 with Corollary 1 of Chambers and Yenmez (2017),

we obtain a sharpening of our main result that speaks to deferred-acceptance-like mechanisms

by comparing side-optimal stable matchings.12 Formally, we say that a stable matching µ

is firm-optimal if each firm prefers it to any other stable matching µ′. Likewise, a stable

matching µ is worker-optimal if each worker prefers it to any other stable matching µ′.

Corollary 2. Suppose that all agents valuations exhibit size-dependent discounts and con-

sider any profile of size-dependent discounts δ with associated valuation profile vIδ . Fix any

12For a description of a many-to-many deferred acceptance mechanism, see Chambers and Yenmez (2017).
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agent f ∈ F , and consider any post-discount-reduction profile (vfε , v
−f
δ ). Let µF be the firm-

optimal and µW be the worker-optimal stable matchings under vIδ . Let µ̄F be the firm-optimal

and µ̄W be the worker-optimal stable matchings under (vfε , v
−f
δ ).13 Then, the following hold:

1. every worker prefers µ̄W to µW , and every firm other than f prefers µW to µ̄W ; and,

2. every worker prefers µ̄F to µF , and every firm other than f prefers µF to µ̄F .

It is clear from our argument for Theorem 1 that the result extends to settings where

agents other than the one undergoing a discount reduction have general path-independent

choice functions—it is not necessary that all agents’ preferences exhibit size-dependent dis-

counts.

Moreover, Theorem 1 is “sharp” in the sense that a simultaneous discount reduction

for agents on different sides of the market may have an ambiguous effect. Indeed, sup-

pose that all agents’ valuations exhibit size-dependent discounts and consider any profile of

size-dependent discounts δ with associated valuation profile vIδ . We consider simultaneous

discount reductions on both sides of the market fixing, say, f ∈ F and w ∈ W and taking

discount reductions from δf to εf and from δw to εw. As the following example illustrates,

with discount reductions on both sides, the conclusion of Theorem 1 may not hold.

Example 1. Let F = {f1, f2, f3}, W = {w1, w2, w3}, and I = F ∪W . The valuations over

individual agents are as follows:

vf1(w1) = 1 vf2(w1) = −1 vf3(w1) = 1 vw1(f1) = 1 vw2(f1) = 1 vw3(f1) = 3

vf1(w2) = 3 vf2(w2) = 3 vf3(w2) = 3 vw1(f2) = −1 vw2(f2) = 3 vw3(f2) = 1

vf1(w3) = 5 vf2(w3) = 5 vf3(w3) = 5 vw1(f3) = 5 vw2(f3) = 5 vw3(f3) = 5

For each agent a ∈ I, let the vector of discounts be δa = (0, 9, 10) and the associated

valuation over sets of agents be vaδ . Recall that valuations over sets of agents are determined

by using the discount vector to extend the valuations over individual agents (see equation 1);

for example, the value of agent w1 for being matched to both f1 and f3 is

vw1
δ ({f1, f3}) = vw1(f1) + vw1(f3)− δw1

2 = 1 + 5− 9 = −3.

13These extremal stable matchings exist because size-dependent discounts induce substitutable choice
functions (Lemma 2).
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For the profile of size-dependent discounts δ = (δa)a∈I with associated valuation profile

vIδ = (vaδ )a∈I , there is a unique stable matching µ, such that

µ(f1) = w1, µ(f2) = w2, µ(f3) = w3.
14

We now consider the effects of a simultaneous (and identical) discount reduction for f3

and w3; the discounts for all other agents are left unchanged. Let εf3 = εw3 = (0, 2, 10), and

for each a ∈ I \ {f3, w3}, let εa = δa. For the profile of size-dependent discounts ε = (εa)a∈I

with associated valuation profile vIε = (vaε )a∈I , there is a unique stable matching µ′, such

that

µ′(f1) = w3, µ
′(f3) = {w2, w3}, µ′(w3) = {f1, f3},

under which agents f2 and w1 are unmatched.

Thus, matching µ′ is preferred to µ by agents f1, f3, w2, w3, while matching µ is preferred

to µ′ by agents f2 and w1.

14To see that µ is the unique stable matching, note that: (i) the discounts are so large that each agent
chooses at most one partner; (ii) the valuations over individual agents induce a positive assortative matching
in which the worker and firm with the first, second, and third highest value for each other are matched.
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