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Abstract

We identify an error in the claim by Hatfield and KominersHatfield and Kominers (20152015) that every stable
outcome is efficient in the setting of multilateral matching with contracts. We then
show that the result can be recovered under a suitable differentiability condition.
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1 Introduction

Hatfield and KominersHatfield and Kominers (20152015) introduced a model of matching in networks with continuously

divisible multilateral contracts and transferrable utility. They showed that competitive

equilibria exist and are efficient when agents’ valuations are concave and also claimed that

(under the same condition) competitive equilibria correspond to stable outcomes. However, as

we show here, the correspondence of stability and competitive equilibrium in the multilateral

matching framework requires an additional differentiability condition.

2 Model

There is a finite set I of agents, and a finite set Ω of ventures. Each venture ω ∈ Ω is

associated with a set of at least two agents a(ω) ⊆ I; there may be several ventures associated

with the same set of agents. For a set of ventures Ψ ⊆ Ω, we denote by a(Ψ) ≡ ∪ψ∈Ψa(ψ)

the set of agents associated with ventures in Ψ. We denote by Ψi ≡ {ψ ∈ Ψ : i ∈ a(ψ)} the

set of ventures in Ψ associated with agent i. We denote by rω ∈ [0, rmax
ω ] the chosen level of

participation in venture ω ∈ Ω by the agents in a(ω).

Each agent i ∈ I has a continuous valuation function vi(r) over ventures, where the vector

r ≡ (rω)ω∈Ω is an allocation, which indicates the investment in each venture ω ∈ Ω. We assume

that vi is unaffected by ventures to which i is not a party, i.e., vi(rω, rΩr{ω}) = vi(r̃ω, rΩr{ω})

for all ω such that i /∈ a(ω). An allocation r̂ is efficient if it maximizes total surplus, i.e.,

r̂ ∈ arg max
0≤r≤rmax

{∑
i∈I

vi(r)
}
.

We denote by p ≡ (piω)i∈I,ω∈Ω the price matrix, for which piω is the per-unit transfer from

agent i when he engages in venture ω. For any agent j /∈ a(ω), we use the convention that

pjω ≡ 0. Furthermore, a venture does not create or use the numeraire; hence ∑
i∈I p

i
ω = 0 for

all ω ∈ Ω.
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An allocation r along with a price matrix p together define an arrangement [r; p]. The

utility function ui([r; p]) of an agent i is quasilinear over ventures and transfer prices; hence,

it can be expressed in the form

ui([r; p]) ≡ vi(r)− pi · r.

Given prices p, we define the demand correspondence Di(p) for agent i as

Di(p) ≡ arg max
0≤r≤rmax

{ui([r; p])}

and the demand correspondence for the entire economy as

D(p) ≡
⋂
i∈I
Di(p).

An arrangement [r; p] is a competitive equilibrium if r ∈ D(p).

A contract x is comprised of a venture ω ∈ Ω, a size of that venture rω ∈ [0, rmax
ω ], and a

transfer vector sω ∈ RI (where we set sjω = 0 for all j /∈ a(ω)). The set of all contracts is

X ≡
{

(ω, rω, sω) ∈ Ω× R≥0 × RI : rω ≤ rmax
ω , siω = 0 for i /∈ a(ω), and

∑
i∈I

siω = 0
}
.

For x = (ω, rω, sω) ∈ X, we let τ(x) ≡ ω denote the venture associated with x; for Y ⊆ X

we let τ(Y ) ≡ ∪y∈Y {τ(y)}. For a contract x ∈ X we let a(x) ≡ a(τ(x)) and for Y ⊆ X we

let a(Y ) ≡ a(τ(Y )); we let Yi ≡ {y ∈ Y : i ∈ a(y)}.

A set of contracts Y ⊆ X is an outcome if it describes a well-defined participation and

pricing plan, i.e., if for any distinct (ω, rω, sω), (ω̄, r̄ω̄, s̄ω̄) ∈ Y , we have that ω 6= ω̄.
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For a given outcome Y , we define ρ(Y ) as

ρω(Y ) ≡


rω (ω, rω, sω) ∈ Y

0 otherwise;

that is, ρ(Y ) denotes the associated allocation vector of venture participations. Similarly, we

define π(Y ) as

πjω(Y ) ≡


sj

ω

rω
(ω, rω, sω) ∈ Y

0 otherwise,

denote the matrix of per-unit transfer prices associated to Y . The utility from an outcome Y

for agent i is then given by

ui(Y ) ≡ vi(ρ(Y ))− πi(Y ) · ρ(Y ).

The choice correspondence of agent i is given by

Ci(Y ) ≡ arg max
Z⊆Yi;Z is an outcome

{ui(Z)}.

An allocation is stable if it is

1. individually rational: for all i ∈ I, Ai ∈ Ci(A).

2. unblocked: there does not exist a nonempty Z ⊆ X r A such that for all i ∈ a(Z) we

have that Zi ⊆ Y i for all Y i ∈ Ci(Z ∪ A).

3 Counterexample

Hatfield and KominersHatfield and Kominers (20152015) claimed the following result.

