Multilateral Matching: Corrigendum *

Keisuke Bando
Faculty of Economics and Law
& Department of Economics
Shinshu University

Toshiyuki Hirai
Faculty of Economics
Hosei University

John William Hatfield
McCombs School of Business
University of Texas at Austin

Scott Duke Kominers
Harvard Business School
& Department of Economics
Harvard University

June 25, 2019

Abstract

We identify an error in the claim by Hatfield and Kominers (2015) that every stable outcome is efficient in the setting of multilateral matching with contracts. We then show that the result can be recovered under a suitable differentiability condition.

JEL Classification: C62; C71; C78; D47; D85; L14

Keywords: Matching; Networks; Joint ventures; Stability; Competitive equilibrium

*The authors thank Ravi Jagadeesan and Alex Teytelboym for helpful comments. Bando and Hirai are grateful for financial support from JSPS Grants-in-Aid JP18K01506 (both) and JP19K13647 (Bando). Kominers gratefully acknowledges the support of National Science Foundation grant SES-1459912 and the Ng Fund and the Mathematics in Economics Research Fund of the Harvard Center of Mathematical Sciences and Applications. Any comments or suggestions are welcome and may be emailed to k_bando@shinshu-u.ac.jp.
1 Introduction

Hatfield and Kominers (2015) introduced a model of matching in networks with continuously divisible multilateral contracts and transferrable utility. They showed that competitive equilibria exist and are efficient when agents’ valuations are concave and also claimed that (under the same condition) competitive equilibria correspond to stable outcomes. However, as we show here, the correspondence of stability and competitive equilibrium in the multilateral matching framework requires an additional differentiability condition.

2 Model

There is a finite set I of agents, and a finite set Ω of ventures. Each venture $\omega \in \Omega$ is associated with a set of at least two agents $a(\omega) \subseteq I$; there may be several ventures associated with the same set of agents. For a set of ventures $\Psi \subseteq \Omega$, we denote by $a(\Psi) \equiv \cup_{\psi \in \Psi} a(\psi)$ the set of agents associated with ventures in Ψ. We denote by $\Psi_i \equiv \{ \psi \in \Psi : i \in a(\psi) \}$ the set of ventures in Ψ associated with agent i. We denote by $r_\omega \in [0, r_{\omega}^{\text{max}}]$ the chosen level of participation in venture $\omega \in \Omega$ by the agents in $a(\omega)$.

Each agent $i \in I$ has a continuous valuation function $v^i(r)$ over ventures, where the vector $r \equiv (r_\omega)_{\omega \in \Omega}$ is an allocation, which indicates the investment in each venture $\omega \in \Omega$. We assume that v^i is unaffected by ventures to which i is not a party, i.e., $v^i(r_\omega, r_{\Omega \setminus \{\omega\}}) = v^i(\hat{r}_\omega, r_{\Omega \setminus \{\omega\}})$ for all ω such that $i \notin a(\omega)$. An allocation \hat{r} is efficient if it maximizes total surplus, i.e.,

$$\hat{r} \in \arg \max_{0 \leq r \leq r_{\text{max}}} \left\{ \sum_{i \in I} v^i(r) \right\}.$$

We denote by $p \equiv (p^i_\omega)_{i \in I, \omega \in \Omega}$ the price matrix, for which p^i_ω is the per-unit transfer from agent i when he engages in venture ω. For any agent $j \notin a(\omega)$, we use the convention that $p^j_\omega \equiv 0$. Furthermore, a venture does not create or use the numeraire; hence $\sum_{i \in I} p^i_\omega = 0$ for all $\omega \in \Omega$.
An allocation r along with a price matrix p together define an arrangement $[r; p]$. The utility function $u^i([r; p])$ of an agent i is quasilinear over ventures and transfer prices; hence, it can be expressed in the form

$$u^i([r; p]) \equiv v^i(r) - p^i \cdot r.$$

Given prices p, we define the demand correspondence $D^i(p)$ for agent i as

$$D^i(p) \equiv \arg\max_{0 \leq r \leq r_{\text{max}}} \{u^i([r; p])\}$$

and the demand correspondence for the entire economy as

$$D(p) \equiv \bigcap_{i \in I} D^i(p).$$

An arrangement $[r; p]$ is a competitive equilibrium if $r \in D(p)$.

A contract x is comprised of a venture $\omega \in \Omega$, a size of that venture $r_\omega \in [0, r_{\text{max}}]$, and a transfer vector $s_\omega \in \mathbb{R}^I$ (where we set $s^i_\omega = 0$ for all $j \notin a(\omega)$). The set of all contracts is

$$X \equiv \{(\omega, r_\omega, s_\omega) \in \Omega \times \mathbb{R}_{\geq 0} \times \mathbb{R}^I : r_\omega \leq r_{\text{max}}^\omega, s^i_\omega = 0 \text{ for } i \notin a(\omega), \text{ and } \sum_{i \in I} s^i_\omega = 0\}.$$

For $x = (\omega, r_\omega, s_\omega) \in X$, we let $\tau(x) \equiv \omega$ denote the venture associated with x; for $Y \subseteq X$ we let $\tau(Y) \equiv \cup_{y \in Y}\{\tau(y)\}$. For a contract $x \in X$ we let $a(x) \equiv a(\tau(x))$ and for $Y \subseteq X$ we let $a(Y) \equiv a(\tau(Y))$; we let $Y_i \equiv \{y \in Y : i \in a(y)\}$.

A set of contracts $Y \subseteq X$ is an outcome if it describes a well-defined participation and pricing plan, i.e., if for any distinct $(\omega, r_\omega, s_\omega), (\bar{\omega}, \bar{r}_\omega, \bar{s}_\omega) \in Y$, we have that $\omega \neq \bar{\omega}$.

3
For a given outcome Y, we define $\rho(Y)$ as

$$\rho_\omega(Y) \equiv \begin{cases} r_\omega & (\omega, r_\omega, s_\omega) \in Y \\ 0 & \text{otherwise}; \end{cases}$$

that is, $\rho(Y)$ denotes the associated allocation vector of venture participations. Similarly, we define $\pi(Y)$ as

$$\pi_j^{i}(Y) \equiv \begin{cases} s_j^{i} & (\omega, r_\omega, s_\omega) \in Y \\ 0 & \text{otherwise}, \end{cases}$$

denote the matrix of per-unit transfer prices associated to Y. The utility from an outcome Y for agent i is then given by

$$u^i(Y) \equiv v^i(\rho(Y)) - \pi^i(Y) \cdot \rho(Y).$$

The choice correspondence of agent i is given by

$$C^i(Y) \equiv \arg \max_{Z \subseteq Y_i; Z \text{ is an outcome}} \{ u^i(Z) \}.$$

An allocation is stable if it is

1. individually rational: for all $i \in I$, $A_i \in C^i(A)$.

2. unblocked: there does not exist a nonempty $Z \subseteq X \setminus A$ such that for all $i \in a(Z)$ we have that $Z_i \subseteq Y^i$ for all $Y^i \in C^i(Z \cup A)$.

3. Counterexample

Hatfield and Kominers (2015) claimed the following result.

Theorem 8 (Original). Suppose that agents’ valuation functions are concave. Then, for
any stable outcome A, the allocation $\rho(A)$ is efficient.

Here, we show by way of example that the result is not correct as stated.

Example 1. Let $I = \{i, j\}$, $\Omega = \{\psi, \omega\}$, $r_{\psi}^{\text{max}} = r_{\omega}^{\text{max}} = 1$, and $a(\psi) = a(\omega) = \{i, j\}$. Let

\[
v^i(r) = 3 \min \{r_{\psi}, r_{\omega}\}
\]

\[
v^j(r) = \min \{0, 1 - (r_{\psi} + r_{\omega})\};
\]

note that both v^i and v^j are concave.

Let $x = (\psi, \frac{1}{2}, (0, 0))$ and $y = (\omega, \frac{1}{2}, (0, 0))$, and let $A = \{x, y\}$. We have that $C^i(A) = \{A\}$ while $C^j(A) = \{A, \{x\}, \{y\}, \emptyset\}$ and so A is individually rational.

Now, suppose that $Z \subseteq X \setminus A$ blocks A. Then there exist $Y^i \in C^i(A \cup Z)$ and $Y^j \in C^j(A \cup Z)$ such that $u^i(Y^i) + u^j(Y^j) > \frac{3}{2}$ (as $u^i(A) + u^j(A) = \frac{3}{2}$). Since $v^j(r) \leq 0$ for all r, we have that $v^i(\rho(Y^i)) > \frac{3}{2}$. Hence, $\rho_\psi(Y^i) > \frac{1}{2}$ and $\rho_\omega(Y^i) > \frac{1}{2}$; these facts imply that, since $\rho_\psi(A) = \rho_\omega(A) = \frac{1}{2}$, we have that $\tau(Z) = \{\psi, \omega\}$, i.e., Z has a contract specifying venture ψ and a contract specifying venture ω. Thus, $\{Z\} = C^i(A \cup Z)$ and $\{Z\} = C^j(A \cup Z)$ as i and j must choose at most one contract associated with each venture; let $Z = \{(\psi, \bar{r}_\psi, (t_\psi, -t_\psi)), (\omega, \bar{r}_\omega, (t_\omega, -t_\omega))\}$ (where we use the convention that transfers are listed in alphabetical order).