Theorem 8 (Original). Suppose that agents’ valuation functions are concave. Then, for
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any stable outcome A, the allocation ρ(A) is efficient.

Here, we show by way of example that the result is not correct as stated.

Example 1. Let I = {i, j}, Ω = {ψ, ω}, rmax
ψ = rmax

ω = 1, and a(ψ) = a(ω) = {i, j}. Let

vi(r) = 3 min{rψ, rω}

vj(r) = min{0, 1− (rψ + rω)};

note that both vi and vj are concave.

Let x = (ψ, 1
2 , (0, 0)) and y = (ω, 1

2 , (0, 0)), and let A = {x, y}. We have that Ci(A) = {A}

while Cj(A) = {A, {x}, {y},∅} and so A is individually rational.

Now, suppose that Z ⊆ X r A blocks A. Then there exist Y i ∈ Ci(A ∪ Z) and

Y j ∈ Cj(A ∪ Z) such that ui(Y i) + uj(Y j) > 3
2 (as ui(A) + uj(A) = 3

2). Since vj(r) ≤ 0

for all r, we have that vi(ρ(Y i)) > 3
2 . Hence, ρψ(Y i) > 1

2 and ρω(Y i) > 1
2 ; these facts

imply that, since ρψ(A) = ρω(A) = 1
2 , we have that τ(Z) = {ψ, ω}, i.e., Z has a contract

specifying venture ψ and a contract specifying venture ω. Thus, {Z} = Ci(A ∪ Z) and

{Z} = Cj(A ∪ Z) as i and j must choose at most one contract associated with each venture;

let Z = {(ψ, r̄ψ, (tψ,−tψ)), (ω, r̄ω, (tω,−tω))} (where we use the convention that transfers are

listed in alphabetical order).

Let Z̄ = {(ψ, r̄min, (tψ,−tψ)), (ω, r̄min, (tω,−tω))} where r̄min = min{r̄ψ, r̄ω} > 1
2 ; it is

immediate that Z̄ is a blocking set (given that Z is) and so {Z̄} = Ci(A ∪ Z̄) and {Z̄} =

Cj(A ∪ Z̄).

For j to prefer Z̄ to {(ψ, r̄min, (tψ,−tψ))}, we require that

1− (r̄min + r̄min) + tψ + tω > tψ (1)

tω ≥ 2r̄min − 1.
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Similarly, for j to prefer Z̄ to {(ω, r̄min, (tω,−tω))}, we require that

1− (r̄min + r̄min) + tψ + tω > tω (2)

tψ ≥ 2r̄min − 1.

Finally, for i to prefer Z̄ to A, we require that

3r̄min − tψ − tω >
3
2 . (3)

Since r̄min > 1
2 , it is immediate that (11)–(33) can not hold simultaneously.

Thus, we conclude that A must be unblocked, and hence stable; yet A is not efficient, as

ρ(A) = (1
2 ,

1
2), which yields total welfare of 3

2 , while r = (1, 1) yields total welfare of 2.

As all competitive equilibria in our setting are efficient (Theorem 1 of Hatfield and KominersHatfield and Kominers

(20152015)), and the outcome A of Example 11 is not efficient, it is immediate that the following

corollary of Theorem 8 of Hatfield and KominersHatfield and Kominers (20152015) is also incorrect as stated.

Corollary 2 (Original). Suppose that agents’ valuation functions are concave. Then, for

any stable outcome A, there exists a price matrix p such that the arrangement [ρ(A); p] is a

competitive equilibrium.

4 Corrected Result

The proof of Theorem 8 presented by Hatfield and KominersHatfield and Kominers (20152015) required that, at any

inefficient allocation r, there exists at least one venture ψ such that a slight increase or

decrease in the level of participation in ψ increases welfare. This fails in Example 11: Even

though r = (1
2 ,

1
2) is not efficient, welfare decreases if increase or decrease participation in

just ψ or just ω; only simultaneously increasing both ψ and ω increases welfare. However,

when each valuation function is differentiable, then welfare is also differentiable; hence, at

6



any allocation that is not a local maximum, there does exist at least one venture ψ such

that a slight increase or decrease in the level of participation in ψ increases welfare. Thus,

when agents’ valuation functions are concave and differentiable, we recover the conclusion of

Theorem 8.

Specifically, we say that a valuation function is differentiable if, at every point r ∈

×ω∈Ω[0, rmax
ω ], there exists a vector q ∈ RΩ such that, for every sequence r1, r2, . . . that

approaches r (and where each rn ∈ ×ω∈Ω[0, rmax
ω ]) we have that

lim
n→∞

|(v(rn)− v(r))− q · (rn − r)|
‖rn − r‖

= 0.

Theorem 8 (Corrected). Suppose that agents’ valuation functions are concave and differ-

entiable. Then, for any stable outcome A, the allocation ρ(A) is efficient.

With the additional assumption of differentiability, Corollary 2 then follows from Theorem 8

as before.

Corollary 2 (Corrected). Suppose that agents’ valuation functions are concave and dif-

ferentiable. Then, for any stable outcome A, there exists a price matrix p such that the

arrangement [ρ(A); p] is a competitive equilibrium.
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