Let $\bar{Z} = \{(\psi, \bar{r}_{\min}, (t_\psi, -t_\psi)), (\omega, \bar{r}_{\min}, (t_\omega, -t_\omega))\}$ where $\bar{r}_{\min} = \min\{\bar{r}_\psi, \bar{r}_\omega\} > \frac{1}{2}$; it is immediate that \bar{Z} is a blocking set (given that Z is) and so $\{\bar{Z}\} = C^i(A \cup \bar{Z})$ and $\{\bar{Z}\} = C^j(A \cup \bar{Z})$.

For j to prefer \bar{Z} to $\{(\psi, \bar{r}_{\min}, (t_\psi, -t_\psi))\}$, we require that

\[
1 - (\bar{r}_{\min} + \bar{r}_{\min}) + t_\psi + t_\omega > t_\psi
\]

\[
t_\omega > 2\bar{r}_{\min} - 1.
\]
Similarly, for \(j \) to prefer \(\bar{Z} \) to \(\{(\omega, r_{\min}, (t_\omega, -t_\omega))\} \), we require that

\[
1 - (r_{\min} + r_{\min}) + t_\psi + t_\omega > t_\omega \tag{2}
\]

\[
t_\psi \geq 2r_{\min} - 1.
\]

Finally, for \(i \) to prefer \(\bar{Z} \) to \(A \), we require that

\[
3r_{\min} - t_\psi - t_\omega > \frac{3}{2}. \tag{3}
\]

Since \(r_{\min} > \frac{1}{2} \), it is immediate that (1)-(3) can not hold simultaneously.

Thus, we conclude that \(A \) must be unblocked, and hence stable; yet \(A \) is not efficient, as \(\rho(A) = (\frac{1}{2}, \frac{1}{2}) \), which yields total welfare of \(\frac{3}{2} \), while \(r = (1, 1) \) yields total welfare of 2.

As all competitive equilibria in our setting are efficient (Theorem 1 of Hatfield and Kominers (2015)), and the outcome \(A \) of Example 1 is not efficient, it is immediate that the following corollary of Theorem 8 of Hatfield and Kominers (2015) is also incorrect as stated.

Corollary 2 (Original). Suppose that agents’ valuation functions are concave. Then, for any stable outcome \(A \), there exists a price matrix \(p \) such that the arrangement \([\rho(A); p]\) is a competitive equilibrium.

4 Corrected Result

The proof of Theorem 8 presented by Hatfield and Kominers (2015) required that, at any inefficient allocation \(r \), there exists at least one venture \(\psi \) such that a slight increase or decrease in the level of participation in \(\psi \) increases welfare. This fails in Example 1: Even though \(r = (\frac{1}{2}, \frac{1}{2}) \) is not efficient, welfare decreases if increase or decrease participation in just \(\psi \) or just \(\omega \); only simultaneously increasing both \(\psi \) and \(\omega \) increases welfare. However, when each valuation function is differentiable, then welfare is also differentiable; hence, at
any allocation that is not a local maximum, there does exist at least one venture ψ such that a slight increase or decrease in the level of participation in ψ increases welfare. Thus, when agents’ valuation functions are concave and differentiable, we recover the conclusion of Theorem 8.

Specifically, we say that a valuation function is differentiable if, at every point $r \in \times_{\omega \in \Omega} [0, r^\omega_{\max}]$, there exists a vector $q \in \mathbb{R}^\Omega$ such that, for every sequence r^1, r^2, \ldots that approaches r (and where each $r^n \in \times_{\omega \in \Omega} [0, r^\omega_{\max}]$) we have that

$$\lim_{n \to \infty} \frac{|(v(r^n) - v(r)) - q \cdot (r^n - r)|}{\|r^n - r\|} = 0.$$

Theorem 8 (Corrected). Suppose that agents’ valuation functions are concave and differentiable. Then, for any stable outcome A, the allocation $\rho(A)$ is efficient.

With the additional assumption of differentiability, Corollary 2 then follows from Theorem 8 as before.

Corollary 2 (Corrected). Suppose that agents’ valuation functions are concave and differentiable. Then, for any stable outcome A, there exists a price matrix p such that the arrangement $[\rho(A); p]$ is a competitive equilibrium.
References